331
Views
2
CrossRef citations to date
0
Altmetric
Review

Taking the road less traveled – the therapeutic potential of CBP/β-catenin antagonists

Pages 701-719 | Received 06 Oct 2021, Accepted 08 Oct 2021, Published online: 27 Oct 2021

References

  • Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014 Jul;13(7):513–532.
  • Ring A, Kim Y-M, Kahn M. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev. 2014 Aug;10(4):512–525.
  • Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018 Jun 8;145(11). https://doi.org/10.1242/dev.146589.
  • Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008 4;4(2):68–75.
  • Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004 Jan;10(1):55–63.
  • Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001 Nov 1;414(6859):105–111.
  • Otero JJ, Fu W, Kan L, et al. β-Catenin signaling is required for neural differentiation of embryonic stem cells. Development. 2004 Aug;131(15):3545–3557.
  • Kuhl SJ, Kuhl M. On the role of Wnt/β-catenin signaling in stem cells. Biochimica Et Biophysica Acta (BBA) - General Subjects. 2013 Feb;1830(2):2297–2306.
  • Ng L, Kaur P, Bunnag N, et al. WNT signaling in disease. Cells. 2019 Aug 3;8(8):826.
  • Chan LS, Man OY, Kwok HH, et al. The Wnt modulator ICG001 mediates the inhibition of nasopharyngeal carcinoma cell migration in vitro via the miR150/CD44 axis. Int J Oncol. 2019 Mar;54(3):1010–1020.
  • Chen D, Xie R, Shu B, et al. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci. 2019 Apr;1442(1):48–60.
  • Chae W-J, Bothwell ALM. Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 2018 Oct;39(10):830–847.
  • Wang B, Tian T, Kalland K-H, et al. Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol Sci. 2018 Jul;39(7):648–658.
  • Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012 Dec;13(12):767–779.
  • Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 2012 Jun 13;31(12):2670–2684.
  • Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013 Jan;13(1):11–26.
  • Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012 May 1;4(5):a008052–a008052.
  • Lai KKY, Nguyen C, Lee K-S, et al., Convergence of canonical and non-canonical Wnt signal: differential Kat3 coactivator usage. Curr Mol Pharmacol. 12(3): 167–183. 2019.
  • Rasola A, Fassetta M, De Bacco F, et al. A positive feedback loop between hepatocyte growth factor receptor and β-catenin sustains colorectal cancer cell invasive growth. Oncogene. 2007;26(7):1078–1087.
  • Coluccia AML, Benati D, Dekhil H, et al. SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)–dependent tyrosine phosphorylation of β-catenin and its nuclear signaling. Cancer Res. 2006 Feb 15;66(4):2279–2286.
  • Lucero OM, Dawson DW, Moon RT, et al. A re-evaluation of the “oncogenic” nature of Wnt/β-catenin signaling in melanoma and other cancers. Curr Oncol Rep. 2010 Sep;12(5):314–318.
  • Fodde R, Brabletz T. Wnt/β-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007 Apr;19(2):150–158.
  • De Ferrari GV, Moon RT. The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene. 2006 Dec 4;25(57):7545–7553.
  • Moon RT, Kohn AD, De Ferrari GV. β-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5(9):691–701.
  • May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 2012 May 2;1(1):7.
  • Teo J-L, Kahn M. The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev. 2010 Sep 30;62(12):1149–1155.
  • Cavodeassi F, Carreira-Barbosa F, Young RM, et al. Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/β-catenin pathway. Neuron. 2005 Jul 7;47(1):43–56.
  • Dissanayake SK, Wade M, Johnson CE, et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem. 2007 Jun 8;282(23):17259–17271.
  • Penzo-Mendèz A, Umbhauer M, Djiane A, et al. Activation of Gβγ signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation. Dev Biol. 2003 May 15;257(2):302–314.
  • Habas R. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 2003 Jan 15;17(2):295–309.
  • Habas R, Kato Y, He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell. 2001 Dec 28;107(7):843–854.
  • Winter CG, Wang B, Ballew A, et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell. 2001 Apr 6;105(1):81–91.
  • Lugli A, Zlobec I, Minoo P, et al. Prognostic significance of the wnt signalling pathway molecules APC, β-catenin and E-cadherin in colorectal cancer? A tissue microarray-based analysis. Histopathology. 2007 Mar;50(4):453–464.
  • Takada T, Yagi Y, Maekita T, et al. Methylation-associated silencing of the Wnt antagonist SFRP1 gene in human ovarian cancers. Cancer Sci. 2004 Sep;95(9):741–744.
  • Cao X, Eu KW, Seow-Choen F, et al. APC mutation and phenotypic spectrum of Singapore familial adenomatous polyposis patients. Eur J Human Genet. 2000 Jan;8(1):42–48.
  • Chien AJ, Moore EC, Lonsdorf AS, et al. Activated Wnt/ss-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1193–1198.
  • Bachmann IM, Straume O, Puntervoll HE, et al. Importance of P-cadherin, β-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res. 2005 Dec 15;11(24):8606–8614.
  • Maelandsmo GM, Holm R, Nesland JM, et al. Reduced beta-catenin expression in the cytoplasm of advanced-stage superficial spreading malignant melanoma. Clin Cancer Res. 2003 Aug 15;9(9):3383–3388.
  • Kageshita T, Hamby CV, Ishihara T, et al. Loss of beta-catenin expression associated with disease progression in malignant melanoma. Br J Dermatol. 2001 Aug;145(2):210–216.
  • Donne J. Devotions upon emergent occasions. Cambridge, [Eng.]: The University press; 1923. p. 1923.
  • LaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010 Jun 15;16(12):3121–3129.
  • Merchant AA, Matsui W. Targeting Hedgehog — a cancer stem cell pathway. Clin Cancer Res. 2010 Jun 15;16(12):3130–3140.
  • Pannuti A, Foreman K, Rizzo P, et al. Targeting Notch to target cancer stem cells. Clin Cancer Res. 2010 Jun 15;16(12):3141–3152.
  • Thomas PD, Kahn M. Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation. Cell Biol Toxicol. 2016 Feb;32(1):61–81.
  • Ring A, Nguyen C, Smbatyan G, et al. CBP/β-catenin/FOXM1 is a novel therapeutic target in triple negative breast cancer. Cancers (Basel). 2018 Dec 19;10(12):525.
  • Le NH, Franken P, Fodde R. Tumour–stroma interactions in colorectal cancer: converging on β-catenin activation and cancer stemness. Br J Cancer. 2008 Jun 17;98(12):1886–1893.
  • Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010 Jun 15;16(12):3153–3162.
  • Lau T, Chan E, Callow M, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation–driven colorectal tumor growth. Cancer Res. 2013 May 15;73(10):3132–3144.
  • Rawstron AC, Child JA, de Tute RM, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the medical research council myeloma IX study. J Clin Oncol. 2013 Jul 10;31(20):2540–2547.
  • Madan B, McDonald MJ, Foxa GE, et al. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 2018;6(1):17.
  • Hecht A. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J. 2000 Apr 17;19(8):1839–1850.
  • Takemaru K-I, Moon RT. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J Cell Biol. 2000 Apr 17;149(2):249–254.
  • Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2012 Jan;41(D1):D377–86.
  • Arany Z. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell. 1994 Jun 17;77(6):799–800.
  • Eckner R, Arany Z, Ewen M, et al. The adenovirus E1A-associated 300-kD protein exhibits properties of a transcriptional coactivator and belongs to an evolutionarily conserved family. Cold Spring Harb Symp Quant Biol. 1994;59(0):85–95.
  • Fauquier L, Azzag K, Parra MAM, et al. CBP and P300 regulate distinct gene networks required for human primary myoblast differentiation and muscle integrity. Sci Rep. 2018 Aug 22;8(1):12629.
  • Roth JF, Shikama, N, and Henzen, C, et al. Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5. The EMBO journal. 2003 Oct 1;22(19):5186–5196.
  • Yamauchi T, Oike Y, Kamon J, et al. Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat Genet. 2002 Feb;30(2):221–226.
  • Kung AL, Rebel VI, Bronson RT, et al. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 2000 Feb 1;14(3):272–277.
  • Emami KH, Nguyen C, Ma H, et al. A small molecule inhibitor of -catenin/CREB-binding protein transcription. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12682–12687.
  • McMillan M, Kahn M. Investigating Wnt signaling: a chemogenomic safari. Drug Discov Today. 2005 Nov 1;10(21):1467–1474.
  • Higuchi Y, Nguyen C, Yasuda S-Y, et al. Specific direct small molecule p300/β-catenin antagonists maintain stem cell potency. Curr Mol Pharmacol. 2016;9(3):272–279.
  • Miyabayashi T, Teo J-L, Yamamoto M, et al. Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5668–5673.
  • Hasegawa K, Yasuda S-Y, Teo J-L, et al. Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med. 2012 1; 1(1): 18–28.
  • Rieger ME, Zhou B, Solomon N, et al. p300/β-Catenin interactions regulate adult progenitor cell differentiation downstream of WNT5a/protein kinase C (PKC). J Biol Chem. 2016 Mar 18;291(12):6569–6582.
  • Zhao Y, Masiello D, McMillian M, et al. CBP/catenin antagonist safely eliminates drug-resistant leukemia-initiating cells. Oncogene. 2016 Jul 14;35(28):3705–3717.
  • Banerjee ER, Laflamme MA, Papayannopoulou T, et al. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One. 2012;7(3):e33165.
  • Teo J-L, Ma H, Nguyen C, et al. Specific inhibition of CBP/ -catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci U S A. 2005Aug23;102(34):12171–12176.
  • Zhao Y, Wu K, Nguyen C, et al., Small molecule p300/catenin antagonist enhances hematopoietic recovery after radiation. PLoS One. 12(5): e0177245. 2017.
  • Marson A, Foreman R, Chevalier B, et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell. 2008 Aug 7;3(2):132–135.
  • Lukaszewicz AI, Nguyen C, Melendez E, et al. The mode of stem cell division is dependent on the differential interaction of β-catenin with the Kat3 coactivators CBP or p300. Cancers (Basel). 2019 Jul 9;11(7):962.
  • Manegold P, Lai KKY, Wu Y, et al. Differentiation therapy targeting the β-catenin/CBP interaction in pancreatic cancer. Cancers (Basel). 2018;10(4):95.
  • Kim Y-M, Gang E-J, Kahn M. CBP/catenin antagonists: targeting LSCs’ achilles heel. Exp Hematol. 2017 Aug;52:1–11.
  • Gang EJ, Hsieh Y-T, Pham J, et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene. 2014 Apr 24;33(17):2169–2178.
  • Wend P, Fang L, Zhu Q, et al. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J. 2013 Jul 17;32(14):1977–1989.
  • Osawa Y, Oboki K, Imamura J, et al. Inhibition of cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP)/β-catenin reduces liver fibrosis in mice. EBioMedicine. 2015 Nov;2(11):1751–1758.
  • Beyer C, Reichert H, Akan H, et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 2013 Jul;72(7):1255–1258.
  • Hao S, He W, Li Y, et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol. 2011 Sep;22(9):1642–1653.
  • Henderson WR Jr., Chi EY, Ye X, et al. Inhibition of Wnt/ -catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14309–14314.
  • Sasaki T, Hwang H, Nguyen C, et al. The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium. PLoS One. 2013;8(9):e75010.
  • Lai KKY, Hu X, Chosa K, et al. p300 serine 89: a critical signaling integrator and its effects on intestinal homeostasis and repair. Cancers (Basel). 2021 Mar 14;13(6):1288.
  • El-Khoueiry AB, Ning Y, Yang D, et al. A phase I first-in-human study of PRI-724 in patients (pts) with advanced solid tumors. J clin oncol. 2013;31(15_suppl):2501.
  • Kimura K, Ikoma A, Shibakawa M, et al. Safety, tolerability, and preliminary efficacy of the anti-fibrotic small molecule PRI-724, a CBP/β-catenin inhibitor, in patients with hepatitis C virus-related cirrhosis: a single-center, open-label, dose escalation phase 1 trial. EBioMedicine. 2017;23:79–87.
  • Jimenez JJ, Chale RS, Abad AC, et al. Acute promyelocytic leukemia (APL): a review of the literature. Oncotarget. 2020 Mar 17;11(11):992–1003.
  • Mondul AM, Weinstein SJ, Layne TM, et al. Vitamin D and cancer risk and mortality: state of the science, gaps, and challenges. Epidemiol Rev. 2017 Jan 1;39(1):28–48.
  • Dillard AC, Lane MA. Retinol decreases β-catenin protein levels in retinoic acid-resistant colon cancer cell lines. Mol Carcinog. 2007 Apr;46(4):315–329.
  • Ianculescu I, Wu D-Y, Siegmund KD, et al. Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. J Biol Chem. 2012 Feb 3;287(6):4000–4013.
  • Szeto W, Jiang W, Tice DA, et al. Overexpression of the retinoic acid-responsive gene in human cancers and its synergistic induction by Wnt-1 and retinoic acid. Cancer Res. 2001;61(10):4197.
  • Plevin MJ, Mills MM, Ikura M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci. 2005 Feb;30(2):66–69.
  • Heery DM, Hoare S, Hussain S, et al. Core LXXLL Motif Sequences in CREB-binding Protein, SRC1, and RIP140 Define Affinity and Selectivity for Steroid and Retinoid Receptors. J Biol Chem. 2001 Mar 2;276(9):6695–6702.
  • Groen AK, Kuipers F. Bile acid look-alike controls life span in C. elegans. Cell Metab. 2013 Aug 6;18(2):151–152.
  • Ito K, Carracedo A, Weiss D, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012 Sep;18(9):1350–1358.
  • Mullen EM, Gu P, Cooney AJ. Nuclear receptors in regulation of mouse ES cell pluripotency and differentiation. PPAR Res. 2007;2007:61563.
  • Baker A-M, Cereser B, Melton S, et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 2014 Aug 21;8(4):940–947.
  • Foudi A, Hochedlinger K, Van Buren D, et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol. 2009 Jan;27(1):84–90.
  • Cairns J. Mutation selection and the natural history of cancer. Nature. 1975May15;255(5505):197–200.
  • Ragle LE, Bruno RD, Boulanger Ca, et al. Long-label-retaining mammary epithelial cells are created early in ductal development and distributed throughout the branching ducts. Mech Dev. 2019 Oct;159:103565.
  • Werner B, Sottoriva A, Komarova NL. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates. PLoS Comput Biol. 2018 Jun;14(6):e1006233.
  • Winquist RJ, Hall AB, Eustace BK, et al. Evaluating the immortal strand hypothesis in cancer stem cells: symmetric/self-renewal as the relevant surrogate marker of tumorigenicity. Biochem Pharmacol. 2014 Sep 15;91(2):129–134.
  • Yadlapalli S, Yamashita YM. DNA asymmetry in stem cells - immortal or mortal? J Cell Sci. 2013 Sep 15;126(Pt 18):4069–4076.
  • Mejia-Ramirez E, Florian MC. Understanding intrinsic hematopoietic stem cell aging. Haematologica. 2020 Jan;105(1):22–37.
  • Zhang H, Cherian R, Jin K. Systemic milieu and age-related deterioration. GeroScience. 2019 Jun;41(3):275–284.
  • Drapeau E, Nora Abrous D. Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell. 2008 Aug;7(4):569–589.
  • Lee JY, Nakada D, Yilmaz OH, et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after PTEN deletion. Cell Stem Cell. 2010 Nov 5;7(5):593–605.
  • Cicalese A, Bonizzi G, Pasi CE, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009 Sep 18;138(6):1083–1095.
  • Berger J, Daxenbichler G. DNA methylation of nuclear receptor genes—possible role in malignancy. J Steroid Biochem Mol Biol. 2002;80(1):1–11.
  • Lee GS, Liao X, Shimizu H, et al. Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse. Birth Defects Res Part A, Clin Mol Teratol. 2010 Oct;88(10):863–882.
  • Demer LL, Hsu JJ, Tintut Y. Steroid hormone vitamin D: implications for cardiovascular disease. Circ Res. 2018 May 25;122(11):1576–1585.
  • Sasaki T, Kahn M. Inhibition of beta-catenin/p300 interaction proximalizes mouse embryonic lung epithelium. Transl Respir Med. 2014;2(1):8.
  • Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009 Dec 1;19(22):R1046–52.
  • Bhattacharya S, Eckner R, Grossman S, et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature. 1996 Sep 26;383(6598):344–347.
  • Zhang JJ, Vinkemeier U, Gu W, et al. Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15092–15096.
  • Marcato V, Luron L, Laqueuvre LM, et al. β-catenin upregulates the constitutive and virus-induced transcriptional capacity of the interferon beta promoter through T-cell factor binding sites. Mol Cell Biol. 2016 Jan 1;36(1):13–29.
  • Hillesheim A, Nordhoff C, Boergeling Y, et al. β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Cell Commun Signal. 2014 Apr;26(12):29.
  • Yang P, An H, Liu X, et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol. 2010 Jun;11(6):487–494.
  • Taylor JM, Moore Z, Minter MR, et al. Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease. J Neural Transm. 2018 May;125(5):797–807.
  • Murira A, Lamarre A. Type-I interferon responses: from friend to foe in the battle against chronic viral infection. Front Immunol. 2016;7:609.
  • Nallar SC, Kalvakolanu DV. Interferons, signal transduction pathways, and the central nervous system. J Interferon Cytokine Res. 2014 Aug;34(8):559–576.
  • Harden JL, Gu T, Kilinc MO, et al. Dichotomous effects of IFN-γ on dendritic cell function determine the extent of IL-12-driven antitumor T cell immunity. J Immunol. 2011 Jul 1;187(1):126–132.
  • Lu Y, Waller EK. Dichotomous role of Interferon-γ in allogeneic bone marrow transplant. Biol Blood Marrow Transplant. 2009 Nov;15(11):1347–1353.
  • Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1 is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7987–7992.
  • Nowak D, Stewart D, Koeffler HP. Differentiation therapy of leukemia: 3 decades of development. Blood. 2009 Apr 16;113(16):3655–3665.
  • Zhan T, Ambrosi G, Wandmacher AM, et al. MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun. 2019 May 16;10(1):2197.
  • Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer. 2018 Mar;18(3):139–147.
  • Luke JJ, Bao R, Sweis RF, et al. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res. 2019;25(10):3074–3083.
  • Schinzari V, Timperi E, Pecora G, et al. Wnt3a/β-catenin signaling conditions differentiation of partially exhausted T-effector cells in human cancers. Cancer Immunol Res. 2018 Aug;6(8):941–952.
  • Miranda A, Hamilton PT, Zhang AW, et al. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9020–9029.
  • Hou Y-C, Chao Y-J, Hsieh M-H, et al. Low CD8+ T cell infiltration and high PD-L1 expression are associated with level of CD44+/CD133+ cancer stem cells and predict an unfavorable prognosis in pancreatic cancer. Cancers (Basel). 2019 Apr 15;11(4):541.
  • Malta TM, Sokolov A, Gentles AJ, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018 Apr 5;173(2):338–54.e15.
  • Kasashima H, Duran A, Martinez-Ordoñez A, et al. Stromal SOX2 upregulation promotes tumorigenesis through the generation of a SFRP1/2-expressing cancer-associated fibroblast population. Dev Cell. 2021;56(1):95–110.e10.
  • Goldsberry WN, Londoño A, Randall TD, et al. A review of the role of Wnt in cancer immunomodulation. Cancers (Basel). 2019 Jun 4;11(6):771.
  • Spranger S, Dai D, Horton B, et al. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017 May 8;31(5):711–23 e4.
  • Osawa Y, Kojika E, Nishikawa K, et al. Programmed cell death ligand 1 (PD-L1) blockade attenuates metastatic colon cancer growth in cAMP-response element-binding protein (CREB)-binding protein (CBP)/β-catenin inhibitor-treated livers. Oncotarget. 2019 Apr 30;10(32):3013–3026.
  • Zhao Y, Wu K, Wu Y, et al. Characterization of imatinib resistant CML leukemic stem/initiating cells and their sensitivity to CBP/catenin antagonists. Curr Mol Pharmacol. 2018;11(2):113–121.
  • Moehrle BM, Geiger H. Aging of hematopoietic stem cells: DNA damage and mutations? Exp Hematol. 2016;44(10):895–901.
  • Adams PD, Jasper H, Rudolph KL. Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell. 2015 Jun 4;16(6):601–612.
  • Hernandez L, Roux KJ, Wong ESM, et al. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell. 2010 Sep 14;19(3):413–425.
  • Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science (New York, NY). 2007 Aug 10;317(5839):803–806.
  • Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science (New York, NY). 2007 Aug 10;317(5839):807–810.
  • Naito AT, Sumida T, Nomura S, et al. Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell. 2012 Jun 8;149(6):1298–1313.
  • Kahn M. Symmetric division versus asymmetric division: a tale of two coactivators. Future Med Chem. 2011 Oct;3(14):1745–1763.
  • Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science (New York, NY). 2015 Jan 2;347(6217):78–81.
  • Flach J, Bakker ST, Mohrin M, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014 Aug 14;512(7513):198–202.
  • Koeffler HP, Leong G. Preleukemia: one name, many meanings. Leukemia. 2017 Mar;31(3):534–542.
  • Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014 Dec 25;371(26):2477–2487.
  • Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014 Feb 20;506(7488):328–333.
  • Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017 Jul 13;377(2):111–121.
  • Hormaechea-Agulla D, Matatall KA, Le DT, et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell. 2021;28(8):1428–1442.e6.
  • Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science (New York, NY). 2010 Jan 29;327(5965):542–545.
  • Bakker ST, Passegue E. Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp Hematol. 2013 Nov;41(11):915–923.
  • Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008 Feb;9(2):115–128.
  • Kohli L, Passegue E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 2014 Aug;24(8):479–487.
  • Wagner RT, Cooney AJ. Minireview: the diverse roles of nuclear receptors in the regulation of embryonic stem cell pluripotency. Mol Endocrinol. 2013;27(6):864–878.
  • Abou Ziki MD, Mani A. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr Res. 2019;70:18–25.
  • Yoon JC, Ng A, Kim BH, et al. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev. 2010 Jul 15;24(14):1507–1518.
  • Jeong Y, Mangelsdorf DJ. Nuclear receptor regulation of stemness and stem cell differentiation. Exp Mol Med. 2009 Aug 31;41(8):525–537.
  • Dhillon P, Park J, Hurtado del Pozo C, et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 2021;33(2):379–94.e8.
  • Carthew RW. Gene regulation and cellular metabolism: an essential partnership. Trends Genet. 2021;37(4):389–400.
  • He W, Dai C, Li Y, et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol. 2009 Apr;20(4):765–776.
  • Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018 Sep;18(9):545–558.
  • Vu TN, Chen X, Foda HD, et al. Interferon-γ enhances the antifibrotic effects of pirfenidone by attenuating IPF lung fibroblast activation and differentiation. Respir Res. 2019 Sep 11;20(1):206.
  • Law BMP, Wilkinson R, Wang X, et al. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int. 2017 Jul;92(1):79–88.
  • Trosko JE, Kang K-S. Evolution of energy metabolism, stem cells and cancer stem cells: how the Warburg and barker hypotheses might be linked. International Journal of Stem Cells. 2012 5;5(1):39–56.
  • Ono M, Lai KKY, Wu K, et al., Nuclear receptor/Wnt beta-catenin interactions are regulated via differential CBP/p300 coactivator usage. PLoS One. 13(7): e0200714. 2018.
  • Yuan LW, Gambee JE. Phosphorylation of p300 at serine 89 by protein kinase C. J Biol Chem. 2000 Dec 29;275(52):40946–40951.
  • Yuan LW, Soh J-W, Weinstein IB. Inhibition of histone acetyltransferase function of p300 by PKCδ. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research. 2002 Oct 21;1592(2):205–211.
  • Yang W, Hong YH, Shen X-Q, et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem. 2001 Oct 19;276(42):38341–38344.
  • Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008 Nov 13;456(7219):269–273.
  • Bricambert J, Miranda J, Benhamed F, et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest. 2010 Dec;120(12):4316–4331.
  • Wei P, Dove KK, Bensard C, et al. The force is strong with this one: metabolism (over)powers stem cell fate. Trends Cell Biol. 2018;28(7):551–559.
  • Buck MD, Sowell RT, Kaech SM, et al. Metabolic instruction of immunity. Cell. 2017 May 4;169(4):570–586.
  • Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013 Nov 7;155(4):934–947.
  • Dowen JM, Fan ZP, Hnisz D, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell. 2014 Oct 9;159(2):374–387.
  • Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013 Apr 11;153(2):320–334.
  • Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013 Apr 11;153(2):307–319.
  • Parker SC, Stitzel ML, Taylor DL, et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17921–17926.
  • Mirzadeh Azad F, Atlasi Y. WNT-regulated transcriptional enhancers and stem cell plasticity. Trends Cell Biol. 2021 Mar 25;31(7):525–528.
  • Cho S, Lee G, Pickering BF, et al. mTORC1 promotes cell growth via m6A-dependent mRNA degradation. Mol Cell. 2021 May 20;81(10):2064–75.e8.
  • Martire S, Nguyen J, Sundaresan A, et al. Differential contribution of p300 and CBP to regulatory element acetylation in mESCs. BMC Mol Cell Biol. 2020 Jul 20;21(1):55.
  • Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012 Sep;13(9):613–626.
  • Rada-Iglesias A, Bajpai R, Swigut T, et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011 Feb 10;470(7333):279–283.
  • Zamudio AV, Dall’Agnese A, Henninger JE, et al. Mediator condensates localize signaling factors to key cell identity genes. Mol Cell. 2019 Dec 5;76(5):753–66.e6.
  • Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem. 2001 Apr 27;276(17):13505–13508.
  • Narita T, Ito S, Higashijima Y, et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol Cell. 2021 May 20;81(10):2166–82.e6.
  • Shikama N, Lutz, W, and Kretzschmar, R, et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. The EMBO journal. 2003 Oct 1;22(19):5175–5185.
  • Sen P, Lan Y, Li CY, et al. Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol Cell. 2019;73(4):684–98.e8.
  • Vahedi G, Kanno Y, Furumoto Y, et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature. 2015 Apr 23;520(7548):558–562.
  • Kasper LH, Qu C, Obenauer JC, et al. Genome-wide and single-cell analyses reveal a context dependent relationship between CBP recruitment and gene expression. Nucleic Acids Res. 2014 Oct;42(18):11363–11382.
  • Nakao M, Tanaka H, Koga T. Cellular senescence variation by metabolic and epigenomic remodeling. Trends Cell Biol. 2020 Dec;30(12):919–922.
  • Bylino OV, Ibragimov AN, Shidlovskii YV. Evolution of regulated transcription. Cells. 2020 Jul 12;9(7):1675.
  • Dilworth FJ, Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene. 2001 May 28;20(24):3047–3054.
  • Nakajima T, Uchida C, Anderson SF, et al. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 1997 Mar 15;11(6):738–747.
  • Brown SA. Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development. 2014 Aug;141(16):3105–3111.
  • Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst. 2001 Oct 17;93(20):1557–1562.
  • Schernhammer ES, Laden F, Speizer FE, et al. Rotating night shifts and risk of breast cancer in women participating in the nurses‘ health study. J Natl Cancer Inst. 2001 Oct 17;93(20):1563–1568.
  • Chen Z, McKnight SL. A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles. Cell Cycle. 2007 Dec 1;6(23):2906–2912.
  • Etchegaray J-P, Lee C, Wade PA, et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 2003 Jan 9;421(6919):177–182.
  • Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet. 2018 May;19(5):311–325.
  • Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013 Dec 9;24(6):777–790.
  • Young RA. Control of the embryonic stem cell state. Cell. 2011 Mar 18;144(6):940–954.
  • Ng -H-H, Surani MA. The transcriptional and signalling networks of pluripotency. Nat Cell Biol. 2011 May;13(5):490–496.
  • Hnisz D, Schuijers J, Lin Charles C, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell. 2015;58(2):362–370.
  • Biehs B, Dijkgraaf GJP, Piskol R, et al. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature. 2018 Oct;562(7727):429–433.
  • Wiese M, Hamdan FH, Kubiak K, et al. Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells. Cell Death Dis. 2020;11(8):673.
  • Smith JL, Freebern WJ, Collins I, et al. Kinetic profiles of p300 occupancy in vivo predict common features of promoter structure and coactivator recruitment. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11554–11559.
  • Gosselin D, Link VM, Romanoski Casey C, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159(6):1327–1340.
  • Hnisz D, Shrinivas K, Young RA, et al. A phase separation model for transcriptional control. Cell. 2017;169(1):13–23.
  • David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018 Jul;19(7):419–435.
  • Mullen AC, Wrana JLTGF-Β. TGF-β family signaling in embryonic and somatic stem-cell renewal and differentiation. Cold Spring Harb Perspect Biol. 2017 Jul 5;9(7):a022186.
  • Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017 Jun 1;169(6):985–999.
  • Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013 Mar 14;152(6):1237–1251.
  • Tian X, Zhang J, Tan TK, et al. Association of beta-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF-beta1. J Cell Sci. 2013 Jan 1;126(Pt 1):67–76.
  • Kelly KF, Ng DY, Jayakumaran G, et al. β-Catenin Enhances Oct-4 Activity and Reinforces Pluripotency through a TCF-Independent Mechanism. Cell Stem Cell. 2011 Feb 4;8(2):214–227.
  • Kaidi A, Williams AC, Paraskeva C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol. 2007 Feb;9(2):210–217.
  • Essers MA. Functional interaction between -catenin and FOXO in oxidative stress signaling. Science (New York, NY). 2005 May 20;308(5725):1181–1184.
  • Nateri AS, Spencer-Dene B, Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature. 2005;437(7056):281–285.
  • Kouzmenko AP, Takeyama K, Ito S, et al. Wnt/β-catenin and estrogen signaling converge in vivo. J Biol Chem. 2004 Sep 24;279(39):40255–40258.
  • Sinner D, Rankin S, Lee M, et al. Sox17 and β-catenin cooperate to regulate the transcription of endodermal genes. Development. 2004 Jul;131(13):3069–3080.
  • Mukherjee S, Chaturvedi P, and Rankin SA, et al. Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. eLife. 2020 Sep;7;9:e58029 .
  • Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931–21936.
  • Holmqvist P-H, Mannervik M. Genomic occupancy of the transcriptional co-activators p300 and CBP. Transcription. 2013 Jan-Feb;4(1):18–23.
  • Didier S, Sauvé F, Domise M, et al. AMP-activated protein kinase controls immediate early genes expression following synaptic activation through the PKA/CREB pathway. Int J Mol Sci. 2018 Nov 22;19(12):3716.
  • Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 2012 May 14;5(1):14.
  • Flier JS, Underhill LH, Dvorak ,HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25;315(26):1650–1659.
  • Ge Y, Gomez NC, Adam RC, et al. Stem cell lineage infidelity drives wound repair and cancer. Cell. 2017 May 4;169(4):636–50.e14.
  • Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev. 2006 Nov;5(4):402–433.
  • Sebastián D, Palacín M, Zorzano ZA. Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol Med. 2017 Mar;23(3):201–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.