887
Views
1
CrossRef citations to date
0
Altmetric
Review

Signal peptide peptidase: a potential therapeutic target for parasitic and viral infections

, &
Pages 261-273 | Received 20 Sep 2021, Accepted 24 Feb 2022, Published online: 07 Mar 2022

References

  • Brown MS, Ye J, Rawson RB, et al. Regulated Intramembrane Proteolysis. Cell. 2000;100(4):391–398.
  • Mentrup T, Loock AC, Fluhrer R, et al. Signal peptide peptidase and SPP-like proteases - Possible therapeutic targets? Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt B):2169–2182.
  • Nyborg AC, Ladd TB, Jansen K, et al. Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase. FASEB J. 2006 Aug;20(10):1671–1679.
  • Weihofen A, Binns K, Lemberg MK, et al. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science. 2002 Jun 21 296(5576):2215–2218.
  • Ponting CP, Hutton M, Nyborg A, et al. Identification of a novel family of presenilin homologues. Hum Mol Genet. 2002 May 1 11(9):1037–1044.
  • Grigorenko AP, Moliaka YK, Korovaitseva GI, et al. Novel class of polytopic proteins with domains associated with putative protease activity. Biochemistry (Mosc). 2002 Jul;67(7):826–835.
  • Nyborg AC, Jansen K, Ladd TB, et al. A signal peptide peptidase (SPP) reporter activity assay based on the cleavage of type II membrane protein substrates provides further evidence for an inverted orientation of the SPP active site relative to presenilin. J Biol Chem. 2004 Oct 8 279(41):43148–43156.
  • Weihofen A, Lemberg MK, Friedmann E, et al. Targeting presenilin-type aspartic protease signal peptide peptidase with gamma-secretase inhibitors. J Biol Chem. 2003 May 9 278(19):16528–16533.
  • De Strooper B, Saftig P, Craessaerts K, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998 Jan 22 391(6665):387–390.
  • Schrul B, Kapp K, Sinning I, et al. Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem J. 2010 Apr 14 427(3):523–534.
  • Miyashita H, Maruyama Y, Isshiki H, et al. Three-dimensional structure of the signal peptide peptidase. J Biol Chem. 2011 Jul 22 286(29):26188–26197.
  • Li X, Dang S, Yan C, et al. Structure of a presenilin family intramembrane aspartate protease. Nature. 2012;493(7430):56–61.
  • Chen CY, Malchus NS, Hehn B, et al. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J. 2014 Nov 3 33(21):2492–2506.
  • El Hage F, Stroobant V, Vergnon I, et al. Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined tumor epitope processed by a proteasome-independent pathway. Proc Natl Acad Sci U S A. 2008 Jul 22 105(29):10119–10124.
  • Grigorenko AP, Moliaka YK, Soto MC, et al. The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proc Natl Acad Sci U S A. 2004 Oct 12 101(41):14955–14960.
  • Casso DJ, Tanda S, Biehs B, et al. Drosophila signal peptide peptidase is an essential protease for larval development. Genetics. 2005 May;170(1):139–148.
  • Krawitz P, Haffner C, Fluhrer R, et al. Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3. J Biol Chem. 2005 Nov 25 280(47):39515–39523.
  • Aizawa S, Okamoto T, Sugiyama Y, et al. TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nat Commun. 2016 May 4 7(1):11379.
  • Voss M, Schroder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophys Acta. 2013 Dec;1828(12):2828–2839.
  • Weihofen A, Lemberg MK, Ploegh HL, et al. Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor. J Biol Chem. 2000 Oct 6 275(40):30951–30956.
  • Khan AA, Hanada T, Mohseni M, et al. Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. J Biol Chem. 2008 May 23 283(21):14600–14609.
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583–589.
  • Dunn LA, Andrews KT, McCarthy JS, et al. The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis. Int J Antimicrob Agents. 2007 Jan;29(1):98–102.
  • Mele R, Gomez Morales MA, Tosini F, et al. Indinavir reduces Cryptosporidium parvum infection in both in vitro and in vivo models. Int J Parasitol. 2003 Jul;33(7):757–764.
  • Li X, Chen H, Bahamontes-Rosa N, et al. Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun. 2009 Mar 13 380(3):454–459.
  • Li X, Chen H, Oh SS, et al. A Presenilin-like protease associated with Plasmodium falciparum micronemes is involved in erythrocyte invasion. Mol Biochem Parasitol. 2008 Mar;158(1):22–31.
  • Hirano J, Okamoto T, Sugiyama Y, et al. Characterization of SPP inhibitors suppressing propagation of HCV and protozoa. Proc Natl Acad Sci U S A. 2017 Dec 12 114(50):E10782–e10791.
  • Schwake C, Baldwin MR, Bachovchin W, et al. HIV protease inhibitors block parasite signal peptide peptidases and prevent growth of Babesia microti parasites in erythrocytes. Biochem Biophys Res Commun. 2019 Sep 10 517(1):125–131.
  • Hobbs CV, Tanaka TQ, Muratova O, et al. HIV treatments have malaria gametocyte killing and transmission blocking activity. J Infect Dis. 2013 Jul;208(1):139–148.
  • Hobbs CV, De La Vega P, Penzak SR, et al. The effect of antiretrovirals on Plasmodium falciparum liver stages. AIDS. 2013 Jun 19 27(10):1674–1677.
  • Andrews KT, Fairlie DP, Madala PK, et al. Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Antimicrob Agents Chemother. 2006 Feb;50(2):639–648.
  • Skinner-Adams TS, McCarthy JS, Gardiner DL, et al. Antiretrovirals as Antimalarial Agents. J Infect Dis. 2004;190(11):1998–2000.
  • Parikh S, Gut J, Istvan E, et al. Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother. 2005 Jul;49(7):2983–2985.
  • Hobbs CV, Voza T, Coppi A, et al. HIV protease inhibitors inhibit the development of preerythrocytic-stage plasmodium parasites. J Infect Dis. 2009 Jan 1 199(1):134–141.
  • Ran Y, Ladd GZ, Ceballos-Diaz C, et al. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors. PLoS One. 2015;10(6):e0128619.
  • Parvanova I, Epiphanio S, Fauq A, et al. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity. PLoS One. 2009;4(4):e5078.
  • Peatey CL, Andrews KT, Eickel N, et al. Antimalarial asexual stage-specific and gametocytocidal activities of HIV protease inhibitors. Antimicrob Agents Chemother. 2010 Mar;54(3):1334–1337.
  • Redmond AM, Skinner-Adams T, Andrews KT, et al. Antimalarial activity of sera from subjects taking HIV protease inhibitors. Aids. 2007 Mar 30 21(6):763–765.
  • Fairhurst RM, Dondorp AM, Scheld WM. Artemisinin-Resistant Plasmodium falciparum Malaria. Microbiol Spectr. 2016 Jun;4(3). https://doi.org/10.1128/microbiolspec.EI10-0013-2016.
  • Krause PJ, Gewurz BE, Hill D, et al. Persistent and relapsing babesiosis in immunocompromised patients. Clin Infect Dis. 2008 Feb 1 46(3):370–376.
  • Westblade LF, Simon MS, Mathison BA, et al. Babesia microti: from Mice to Ticks to an Increasing Number of Highly Susceptible Humans. J Clin Microbiol. 2017 Oct;55(10):2903–2912.
  • Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011 Aug 4; 180(1–2):109–125.
  • Simon MS, Westblade LF, Dziedziech A, et al. Clinical and Molecular Evidence of Atovaquone and Azithromycin Resistance in Relapsed Babesia microti Infection Associated With Rituximab and Chronic Lymphocytic Leukemia. Clin Infect Dis. 2017 Oct 1 65(7):1222–1225.
  • Manne-Goehler J, Umeh CA, Montgomery SP, et al. Estimating the Burden of Chagas Disease in the United States. PLoS Negl Trop Dis. 2016 Nov;10(11):e0005033.
  • Nielsen DH, Koch K, Roachell W, et al. First Record of an Established Population of Triatoma sanguisuga (Hemiptera: reduviidae) in Richardson County, Nebraska. J Med Entomol. 2021 Jul 20 58(6):2519–2523.
  • Montgomery SP, Parise ME, Dotson EM, et al. What Do We Know About Chagas Disease in the United States? Am J Trop Med Hyg. 2016 Dec 7 95(6):1225–1227.
  • Nunes MCP, Beaton A, Acquatella H, et al. Chagas Cardiomyopathy: an Update of Current Clinical Knowledge and Management: a Scientific Statement From the American Heart Association. Circulation. 2018 Sep 18 138(12):e169–e209.
  • Forsyth CJ, Hernandez S, Flores CA, et al. “You Don’t Have a Normal Life”: coping with Chagas Disease in Los Angeles, California. Med Anthropol. 2021;30:1–16.
  • Franco J, Scarone L, and Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. Neglected Diseases: extensive Space for Modern Drug Discovery 2018;51: 97–133 Annual Reports in Medicinal Chemistry.
  • Harbut MB, Patel BA, Yeung BK, et al. Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc Natl Acad Sci U S A. 2012 Dec 26 109(52):21486–21491.
  • Sangenito LS, d’Avila-Levy CM, Branquinha MH, et al. Nelfinavir and lopinavir impair Trypanosoma cruzi trypomastigote infection in mammalian host cells and show anti-amastigote activity. Int J Antimicrob Agents. 2016 Dec;48(6):703–711.
  • Chen CK, Leung SS, Guilbert C, et al. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl Trop Dis. 2010 Apr 6 4(4):e651.
  • Khare S, Nagle AS, Biggart A, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature. 2016 Sep 8 537(7619):229–233.
  • Santos LO, Marinho FA, Altoé EF, et al. HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS One. 2009;4(3):e4918.
  • Murray HW. Kala-azar as an AIDS-related opportunistic infection. AIDS Patient Care STDS. 1999 Aug;13(8):459–465.
  • Savoia D, Allice T, Tovo PA. Antileishmanial activity of HIV protease inhibitors. Int J Antimicrob Agents. 2005 Jul;26(1):92–94.
  • de La Rosa R, Pineda JA, Delgado J, et al. Incidence of and risk factors for symptomatic visceral leishmaniasis among human immunodeficiency virus type 1-infected patients from Spain in the era of highly active antiretroviral therapy. J Clin Microbiol. 2002 Mar;40(3):762–767.
  • Del Giudice P, Mary‐Krause M, Mary-Krause C, et al. Impact of highly active antiretroviral therapy on the incidence of visceral leishmaniasis in a French cohort of patients infected with human immunodeficiency virus. J Infect Dis. 2002 Nov 1 186(9):1366–1370.
  • Demarchi IG, Silveira TG, Ferreira IC, et al. Effect of HIV protease inhibitors on New World Leishmania. Parasitol Int. 2012 Dec;61(4):538–544.
  • Okamoto K, Moriishi K, Miyamura T, et al. Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. J Virol. 2004 Jun;78(12):6370–6380.
  • McLauchlan J, Lemberg MK, Hope G, et al. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. Embo J. 2002 Aug 1 21(15):3980–3988.
  • Targett-Adams P, Hope G, Boulant S, et al. Maturation of hepatitis C virus core protein by signal peptide peptidase is required for virus production. J Biol Chem. 2008 Jun 13 283(24):16850–16859.
  • Oehler V, Filipe A, Montserret R, et al. Structural analysis of hepatitis C virus core-E1 signal peptide and requirements for cleavage of the genotype 3a signal sequence by signal peptide peptidase. J Virol. 2012 Aug;86(15):7818–7828.
  • Ma HC, Ku YY, Hsieh YC, et al. Characterization of the cleavage of signal peptide at the C-terminus of hepatitis C virus core protein by signal peptide peptidase. J Biomed Sci. 2007 Jan;14(1):31–41.
  • Miyanari Y, Atsuzawa K, Usuda N, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007 Sep;9(9):1089–1097.
  • Vauloup-Fellous C, Pene V, Garaud-Aunis J, et al. Signal peptide peptidase-catalyzed cleavage of hepatitis C virus core protein is dispensable for virus budding but destabilizes the viral capsid. J Biol Chem. 2006 Sep 22 281(38):27679–27692.
  • Hirano J, Yoshio S, Sakai Y, et al. Hepatitis C virus modulates signal peptide peptidase to alter host protein processing. Proc Natl Acad Sci U S A. 2021 Jun 1 118(22):e2026184118.
  • Okamoto K, Mori Y, Komoda Y, et al. Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation. J Virol. 2008 Sep;82(17):8349–8361.
  • Otoguro T, Tanaka T, Kasai H, et al. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity. Microbiol Immunol. 2016 Nov;60(11):740–753.
  • Targett-Adams P, Schaller T, Hope G, et al. Signal peptide peptidase cleavage of GB virus B core protein is required for productive infection in vivo. J Biol Chem. 2006 Sep 29 281(39):29221–29227.
  • Moriishi K. The potential of signal peptide peptidase as a therapeutic target for hepatitis C. Expert Opin Ther Targets. 2017 Sep;21(9):827–836.
  • Lemberg MK, Bland FA, Weihofen A, et al. Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J Immunol. 2001 Dec 1 167(11):6441–6446.
  • Lee N, Goodlett DR, Ishitani A, et al. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol. [1998 May 15];160(10):4951–4960.
  • Ulbrecht M, Martinozzi S, Grzeschik M, et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J Immunol. 2000 May 15 164(10):5019–5022.
  • Braud VM, Allan DS, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998 Feb 19 391(6669):795–799.
  • Prod’homme V, Tomasec P, Cunningham C, et al. Human cytomegalovirus UL40 signal peptide regulates cell surface expression of the NK cell ligands HLA-E and gpUL18. J Immunol. 2012 Mar 15 188(6):2794–2804.
  • Wiertz EJ, Tortorella D, Bogyo M, et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 1996 Dec 5 384(6608):432–438.
  • Allen SJ, Mott KR, Matsuura Y, et al. Binding of HSV-1 glycoprotein K (gK) to signal peptide peptidase (SPP) is required for virus infectivity. PLoS One. 2014;9(1):e85360.
  • Wang S, Ghiasi H, Jung JU. Absence of Signal Peptide Peptidase, an Essential Herpes Simplex Virus 1 Glycoprotein K Binding Partner, Reduces Virus Infectivity In Vivo. J Virol. 2019 Dec 1;9323. https://doi.org/10.1128/JVI.01309-19
  • Allen SJ, Mott KR, Ghiasi H. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo. Exp Eye Res. 2014 Jun;123:8–15.
  • Duan R, de Vries RD, Osterhaus AD, et al. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J Infect Dis. 2008 Sep 1 198(5):659–663.
  • Plegge T, Spiegel M, Kruger N, et al. Inhibitors of signal peptide peptidase and subtilisin/kexin-isozyme 1 inhibit Ebola virus glycoprotein-driven cell entry by interfering with activity and cellular localization of endosomal cathepsins. PLoS One. 2019;14(4):e0214968.
  • Misasi J, Chandran K, Yang JY, et al. Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol. 2012 Mar;86(6):3284–3292.
  • Simmons G, Gosalia DN, Rennekamp AJ, et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A. 2005 Aug 16 102(33):11876–11881.
  • Shi X, Botting CH, Li P, et al. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase. Proc Natl Acad Sci U S A. 2016 Aug 2 113(31):8825–8830.
  • Heimann M, Roman-Sosa G, Martoglio B, et al. Core protein of pestiviruses is processed at the C terminus by signal peptide peptidase. J Virol. 2006 Feb;80(4):1915–1921.
  • Chen Y, Zhu E, Fan S, et al. Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus. Virol J. 2019 Nov 6 16(1):127.
  • Voss M, Fukumori A, Kuhn PH, et al. Foamy virus envelope protein is a substrate for signal peptide peptidase-like 3 (SPPL3). J Biol Chem. 2012 Dec 21 287(52):43401–43409.
  • Horby PW, Mafham M, Bell JL, et al. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2020;396(10259):1345–1352.
  • Yu W, Wu X, Zhao Y, et al. Computational Simulation of HIV Protease Inhibitors to the Main Protease (Mpro) of SARS-CoV-2: implications for COVID-19 Drugs Design. Molecules. 2021 Dec 5 26(23):7385.
  • Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: drug repurposing approach. Life Sci. 2020 Jul 1; 252:117652
  • Perloff ES, Duan SX, Skolnik PR, et al. Atazanavir: effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab Dispos. 2005 Jun;33(6):764–770.
  • von Moltke Ll, Greenblatt DJ, Grassi JM, et al. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol. 1998 Feb;38(2):106–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.