389
Views
0
CrossRef citations to date
0
Altmetric
Review

Neuropathic ocular surface pain: Emerging drug targets and therapeutic implications

, , & ORCID Icon
Pages 681-695 | Received 18 Dec 2021, Accepted 05 Sep 2022, Published online: 20 Sep 2022

References

  • Yang AY, Chow J, Liu J. Corneal Innervation and Sensation: the Eye and Beyond. Yale J Biol Med. 2018;91(1):13–21.
  • Müller LJ, Marfurt CF, Kruse F, et al. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76(5):521–542.
  • Müller LJ, Pels L, Vrensen GF. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996;37(4):476–488.
  • Stucky CL, Gold MS, NAoS ZX. Mechanisms of pain. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(21):11845–11846.
  • Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–284.
  • Mehra D, Mangwani-Mordani S, Acuna K,C, et al. Long-Term Trigeminal Nerve Stimulation as a Treatment for Ocular Pain. Neuromodulation: Technol Neural Interface. 2021;24(6):1107–1114.
  • Galor A, Levitt RC, Felix ER, et al. What can photophobia tell us about dry eye? Expert Review of Ophthalmology. 2016;11(5):321–324.
  • Galor A, Moein H-R, Lee C, et al. Neuropathic pain and dry eye. Ocul Surf. 2018;16(1):31–44.
  • Janzen VD, Rjtl S. Sphenopalatine blocks in the treatment of pain in fibromyalgia and myofascial pain syndrome. The Laryngoscope. 1997;107(10):1420–1422.
  • Costa A, Pucci E, Antonaci F, et al. The effect of intranasal cocaine and lidocaine on nitroglycerin‐induced attacks in cluster headache. Cephalalgia: an International Journal of Headache. 2000;20(2):85–91.
  • Pipolo C, Bussone G, Leone M, et al. Sphenopalatine endoscopic ganglion block in cluster headache: a reevaluation of the procedure after 5 years. Neurol Sci. 2010;31(Suppl 1):197–199. DOI:10.1007/s10072-010-0325-2
  • Quevedo JP, Purgavie K, Platt H, et al. Complex regional pain syndrome involving the lower extremity: a report of 2 cases of sphenopalatine block as a treatment option. Arch Phys Med Rehabil. 2005;86(2):335–337.
  • IASP Terminology: international Association for the Study of Pain; 2020. [cited 2021 Sep 1]. [ Available from: https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698.
  • Mertzanis P, Abetz L, Rajagopalan K, et al. The Relative Burden of Dry Eye in Patients’ Lives: comparisons to a U.S. Normative Sample. Invest Ophthalmol Vis Sci. 2005;46(1):46–50.
  • Bushnell MC, Case LK, Ceko M, et al. Effect of environment on the long-term consequences of chronic pain. Pain. 2015;1(1):S42–S9.
  • Goyal S, Hamrah P. Understanding Neuropathic Corneal Pain––Gaps and Current Therapeutic Approaches. Semin Ophthalmol. 2016;31(1-2):59-70. DOI:10.3109/08820538.2015.1114853
  • Dieckmann G, Goyal S, Hamrah PJO. Neuropathic corneal pain: approaches for management. Ophthalmology. 2017;124(11):S34–S47.
  • Galor A, Levitt RC, Felix E, et al. Neuropathic ocular pain: an important yet underevaluated feature of dry eye. Eye (London, England). 2015;29(3):301–312.
  • Rosenthal P, Djbjo B. Ocular neuropathic pain. The British Journal of Ophthalmology. 2016;100(1):128–134.
  • Mehra D, Cohen NK, Galor A. Ocular Surface Pain: a Narrative Review. Ophthalmol Ther. 2020;9(3):1–21.
  • Ong ES, Felix ER, Levitt RC, et al. Epidemiology of discordance between symptoms and signs of dry eye. Br J Ophthalmol. 2018;102(5):674–679.
  • Kalangara JP, Galor A, Levitt RC, et al. Characteristics of Ocular Pain Complaints in Patients With Idiopathic Dry Eye Symptoms. Eye Contact Lens. 2017;43(3):192–198.
  • Galor A, Felix ER, Feuer W, et al. Corneal Nerve Pathway Function in Individuals with Dry Eye Symptoms. Ophthalmology. 2020;128(4):619–621.
  • Crane AM, Feuer W, Felix ER, et al. Evidence of central sensitisation in those with dry eye symptoms and neuropathic-like ocular pain complaints: incomplete response to topical anaesthesia and generalised heightened sensitivity to evoked pain. Br J Ophthalmol. 2017;101(9):1238–1243.
  • Galor A, Batawi H, Felix ER, et al., Incomplete response to artificial tears is associated with features of neuropathic ocular pain. Br J Ophthalmol.2016;100(6): 745–749.
  • Chalmers RL, Begley CG, Caffery B. Validation of the 5-Item Dry Eye Questionnaire (DEQ-5): discrimination across self-assessed severity and aqueous tear deficient dry eye diagnoses. Contact Lens Anterior Eye. 2010;33(2):55–60.
  • Schiffman RM, Christianson MD, Jacobsen G, et al. Reliability and validity of the Ocular Surface Disease Index. Arch Ophthalmol. 2000;118(5):615–621.
  • Farhangi M, Feuer W, Galor A, et al. Modification of the Neuropathic Pain Symptom Inventory for use in eye pain (NPSI-Eye). Pain. 2019;160(7):1541–1550.
  • Qazi Y, Hurwitz S, Khan S, et al. Validity and Reliability of a Novel Ocular Pain Assessment Survey (OPAS) in Quantifying and Monitoring Corneal and Ocular Surface Pain. Ophthalmology. 2016;123(7):1458–1468.
  • Sall K, Stevenson OD, Mundorf TK, et al. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease11Reprint requests to: linda Lewis, 575 Anton Blvd, Suite 900. Ophthalmology. 2000;107(4):631–639.
  • Devecı H, Kobak S. The efficacy of topical 0.05 % cyclosporine A in patients with dry eye disease associated with Sjögren’s syndrome. Int Ophthalmol. 2014;34(5):1043–1048.
  • Levy O, Labbé A, Borderie V, et al. Increased corneal sub-basal nerve density in patients with Sjögren syndrome treated with topical cyclosporine A. Clin Exp Ophthalmol. 2017;45(5):455–463.
  • Aggarwal S, Colon C, Kheirkhah A, et al. Efficacy of autologous serum tears for treatment of neuropathic corneal pain. Ocul Surf. 2019;17(3):532–539.
  • Ali TK, Gibbons A, Cartes C, et al. Use of Autologous Serum Tears for the Treatment of Ocular Surface Disease From Patients With Systemic Autoimmune Diseases. Am J Ophthalmol. 2018;189:65–70.
  • Aggarwal S, Kheirkhah A, Cavalcanti BM, et al. Autologous Serum Tears for Treatment of Photoallodynia in Patients with Corneal Neuropathy: efficacy and Evaluation with In Vivo Confocal Microscopy. Ocul Surf. 2015;13(3):250–262.
  • Pham TL, Kakazu AH, He J, et al. Novel RvD6 stereoisomer induces corneal nerve regeneration and wound healing post-injury by modulating trigeminal transcriptomic signature. Sci Rep. 2020;10(1):4582.
  • Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, et al. Morphological and functional changes of corneal nerves and their contribution to peripheral and central sensory abnormalities Front Cell Neurosci . 2020;14:610342. DOI:10.3389/fncel.2020.610342
  • Patel S, Hwang J, Mehra D, et al. Corneal Nerve Abnormalities in Ocular and Systemic Diseases. Exp Eye Res. 2020;202:108284.
  • Patel S, Mittal R, Felix ER, et al. Differential Effects of Treatment Strategies in Individuals With Chronic Ocular Surface Pain With a Neuropathic Component. Front Pharmacol. Internet]. 2021; 12:788524. [cited 2022 Jan 1]. Available from: http://europepmc.org/abstract/MED/35002721
  • Mehra D, Cohen NK, Galor AJO. Therapy.Ocular surface pain: a narrative review. Ophthalmology and Therapy. 2020;9(3):1–21.
  • Ongun N, Ongun GT. Is gabapentin effective in dry eye disease and neuropathic ocular pain? Acta Neurol Belg. 2021;121(2):397–401.
  • Ozmen MC, Dieckmann G, Cox SM, et al. Efficacy and tolerability of nortriptyline in the management of neuropathic corneal pain. Ocul Surf. 2020;18(4):814–820.
  • Chong MS, Libretto SE. The Rationale and Use of Topiramate for Treating Neuropathic Pain. Clin J Pain. 2003;19(1):59–68.
  • Small LR, Galor A, Felix ER, et al. Oral Gabapentinoids and Nerve Blocks for the Treatment of Chronic Ocular Pain. Eye Contact Lens. 2020;46(3):174–181.
  • Raskin J, Pritchett YL, Wang F, et al. A Double-Blind, Randomized Multicenter Trial Comparing Duloxetine with Placebo in the Management of Diabetic Peripheral Neuropathic Pain. Pain Med. 2005;6(5):346–356.
  • Ozmen MC, Dieckmann G, Rashad R, et al. Nortriptyline is Effective in Ameliorating Symptoms of Neuropathic Corneal Pain. Invest Ophthalmol Vis Sci. 2019;60(9):4732.
  • Zhang X, Mak S, Li L, et al. Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat Cell Biol. 2012;14(8):851–858.
  • Andersen HH, Yosipovitch G, Galor A. Neuropathic symptoms of the ocular surface: dryness, pain, and itch. Curr Opin Allergy Clin Immunol. 2017;17(5):373–381.
  • Cho J, Bell N, Botzet G, et al. Latent Sensitization in a Mouse Model of Ocular Neuropathic Pain. Trans Vision Sci Technol. 2019;8(2):6.
  • Luna C, Mizerska K, Quirce S, et al. Sodium Channel Blockers Modulate Abnormal Activity of Regenerating Nociceptive Corneal Nerves After Surgical Lesion. Invest Ophthalmol Vis Sci. 2021;62(1):2.
  • Puja G, Sonkodi B, Bardoni R. Mechanisms of Peripheral and Central Pain Sensitization: focus on Ocular Pain. Front Pharmacol. 2021;12:764396.
  • Bista P, Imlach WL. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. Medicines. 2019;6(3):91.
  • Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–284.
  • Goto T, Oh SB, Takeda M, et al. Recent advances in basic research on the trigeminal ganglion. J Physiol Sci. 2016;66(5):381–386.
  • Vos BP, Strassman AM, Maciewicz RJ. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J Neurosci. 1994;14(5 Pt 1):2708–2723.
  • Gangadharan V, Kuner R. Pain hypersensitivity mechanisms at a glance. Dis Model Mech. 2013;6(4):889–895.
  • Vos BP, Hans G, Adriaensen H. Behavioral assessment of facial pain in rats: face grooming patterns after painful and non-painful sensory disturbances in the territory of the rat’s infraorbital nerve. Pain. 1998;76(1–2):173–178.
  • Neubert JK, Widmer CG, Malphurs W, et al. Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain. 2005;116(3):386–395.
  • Cha M, Kohan KJ, Zuo X, et al. Assessment of chronic trigeminal neuropathic pain by the orofacial operant test in rats. Behav Brain Res. 2012;234(1):82–90.
  • Woolf CJ. Long term alterations in the excitability of the flexion reflex produced by peripheral tissue injury in the chronic decerebrate rat. Pain. 1984;18(4):325–343.
  • Chapman CR, Casey KL, Dubner R, et al. Pain measurement: an overview. Pain. 1985;22(1):1–31.
  • Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research. Pain. 2010;151(1):12–17.
  • Mogil JS. The translatability of pain across species. Philos Trans R Soc London, Ser B. 2019;374(1785):20190286.
  • Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci. 2021;22(12):6406.
  • Middleton SJ, Barry AM, Comini M, et al. Studying human nociceptors: from fundamentals to clinic. Brain. 2021;144(5):1312–1335.
  • Belmonte C, Acosta MC, Merayo-Lloves J, et al. What Causes Eye Pain? Curr Ophthalmol Rep. 2015;3(2):111–121.
  • Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: implications in Eye Pain. Front Pharmacol. 2021;12:773871.
  • Elleman AV, Du Bois J. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception.n/a(n/a). Chembiochem: a European Journal of Chemical Biology. 2022;23(13):e202100625. DOI:10.1002/cbic.202100625
  • Cui W, Wu H, Yu X, et al. The Calcium Channel α2δ1 Subunit: interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain. 2021;15.
  • Hoppanova L, Lacinova L. Voltage-dependent Ca(V)3.2 and Ca(V)2.2 channels in nociceptive pathways. Pflugers Arch. 2022;474(4):421–434.
  • Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res. 2007;73(2):137–150.
  • Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem. 2022;69(1):110–123.
  • Eriksson J, Jablonski A, Persson AK, et al. Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model. Pain. 2005;119(1–3):82–94.
  • Nakagawa K, Takeda M, Tsuboi Y, et al. Alteration of primary afferent activity following inferior alveolar nerve transection in rats. Mol Pain. 2010;6:9.
  • Tanaka BS, Zhao P, Dib-Hajj FB, et al. A gain-of-function mutation in Nav1.6 in a case of trigeminal neuralgia. Molecular Medicine (Cambridge, Mass.). 2016 Molecular medicine (Cambridge, Mass);22:338–348.
  • Al-Quliti KW. Update on neuropathic pain treatment for trigeminal neuralgia. The pharmacological and surgical options. Neurosciences (Riyadh). 2015;20(2):107–114.
  • Ambrósio AF, Soares-Da-Silva P, Carvalho CM, et al. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res. 2002;27(1–2):121–130.
  • Yuan M, Zhou HY, Xiao ZL, et al. Efficacy and Safety of Gabapentin vs. Carbamazepine in the Treatment of Trigeminal Neuralgia: a Meta-Analysis. Pain Pract. 2016;16(8):1083–1091.
  • Tachiya D, Sato T, Ichikawa Hjao N. Nerve injury increases the expression of Alpha-2/Delta-1 subunit of L-Type calcium channel in sensory neurons of rat spinal and trigeminal nerves. Annals of Neurosciences. 2017;24(4):191–200.
  • Patel R. Dickenson AHJPr, perspectives. Mechanisms of the gabapentinoids and α2δ‐1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 2016;4(2):e00205. DOI:10.1002/prp2.205
  • Dickenson Ajeoo P. Why are sodium channel modulators not yet pharmacotherapeutic trailblazers for neuropathic pain? Expert Opin Pharmacother. 2021;22(13):1635–1637. DOI:10.1080/14656566.2021.1917548
  • Skolnick P, Ndjn V. Re-energizing the development of pain therapeutics in light of the opioid epidemic. Neuron. 2016;92(2):294–297.
  • Yekkirala AS, Roberson DP, Bean BP, et al. Breaking barriers to novel analgesic drug development. Nature Reviews. Drug Discovery. 2017;16(8):545–564.
  • Dib-Hajj SD, Waxman Sgjaro N. Sodium channels in human pain disorders: genetics and pharmacogenomics. Annual Review of Neuroscience. 2019;42:87–106.
  • Alexandrou AJ, Brown AR, Chapman ML, et al. Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1. 7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PloS one. 2016;11(4):e0152405.
  • Y-m Z, W-f W, Y-f L, et al. Enhancing inactivation rather than reducing activation of Nav1. 7 channels by a clinically effective analgesic CNV1014802. Acta pharmacologica Sinica. 2018;39(4):587–596.
  • Tsantoulas C, McMahon SB. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci. 2014;37(3):146–158.
  • Vit JP, Ohara PT, Bhargava A, et al. Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J Neurosci. 2008;28(16):4161–4171.
  • Liu CY, Lu ZY, Li N, et al. The role of large-conductance, calcium-activated potassium channels in a rat model of trigeminal neuropathic pain. Cephalalgia. 2015;35(1):16–35.
  • Zoga V, Kawano T, Liang MY, et al. KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy. Mol Pain. 2010;6:6.
  • Kawano T, Zoga V, McCallum JB, et al. ATP-sensitive potassium currents in rat primary afferent neurons: biophysical, pharmacological properties, and alterations by painful nerve injury. Neuroscience. 2009;162(2):431–443.
  • Kawano T, Zoga V, Gemes G, et al. Suppressed Ca2+/CaM/CaMKII-dependent K(ATP) channel activity in primary afferent neurons mediates hyperalgesia after axotomy. Proc Natl Acad Sci U S A. 2009;106(21):8725–8730. DOI:10.1073/pnas.0901815106
  • Sachs D, Cunha FQ, Ferreira SH. Peripheral analgesic blockade of hypernociception: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+ channel pathway. Proc Natl Acad Sci U S A. 2004;101(10):3680–3685. DOI:10.1073/pnas.0308382101
  • Atlasz T, Babai N, Reglodi D, et al. Diazoxide is protective in the rat retina against ischemic injury induced by bilateral carotid occlusion and glutamate-induced degeneration. Neurotoxicity Research. 2007;12(2):105–111.
  • Chowdhury UR, Holman BH, Fautsch MP. Fautsch MPJIo, science v. ATP-sensitive potassium (KATP) channel openers diazoxide and nicorandil lower intraocular pressure in vivo. Investigative Ophthalmology & Visual Science. 2013;54(7):4892–4899.
  • Chowdhury UR, Dosa PI, MPJEer F. ATP sensitive potassium channel openers: a new class of ocular hypotensive agents. Exp Eye Res. 2017;158:85–93. DOI:10.1016/j.exer.2016.04.020
  • Sawynok J, Esser M, Reid AJP. Peripheral antinociceptive actions of desipramine and fluoxetine in an inflammatory and neuropathic pain test in the rat. Pain. 1999;82(2):149–158.
  • Tiraboschi E, Giambelli R, D’Urso G, et al. Antidepressants activate CaMKII in neuron cell body by Thr286 phosphorylation. Neuroreport. 2004;15(15):2393–2396.
  • Nelson AB, Gittis AH, Du Lac SJN. Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron. 2005;46(4):623–631.
  • Sessle BJ. Chronic Orofacial Pain: models, Mechanisms, and Genetic and Related Environmental Influences. Int J Mol Sci. 2021;22(13):7112.
  • Digre KB, Brennan KC. Shedding light on photophobia. J Neuroophthalmol. 2012 Mar;32(1):68-81. DOI: 10.1097/WNO.0b013e3182474548
  • Gauriau C, Bernard JF. Pain pathways and parabrachial circuits in the rat. Exp Physiol. 2002;87(2):251–258.
  • Chiang MC, Bowen A, Schier LA, et al. Parabrachial Complex: a Hub for Pain and Aversion. J Neurosci. 2019;39(42):8225–8230.
  • Wang M, Thyagarajan BJB, Biochemistry A. Pain pathways and potential new targets for pain relief. Biotechnology and Applied Biochemistry. 2022;69(1):110–123.
  • Puja G, Sonkodi B, Bardoni R. Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain. Front Pharmacol. 2021 Nov 30;12:764396. DOI: 10.3389/fphar.2021.764396.
  • Rahman M, Okamoto K, Thompson R, et al. Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye. Pain. 2015;156(5):942.
  • Hanani M, Dcjnrn S. Emerging importance of satellite glia in nervous system function and dysfunction. Nature Reviews. Neuroscience. 2020;21(9):485–498.
  • Magni G, Ceruti S. Purines in Pain as a Gliopathy. Front Pharmacol. 2021 Mar 10;12:649807. DOI: 10.3389/fphar.2021.649807
  • R-R J, Berta T, Nedergaard MJP. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154:S10–S28.
  • Bista P, Imlach WL. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. Medicines (Basel). 2019 Aug 22;6(3):91. DOI: 10.3390/medicines6030091
  • de Oliveira Cl, Medeiros LF, de Souza Vs, et al. Low-dose naltrexone reverses facial mechanical allodynia in a rat model of trigeminal neuralgia. Neuroscience Letters. 2020;736:135248.
  • Hatfield E, Phillips K, Swidan S, et al. Use of low-dose naltrexone in the management of chronic pain conditions: a systematic review. Journal of the American Dental Association (1939). 2020;151(12):891–902. e1.
  • Toljan K, Vrooman B. Low-Dose Naltrexone (LDN)-Review of Therapeutic Utilization. Med Sci (Basel). 2018 Sep 21;6(4):82. DOI: 10.3390/medsci6040082
  • Wang X, Zhang Y, Peng Y, et al. Pharmacological characterization of the opioid inactive isomers (+)‐naltrexone and (+)‐naloxone as antagonists of toll‐like receptor 4. British Journal of Pharmacology. 2016;173(5):856–869.
  • Selfridge BR, Wang X, Zhang Y, et al. Structure–activity relationships of (+)-naltrexone-inspired toll-like receptor 4 (TLR4) antagonists. Journal of Medicinal Chemistry. 2015;58(12):5038–5052.
  • Hutchinson MR, Zhang Y, Brown K, et al. Non‐stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll‐like receptor. The European Journal of Neuroscience. 2008;28(1):20–29.
  • Dieckmann G, Ozmen MC, Cox SM, et al. Low-dose naltrexone is effective and well-tolerated for modulating symptoms in patients with neuropathic corneal pain. Ocul Surf. 2021;20:33–38.
  • Wu G, Ringkamp M, Hartke TV, et al. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2001;21(8):RC140–RC.
  • Roza C, Bernal L. Electrophysiological characterization of ectopic spontaneous discharge in axotomized and intact fibers upon nerve transection: a role in spontaneous pain? Pflugers Arch. 2022 Apr;474(4):387-396. DOI: 10.1007/s00424-021-02655-7
  • Tran EL, Crawford LK. Revisiting PNS Plasticity: How Uninjured Sensory Afferents Promote Neuropathic Pain. Front Cell Neurosci. 2020 Dec 10;14:612982. DOI: 10.3389/fncel.2020.612982
  • Small LR, Galor A, Felix ER, et al. Oral gabapentinoids and nerve blocks for the treatment of chronic ocular pain. Eye & Contact Lens. 2020;46(3):174–181.
  • Galor A, Moein H-R, Lee C, et al. Neuropathic pain and dry eye. The Ocular Surface. 2018;16(1):31–44.
  • Morkin MI, Hamrah P. Efficacy of self-retained cryopreserved amniotic membrane for treatment of neuropathic corneal pain. Ocul Surf. 2018;16(1):132–138.
  • Sacchetti M, Lambiase A, Schmidl D, et al. Effect of recombinant human nerve growth factor eye drops in patients with dry eye: a phase IIa, open label, multiple-dose study. Br J Ophthalmol. 2020;104(1):127.
  • Venkatachalam K, Montell C. TRP Channels. Annu Rev Biochem. 2007;76(1):387–417.
  • Stasi K, Thompson V, Moshirfar M, et al. Topical ocular TRPV1 antagonist SAF312 was well tolerated and effectively reduced pain after photorefractive keratectomy (PRK). Invest Ophthalmol Vis Sci. 2021;62(8):967.
  • Yang JM, Wei ET, Kim SJ, et al. TRPM8 Channels and Dry Eye. Pharmaceuticals (Basel). 2018;11(4):125.
  • Yoon HJ, Kim J, Yang JM, Wei ET, Kim SJ, Yoon KC. Topical TRPM8 Agonist for Relieving Neuropathic Ocular Pain in Patients with Dry Eye: A Pilot Study. J Clin Med. 2021 Jan 12;10(2):250. DOI: 10.3390/jcm10020250
  • Bates BD, Mitchell K, Keller JM, et al. Prolonged analgesic response of cornea to topical resiniferatoxin, a potent TRPV1 agonist. Pain. 2010;149(3):522–528.
  • Gavva NR, Tamir R, Qu Y, et al. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther. 2005;313(1):474.
  • Bereiter DA, Rahman M, Thompson R, et al. TRPV1 and TRPM8 channels and nocifensive behavior in a rat model for dry eye. Invest Ophthalmol Vis Sci. 2018;59(8):3739–3746.
  • Chen X, Sun W, Gianaris NG, et al. Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channel. J Biol Chem. 2014;289(14):9600–9610.
  • Hirata H, Meng ID. Meng IDJIo, science v. Cold-sensitive corneal afferents respond to a variety of ocular stimuli central to tear production: implications for dry eye disease. Investigative Ophthalmology & Visual Science. 2010;51(8):3969–3976.
  • Pham TL, Bazan HEP. Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain. J Lipid Res. 2021;62:100033. DOI: 10.1194/jlr.TR120000954
  • He J, Cortina MS, Kakazu A, et al. The PEDF Neuroprotective Domain Plus DHA Induces Corneal Nerve Regeneration After Experimental Surgery. Invest Ophthalmol Vis Sci. 2015;56(6):3505–3513.
  • Pham TL, Bazan HEP. Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain. J Lipid Res. 2021;62:100033. DOI: 10.1194/jlr.TR120000954
  • Clayton N, Marshall FH, Bountra C, et al. CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain. 2002;96(3):253–260.
  • Thapa D, Cairns EA, Szczesniak AM, et al. Allosteric cannabinoid receptor 1 (cb1) ligands reduce ocular pain and inflammation. Molecules. 2020;25(2):417.
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101–110.
  • Culver DA, Dahan A, Bajorunas D, et al. Cibinetide improves corneal nerve fiber abundance in patients with sarcoidosis-associated small nerve fiber loss and neuropathic pain. Invest Ophthalmol Vis Sci. 2017;58(6):BIO52–BIO60.
  • Julian T, Syeed R, Glascow N, Angelopoulou E, Zis P. B12 as a Treatment for Peripheral Neuropathic Pain: A Systematic Review. Nutrients. 2020 Jul 25;12(8):2221. DOI: 10.3390/nu12082221
  • Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Front Psychiatry. 2021 Feb 16;12:593842. DOI: 10.3389/fpsyt.2021.593842
  • Bostick KM, McCarter AG, Nykamp D. The use of low-dose naltrexone for chronic pain. The Senior Care Pharmacist. 2019;34(1):43–46.
  • Hutchinson MR, Zhang Y, Brown K, et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci. 2008;28(1):20–29.
  • Tremont-Lukats IW, Megeff C, M-MJD B. Anticonvulsants for neuropathic pain syndromes. Drugs. 2000;60(5):1029–1052.
  • Jensen TS. Anticonvulsants in neuropathic pain: rationale and clinical evidence. Eur J Pain. 2002;6(SA):61–68.
  • Taylor J, Brauer S, Mjpmj E. Long-term treatment of trigeminal neuralgia with carbamazepine. Postgraduate Medical Journal. 1981;57(663):16–18.
  • Rockliff BW, Davis EH. DAVIS EHJAon. Controlled sequential trials of carbamazepine in trigeminal neuralgia. Archives of Neurology. 1966;15(2):129–136.
  • Rull J, Quibrera R, Gonzalez-Millan H, et al. Symptomatic treatment of peripheral diabetic neuropathy with carbamazepine (Tegretol®): double blind crossover trial. Diabetologia. 1969;5(4):215–218.
  • Saeed T, Nasrullah M, Ghafoor A, et al. Efficacy and tolerability of carbamazepine for the treatment of painful diabetic neuropathy in adults: a 12-week, open-label, multicenter study. International Journal of General Medicine. 2014;7:339.
  • Scholz A, Kuboyama N, Hempelmann G, et al. Complex blockade of ttx-resistant na+ currents by lidocaine and bupivacaine reduce firing frequency in DRG neurons. J Neurophysiol. 1998;79(4):1746–1754.
  • Diel RJ, Kroeger ZA, Levitt RC, et al. Botulinum Toxin A for the treatment of photophobia and dry eye. Ophthalmology. 2018;125(1):139–140.
  • Diel RJ, Hwang J, Kroeger ZA, et al. Photophobia and sensations of dryness in patients with migraine occur independent of baseline tear volume and improve following botulinum toxin A injections. Br J Ophthalmol. 2019;103(8):1024.
  • Venkateswaran N, Hwang J, Rong AJ, et al. Periorbital botulinum toxin A improves photophobia and sensations of dryness in patients without migraine: case series of four patients. Am J Ophthalmol Case Rep. 2020;19:100809.
  • Johnson M. Transcutaneous electrical nerve stimulation: mechanisms, clinical application and evidence. Rev Pain. 2007;1(1):7–11.
  • Dieckmann G, Fregni F, Hamrah P. Neurostimulation in dry eye disease-past, present, and future. Ocul Surf. 2019;17(1):20–27.
  • Sivanesan E, Levitt RC, Sarantopoulos CD, et al. Noninvasive electrical stimulation for the treatment of chronic ocular pain and photophobia. Neuromodulation: Technol Neural Interface. 2018;21(8):727–734.
  • Zayan K, Aggarwal S, Felix E, et al. Transcutaneous electrical nerve stimulation for the long-term treatment of ocular pain. Neuromodulation. 2020;23(6):871–7.
  • Mehra D, Mangwani-Mordani S, Acuna K, et al. Long-term trigeminal nerve stimulation as a treatment for ocular pain. Neuromodulation. 2021;24(6):1107–1114.
  • Galor A, Feuer W, Lee DJ, et al. Ocular surface parameters in older male veterans. Invest Ophthalmol Vis Sci. 2013;54(2):1426–1433.
  • Patel S, Felix ER, Levitt RC, et al. Dysfunctional coping mechanisms contribute to dry eye symptoms. J Clin Med. 2019;8(6):901.
  • Lamb SE, Hansen Z, Lall R, et al. Group cognitive behavioural treatment for low-back pain in primary care: a randomised controlled trial and cost-effectiveness analysis. Lancet. 2010;375(9718):916–923.
  • Bäcker M, Grossman P, Schneider J, et al. Acupuncture in migraine: investigation of autonomic effects. Clin J Pain. 2008;24(2):106–115.
  • Diel RJ, Mehra D, Kardon R, et al. Photophobia: shared pathophysiology underlying dry eye disease, migraine and traumatic brain injury leading to central neuroplasticity of the trigeminothalamic pathway. 2020.
  • Mehta D, Leary MC, Yacoub HA, et al. The effect of regional anesthetic sphenopalatine ganglion block on self-reported pain in patients with status migrainosus. Headache. 2019;59(1):69–76.
  • Dermer H, Lent-Schochet D, Theotoka D, et al. A review of management strategies for nociceptive and neuropathic ocular surface pain. 2020;80(6):547–571.
  • Dieckmann G, Goyal S, Hamrah P. Neuropathic Corneal Pain. Ophthalmology. 2017;124(11, Supplement):S34–S47.
  • Tsubota K, Goto E, Fujita H, et al. Treatment of dry eye by autologous serum application in Sjögren’s syndrome. Br J Ophthalmol. 1999;83(4):390–395.
  • Zayan K, Aggarwal S, Felix E, Levitt R, Sarantopoulos K, Galor A. Transcutaneous Electrical Nerve Stimulation for the Long-Term Treatment of Ocular Pain. Neuromodulation. 2020 Aug;23(6):871-877. DOI: 10.1111/ner.13146
  • Dermer H, Lent-Schochet D, Theotoka D, et al. A review of management strategies for nociceptive and neuropathic ocular surface pain. Drugs. 2020;80(6):547–571.
  • Cady R, Saper J, Dexter K, et al. Placebo-Controlled study of repetitive transnasal sphenopalatine ganglion blockade with tx360® as acute treatment for chronic migraine. Headache. 2015;55(1):101–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.