407
Views
3
CrossRef citations to date
0
Altmetric
Review

Renal fibrosis as a hallmark of diabetic kidney disease: potential role of targeting transforming growth factor-beta (TGF-β) and related molecules

, ORCID Icon, &
Pages 721-738 | Received 02 Mar 2022, Accepted 05 Oct 2022, Published online: 18 Oct 2022

References

  • Navaneethan SD, Zoungas S, Caramori ML, et al. Diabetes management in chronic kidney disease: synopsis of the 2020 KDIGO clinical practice guideline. Ann Intern Med. 2021 Mar;174(3):385–394.
  • Gheith O, Farouk N, Nampoory N, et al. Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol. 2015;5(1):49–56.
  • Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302–308.
  • Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(S1):3–15.
  • Cohen Tervaert TW, Mooyaart AL, Joh K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–563.
  • Levey AS, Eckardt K-U, Dorman NM, et al. Nomenclature for kidney function and disease: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. Kidney Int. 2020;97(6):1117–1129.
  • Ji L, Bonnet F, Charbonnel B, et al. Towards an improved global understanding of treatment and outcomes in people with type 2 diabetes: rationale and methods of the DISCOVER observational study program. J Diabetes Complications. 2017;31(7):1188–1196.
  • de Jager Dj, Grootendorst DC, Jager KJ, et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. Jama. 2009;302(16):1782–1789.
  • Sugahara M, Pak WLW, Tanaka T, et al. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology (Carlton). 2021;26(6):491–500.
  • Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020 ;383(23):2219–2229. 2020 december 03.
  • Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385(24):2252–2263.
  • Heerspink HJL, Parving -H-H, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019 ;393(10184):1937–1947.•• This large multicentre clinical study (SONAR) demonstrates renoprotective benefits of atrasentan on reducing the risk of renal events in patients with diabetes and CKD.
  • Johansen KL, Chertow GM, Foley RN, et al. US renal data system 2020 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2021;77(4):A7–A8.
  • X-m M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis.Nat Rev Nephrol. 2016 ;12(6):325–338.
  • Zhao L, Zou Y, Liu F. Transforming growth factor-beta1 in diabetic kidney disease. Front Cell Dev Biol. 2020;8:8. 2020 Mar 24.
  • Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7(6):327–340.
  • Patel DM, Yang Y, Shi K, et al. Key profibrotic and pro-inflammatory pathways in the pathogenesis of diabetic kidney disease. Diabetic Nephropathy. 2021;1(1):15–26
  • Alicic RZ, Johnson EJ, Tuttle KR. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv Chronic Kidney Dis. 2018;25(2):181–191.
  • Berthier CC, Hongyu Z, Argetsinger LS, et al. Enhanced expression of janus kinase–signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes. 2009;58(2):469–477.
  • Guijarro C, Egido J. Transcription factor-κB (NF-κB) and renal disease. Kidney Int. 2001;59(2):415–424.
  • García-García PM, Getino-Melián MA, Domínguez-Pimentel V, et al. Inflammation in diabetic kidney disease. World J Diabetes. 2014;5(4):431–443.
  • Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19(3):433–442.
  • Qian Y, Feldman E, Pennathur S, et al. From Fibrosis to Sclerosis. Diabetes. 2008;57(6):1439.
  • Najafian B, Alpers CE, Fogo AB. Pathology of Human Diabetic Nephropathy. Diabetes Kidney. 2011;170:36–47.
  • Bülow RD, Boor P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J Histochem Cytochem. 2019;67(9):643–661.
  • Menn-Josephy H, Lee CS, Nolin A, et al. Renal interstitial fibrosis: an imperfect predictor of kidney disease progression in some patient cohorts. Am J Nephrol. 2016;44(4):289–299.
  • Lebleu VS, Taduri G, O’Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–1053.
  • Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, et al. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant. 1997;12(1):43–50.
  • Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest. 2001 december 15;108(12):1853–1863.
  • Yamamoto T, Nakamura T, Noble NA, et al. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America 1993;90( 5):1814–1818.
  • Ziyadeh Fuad N, Hoffman Brenda B, Han Dong C, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proceedings of the National Academy of Sciences 2000 ;97( 14):8015–8020.
  • Baricos WH, Cortez SL, Deboisblanc M, et al. Transforming growth factor-β is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. J Am Soc Nephrol. 1999;10(4):790–795.
  • Cruz-Solbes AS, Youker K. Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. In: Miller RK, editor. Kidney development and disease. Cham: Springer International Publishing; 2017. p. 345–372.
  • Meng X-M, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis.Nat Rev Nephrol. 2014 ;10(9):493–503.
  • Lin SL, Castano AP, Nowlin BT, et al. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol. 2009;183(10):6733–6743.
  • Guiteras R, Flaquer M, Cruzado JM. Macrophage in chronic kidney disease. Clin Kidney J. 2016;9(6):765–771.
  • Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne). 2013;4:7.
  • Darisipudi MN, Kulkarni OP, Sayyed SG, et al. Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol. 2011 ;179(1):116–124.
  • Mohamed R, Jayakumar C, Chen F, et al. Low-dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J Am Soc Nephrol. 2016;27(3):745.
  • Kolati SR, Kasala ER, Bodduluru LN, et al. BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway. Environ Toxicol Pharmacol. 2015 ;39(2):690–699.
  • Said E, Zaitone SA, Eldosoky M, et al. Nifuroxazide, a STAT3 inhibitor, mitigates inflammatory burden and protects against diabetes-induced nephropathy in rats. Chem Biol Interact. 2018 ;281:111–120.
  • Tesch GH, Ma FY, Han Y, et al. ASK1 inhibitor halts progression of diabetic nephropathy in Nos3-deficient mice. Diabetes. 2015;64(11):3903–3913.
  • de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013 ;369(26):2492–2503.
  • Kanda H, Yamawaki K. Bardoxolone methyl: drug development for diabetic kidney disease. Clin Exp Nephrol. 2020 ;24(10):857–864.
  • Chertow GM, Pergola PE, Chen F, et al. Effects of selonsertib in patients with diabetic kidney disease. J Am Soc Nephrol. 2019;30(10):1980.
  • Park E, Schuller-Levis G, Park SY, et al. Pentoxifylline downregulates nitric oxide and tumor necrosis factor-alpha induced by mycobacterial lipoarabinomannan in a macrophage cell line. Int J Lepr Other Mycobact Dis. 2001 Sep;69(3):225–233.
  • Dávila-Esqueda ME, Martínez-Morales F. Pentoxifylline diminishes the oxidative damage to renal tissue induced by streptozotocin in the rat. Exp Diabesity Res. 2004 Oct-Dec;5(4):245–251.
  • Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol. 2015;26(1):220–229.
  • de Zeeuw D, Bekker P, Henkel E, et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 2015 ;3(9):687–696.
  • Menne J, Eulberg D, Beyer D, et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol Dialysis Transplantation. 2017;32(2):307–315.
  • Tuttle KR, Brosius FC III, Adler SG, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial. Nephrol Dialysis Transplantation. 2018;33(11):1950–1959.
  • de Zeeuw D, Renfurm RW, Bakris G, et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2018 ;6(12):925–933.
  • Zhang Y, Jin D, Kang X, et al. Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 2021;9:696542.•• This review comprehensively summarizes the pathological mechanisms of diabetic renal fibrosis and discusses several signaling pathways involved as well as cross-talks among these pathways.
  • Moses HL, Roberts AB, Derynck R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb Perspect Biol. 2016;8(7):a021865.
  • Roberts AB, Sporn MB. Differential expression of the TGF-β isoforms in embryogenesis suggests specific roles in developing and adult tissues. Mol Reprod Dev. 1992;32(2):91–98.
  • Yu L, Border WA, Huang Y, et al. TGF-β isoforms in renal fibrogenesis. Kidney Int. 2003;64(3):844–856.
  • Yamamoto T, Noble NA, Cohen AH, et al. Expression of transforming growth factor-β isoforms in human glomerular diseases. Kidney Int. 1996;49(2):461–469.
  • Derynck R, Eaton DH, Goeddel DV, et al. Human transforming growth factor- β complementary DNA sequence and expression in normal and transformed cells. Nature. 1985;316(6030):701–705.
  • Munger JS, Harpel JG, Gleizes PE, et al. Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int. 1997 May;51(5):1376–1382.
  • Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFβ activation. J Cell Sci. 2003;116(2):217–224.
  • Sutariya B, Jhonsa D, Saraf MN. TGF-β: the connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol. 2016;38(1):39–49.
  • Nakao A, Imamura T, Souchelnytskyi S, et al. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997;16(17):5353–5362.
  • Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 2017;9(3):a022095.
  • Meng X-M. Inflammatory mediators and renal fibrosis. Renal Fibrosis: Mechanisms and Therapies 2019:381–406.
  • Atfi A, Djelloul S, Chastre E, et al. Evidence for a role of rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal Kinase (SAPK/JNK) in transforming growth factor β-mediated signaling. J Biol Chem. 1997;272(3):1429–1432.
  • Lu Q, Wang -W-W, Zhang M-Z, et al. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp Ther Med. 2019;17(1):835–846.
  • Xu L, Cui WH, Zhou WC, et al. Activation of Wnt/β‐catenin signalling is required for TGF‐β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med. 2017;21(8):1545–1554.
  • Zhang Y, Huang W. Transforming growth factor β1 (TGF-β1)-stimulated integrin-linked kinase (ILK) regulates migration and epithelial-mesenchymal transition (EMT) of human lens epithelial cells via nuclear factor κB (NF-κB). Med Sci Monit. 2018;24:7424–7430.
  • Matoba K, Kawanami D, Nagai Y, et al. Rho-Kinase blockade attenuates podocyte apoptosis by inhibiting the notch signaling pathway in diabetic nephropathy. Int J Mol Sci. 2017;18(8):1795.
  • Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF‐β‐dependent and ‐independent mechanisms: implications for diabetic renal and vascular disease. FASEB J. 2004;18(1):176–178.
  • Hellmich B, Schellner M, Schatz H, et al. Activation of transforming growth factor-beta1 in diabetic kidney disease. Metabolism. 2000;49(3):353–359.
  • Hathaway CK, Gasim AMH, Grant R, et al. Low TGFβ1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proc Natl Acad Sci U S A. 2015;112(18):5815–5820.
  • Sharma K, Jin Y, Guo J, et al. Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45(4):522–530.
  • Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc Natl Acad Sci U S A. 2000;97(14):8015–8020.
  • Benigni A, Zoja C, Campana M, et al. Beneficial effect of TGFbeta antagonism in treating diabetic nephropathy depends on when treatment is started. Nephron Exp Nephrol. 2006;104(4):e158–e68.
  • Chen S, la Cruz Mc I-D, Jim B, et al. Reversibility of established diabetic glomerulopathy by anti-TGF-beta antibodies in db/db mice. Biochem Biophys Res Commun. 2003 Jan 3;300(1):16–22.
  • McGowan TA, Dunn SR, Falkner B, et al. Stimulation of urinary TGF-beta and isoprostanes in response to hyperglycemia in humans. Clin J Am Soc Nephrol. 2006 Mar;1(2):263–268.
  • Weigert C, Brodbeck K, Klopfer K, et al. Angiotensin II induces human TGF-beta 1 promoter activation: similarity to hyperglycaemia. Diabetologia. 2002;45(6):890.
  • Gruden G, Zonca S, Hayward A, et al. Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes. 2000;49(4):655–661.
  • Chuang C-T, Guh J-Y, C-y L, et al. S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int J Mol Med. 2015;35(2):546–552.
  • Juknevicius I, Segal Y, Kren S, et al. Effect of aldosterone on renal transforming growth factor-beta. Am J Physiol Renal Physiol. 2004 Jun;286(6):F1059–62.
  • Hohenstein B, Daniel C, Hausknecht B, et al. Correlation of enhanced thrombospondin-1 expression, TGF-β signalling and proteinuria in human type-2 diabetic nephropathy. Nephrol Dial Transplant. 2008;23(12):3880–3887.
  • Murphy-Ullrich JE, Suto MJ. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease. Matrix Biol. 2018;68-69:28–43.
  • Daniel C, Schaub K, Amann K, et al. Thrombospondin-1 Is an endogenous activator of TGF-β in experimental diabetic nephropathy in vivo. Diabetes. 2007;56(12):2982–2989.
  • Lu A, Miao M, Schoeb TR, et al. Blockade of TSP1-dependent TGF-β activity reduces renal injury and proteinuria in a murine model of diabetic nephropathy. Am J Pathol. 2011;178(6):2573–2586.
  • Baricos WH, Cortez SL, Deboisblanc M, et al. Transforming growth factor-β is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. J Am Soc Nephrol. 1999;10(4):790–795.
  • Edwards DR, Murphy G, Reynolds JJ, et al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 1987;6(7):1899–1904.
  • Yuan W, Varga J. Transforming growth factor-β repression of matrix metalloproteinase-1 in dermal fibroblasts involves smad3. J Biol Chem. 2001;276(42):38502–38510.
  • Overall CM, Wrana JL, Sodek J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-β. J Biol Chem. 1989;264(3):1860–1869.
  • Laiho M, Saksela O, Andreasen PA, et al. Enhanced production and extracellular deposition of the endothelial-type plasminogen activator inhibitor in cultured human lung fibroblasts by transforming growth factor-β. J Cell Biol. 1986;103(6):2403–2410.
  • Shihab FS, Bennett WM, Tanner AM, et al. Angiotensin II blockade decreases TGF-beta1 and matrix proteins in cyclosporine nephropathy. Kidney Int. 1997;52(3):660.
  • El Hajj EC, El Hajj MC, Ninh VK, et al. Inhibitor of lysyl oxidase improves cardiac function and the collagen/MMP profile in response to volume overload. Am J Physiol Heart Circ Physiol. 2018;315(3):H463–H73.
  • Di Donato A, Ghiggeri GM, Di Duca M, et al. Lysyl oxidase expression and collagen cross-linking during chronic adriamycin nephropathy. Nephron. 1997;76(2):192–200.
  • Andra MB, Rupa R, John B, et al. Regulation of lysyl oxidase expression in lung fibroblasts by transforming growth factor-beta1 and prostaglandin E2. Am J Respir Cell Mol Biol. 1994;11(6):751.
  • Gjaltema RAF, de Rond S, Rots MG, et al. Procollagen lysyl hydroxylase 2 expression is regulated by an alternative downstream transforming growth factor β-1 activation mechanism. J Biol Chem. 2015;290(47):28465–28476.
  • Cheng J, Diaz Encarnacion MM, Warner GM, et al. TGF-beta1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process. Am J Physiol Cell Physiol. 2005;289(4):C959–C70.
  • Qi W, Chen X, Polhill TS, et al. TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am J Physiol Renal Physiol. 2006;290(3):F703–F09.
  • Rodríguez-Barbero A, Obreo J, Eleno N, et al. Endoglin expression in human and rat mesangial cells and its upregulation by TGF-beta1. Biochem Biophys Res Commun. 2001;282(1):142–147.
  • Diez-Marques L, Ortega-Velazquez R, Langa C, et al. Expression of endoglin in human mesangial cells: modulation of extracellular matrix synthesis. Biochimica Et Biophysica Acta Mol Basis Dis. 2002;1587(1):36–44.
  • Yeh Y-C, Wei W-C, Wang Y-K, et al. Transforming growth factor-β1 induces smad3-dependent β1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol. 2010;177(4):1743–1754.
  • Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–178.
  • Schneider A, Panzer U, Zahner G, et al. Monocyte chemoattractant protein-1 mediates collagen deposition in experimental glomerulonephritis by transforming growth factor-β. Kidney Int. 1999;56(1):135–144.
  • Christ M, McCartney-Francis NL, Kulkarni AB, et al. Immune dysregulation in TGF-beta 1-deficient mice. J Immunol. 1994;153(5):1936–1946.
  • Dickson MC, Martin JS, Cousins FM, et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 1995;121(6):1845–1854.
  • Clark DA, Coker R. Molecules in focus Transforming growth factor-beta (TGF-β).Int J Biochem Cell Biol. 1998 ;30(3):293–298.
  • Ramachandrarao SP, Yanqing ZHU, Ravasi T, et al. Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol. 2009;20(8):1765–1775.
  • Gurujeyalakshmi G, Hollinger MA, Giri SN. Pirfenidone inhibits PDGF isoforms in bleomycin hamster model of lung fibrosis at the translational level. Am J Physiol. 1999 Feb;276(2):L311–8.
  • Cho ME, Kopp JB. Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs. 2010;19(2):275–283.
  • Wang A, Ziyadeh FN, Lee EY, et al. Interference with TGF-β signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol. 2007;293(5):1657–1665.
  • Loeffler I, Liebisch M, Allert S, et al. FSP1-specific SMAD2 knockout in renal tubular, endothelial, and interstitial cells reduces fibrosis and epithelial-to-mesenchymal transition in murine STZ-induced diabetic nephropathy. Cell Tissue Res. 2018;372(1):115–133.
  • Hathaway CK, Gasim AMH, Grant R, et al. Low TGF[beta]1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proceedings of the National Academy of Sciences - PNAS 2015;112( 18):5815.
  • Sharma K, Ix JH, Donohue M, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22(6):1144–1151.
  • Voelker J, Berg PH, Sheetz M, et al. Anti-TGF-β1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol. 2017 Mar;28(3):953–962.
  • Fioretto P, Steffes MW, Sutherland DER, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75.
  • Kelly DJ, Zhang Y, Gow R, et al. Tranilast attenuates structural and functional aspects of renal injury in the remnant kidney model. J Am Soc Nephrol. 2004;15(10):2619.
  • Soma J, Sugawara T, Huang YD, et al. Tranilast slows the progression of advanced diabetic nephropathy. Nephron. 2002;92(3):693–698.
  • Gilbert RE, Zhang Y, Williams SJ, et al. A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat. PLoS One. 2012;7(10):e47160.
  • Langham RG, Cordonnier DJ, Kelly DJ, et al. Transforming growth factor-β in human diabetic nephropathy: effects of ACE inhibition. Diabetes Care. 2006;29(12):2670–2675.
  • Thallas-Bonke V, Coughlan MT, Bach LA, et al. Preservation of kidney function with combined inhibition of NADPH oxidase and angiotensin-converting enzyme in diabetic nephropathy. Am J Nephrol. 2010;32(1):73–82.
  • Border WA, Noble NA. Interactions of transforming growth factor-β and angiotensin II in renal fibrosis. Hypertension. 1998;31(1):181–188.
  • Sharma K, Eltayeb BO, McGowan TA, et al. Captopril-induced reduction of serum levels of transforming growth factor-beta1 correlates with long-term renoprotection in insulin-dependent diabetic patients. Am J Kidney Dis. 1999;34(5):818.
  • Esmatjes E, Flores L, Iñigo P, et al. Effect of losartan on TGF-beta1 and urinary albumin excretion in patients with type 2 diabetes mellitus and microalbuminuria. Nephrol Dial Transplant. 2001;16 Suppl 1(suppl_1):90–93.
  • Petersen M, Thorikay M, Deckers M, et al. Oral administration of GW788388, an inhibitor of TGF-β type I and II receptor kinases, decreases renal fibrosis. Kidney Int. 2008;73(6):705–715.
  • Isono M, Chen S, Won Hong S, et al. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells. Biochem Biophys Res Commun. 2002;296(5):1356–1365.
  • Høj Thomsen L, Fog-Tonnesen M, Nielsen Fink L, et al. Smad2 phosphorylation in diabetic kidney tubule epithelial cells is associated with modulation of several transforming growth factor-β family members. Nephron. 2017;135(4):291–306.
  • Goumans M, Mummery C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol. 2000;44(3):253–265.
  • Heyer J, Escalante-Alcalde D, Lia M, et al. Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proc Natl Acad Sci U S A. 1999;96(22):12595–12600.
  • Li E, Nomura M. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature. 1998;393(6687):786–790.
  • Waldrip WR, Bikoff EK, Hoodless PA, et al. Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 1998;92( 6):797–808.
  • Weinstein M, Yang X, Li C, et al. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor Smad2. Proc Natl Acad Sci U S A. 1998;95(16):9378–9383.
  • Sirard C, de la Pompa JL, Elia A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 1998;12(1):107–119.
  • Yang X, Li C, Xu X, et al. The Tumor Suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A. 1998;95(7):3667–3672.
  • Fujimoto M, Maezawa Y, Yokote K, et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun. 2003;305(4):1002–1007.
  • Jinhua LI, Xinli QU, Jun YAO, et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59(10):2612–2624.
  • Zhong X, Chung ACK, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663–674.
  • Hata A, Lagna G, Davis BN, et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61.
  • Davis BN, Hilyard AC, Nguyen PH, et al. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by drosha. Mol Cell. 2010;39(3):373–384.
  • Yan X, Chen Y-G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem J. 2011;434(1):1–10.
  • Nakao A, Afrakhte M, Morén A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997 Oct 9; 389(6651):631–635.
  • Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997 Jun 27; 89(7):1165–1173.
  • Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000 Dec;6(6):1365–1375.
  • Ka SM, Yeh YC, Huang XR, et al. Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia. 2012;55(2):509–519.
  • Kantharidis P, Wang B, Carew RM, et al. Complications: the MicroRNA perspective. Diabetes. 2011;60(7):1832–1837.
  • Sakuma H, Hagiwara S, Kantharidis P, et al. Potential targeting of renal fibrosis in diabetic kidney disease using MicroRNAs. Front Pharmacol. 2020;11:587689.
  • Wang T, Zhu H, Yang S, et al. Let‑7a‑5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep. 2019;19(5):4229–4237.
  • Wang B, Jha JC, Hagiwara S, et al. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 2014;85(2):352–361.
  • Brennan EP, Nolan KA, Börgeson E, et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J Am Soc Nephrol. 2013;24(4):627–637.
  • Brennan EP, Mohan M, McClelland A, et al. Lipoxins regulate the early growth response-1 network and reverse diabetic kidney disease. J Am Soc Nephrol. 2018;29(5):1437–1448.
  • Lin C-L, Lee P-H, Hsu Y-C, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol. 2014;25(8):1698–1709.
  • Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012;23(2):252–265.
  • Du B, Ma LM, Huang MB, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010 Feb 19; 584(4):811–816.
  • Qin W, Chung AC, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011 Aug;22(8):1462–1474.
  • Chen H-Y, Zhong X, Huang XR, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther. 2014;22(4):842–853.
  • Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes. 2014;63(6):2120–2131.
  • Glowacki F, Savary G, Gnemmi V, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PloS One. 2013;8(2):e58014–e14.
  • Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra18–21ra18.
  • Zarjou A, Yang S, Abraham E, et al. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301(4):F793–F801.
  • Aaron D M, Herman-Edelstein M, Komers R, et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci. 2015;129(12):1237–1249.
  • Zhong X, Chung ACK, Chen H-Y, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22(9):1668–1681.
  • Wang X, Gao Y, Tian N, et al. Astragaloside IV improves renal function and fibrosis via inhibition of miR-21-induced podocyte dedifferentiation and mesangial cell activation in diabetic mice. Drug Des Devel Ther. 2018;12:2431–2442.
  • Kölling M, Kaucsar T, Schauerte C, et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol Ther. 2017;25(1):165–180.
  • Denby L, Ramdas V, McBride MW, et al. miR-21 and miR-214 are consistently modulated during renal injury in rodent models. Am J Pathol. 2011;179(2):661–672.
  • Denby L, Ramdas V, Lu R, et al. MicroRNA-214 antagonism protects against renal fibrosis. J Am Soc Nephrol. 2014;25(1):65–80.
  • Wang X, Shen E, Wang Y, et al. Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions. Sci Rep. 2016;6(1):31506.
  • Reddy MA, Natarajan R. Epigenetics in diabetic kidney disease. J Am Soc Nephrol. 2011;22(12):2182–2185.
  • Noh H, Oh EY, Seo JY, et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol. 2009 Sep;297(3):F729–39.
  • Yoshikawa M, Hishikawa K, Marumo T, et al. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol. 2007 Jan;18(1):58–65.
  • Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol. 2014 Nov;73:127–139.
  • Khan S, Jena G, Tikoo K. Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Exp Mol Pathol. 2015 Apr;98(2):230–239.
  • Liu N, He S, Ma L, et al. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS One. 2013;8(1):e54001.
  • Choi SY, Ryu Y, Kee HJ, et al. Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul Pharmacol. 2015 ;72:130–140.
  • Zhang Y, Zou J, Tolbert E, et al. Identification of histone deacetylase 8 as a novel therapeutic target for renal fibrosis. FASEB J. 2020;34(6):7295–7310.
  • Hadden MJ, Advani A. Histone deacetylase inhibitors and diabetic kidney disease. Int J Mol Sci. 2018;19(9):2630.
  • Wang W, Sun W, Cheng Y, et al. Role of sirtuin-1 in diabetic nephropathy. J Mol Med. 2019;97(3):291–309. Berlin, Germany.
  • Xue M, Li Y, Hu F, et al. High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells. Biochem Biophys Res Commun. 2018 ;498(1):38–44.
  • Zhang J, Zhang L, Zha D, et al. Inhibition of miRNA‑135a‑5p ameliorates TGF‑β1‑induced human renal fibrosis by targeting SIRT1 in diabetic nephropathy. Int J Mol Med. 2020;46(3):1063–1073.
  • W-C Y, Huang R-Y, Chou T-C. Oligo-fucoidan improves diabetes-induced renal fibrosis via activation of sirt-1. GLP-1R, and Nrf2/HO-1: An In Vitro and In Vivo Study. Nutrients. 2020; 12(10)
  • Li C, Cai F, Yang Y, et al. Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats: involvement of SIRT1 and TGF-β1 pathway. Eur J Pharmacol. 2010 ;649(1):382–389.
  • Li J, Qu X, Ricardo SD, et al. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol. 2010;177(3):1065–1071.
  • Huang XZ, Wen D, Zhang M, et al. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. J Cell Biochem. 2014 May;115(5):996–1005.
  • Zhang Y, Connelly KA, Thai K, et al. Sirtuin 1 activation reduces transforming growth factor-β1-induced fibrogenesis and affords organ protection in a model of progressive, experimental kidney and associated cardiac disease. Am J Pathol. 2017 Jan;187(1):80–90.
  • Ponnusamy M, Zhuang MA, Zhou X, et al. Activation of Sirtuin-1 promotes renal fibroblast activation and aggravates renal fibrogenesis. J Pharmacol Exp Ther. 2015;354(2):142–151.
  • Ren Y, Du C, Shi Y, et al. The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress.Int J Mol Med. 2017 ;39(5):1317–1324.
  • Yin Q, Liu H. Connective tissue growth factor and renal fibrosis. In: Liu B-C, Lan H-Y, Lv -L-L, editors. Renal fibrosis: mechanisms and therapies. Singapore: Springer Singapore; 2019. p. 365–380.
  • Wahab NA, Yevdokimova N, Weston BS, et al. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J. 2001;359(Pt 1):77–87.
  • Hunt KJ, Jaffa MA, Garrett SM, et al. Plasma connective tissue growth factor (CTGF/CCN2) levels predict myocardial infarction in the veterans affairs diabetes trial (VADT) Cohort. Diabetes Care. 2018 Apr;41(4):840–846.
  • Adler SG, Schwartz S, Williams ME, et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol. 2010;5(8):1420–1428.
  • Huynh P, Chai Z. Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond). 2019 Jan 31; 133(2):287–313.
  • Li RX, Yiu WH, Tang SC. Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol. 2015;6:114.
  • Meng X-M, Chung Arthur CK, Lan Hui Y. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci. 2012;124(4):243–254.
  • Wang SN, Lapage J, Hirschberg R. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J Am Soc Nephrol. 2001 Nov;12(11):2392–2399.
  • Motazed R, Colville-Nash P, Kwan JT, et al. BMP-7 and proximal tubule epithelial cells: activation of multiple signaling pathways reveals a novel anti-fibrotic mechanism. Pharm Res. 2008 Oct;25(10):2440–2446.
  • Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem. 2004 May 28; 279(22):23200–23206.
  • Luo DD, Phillips A, Fraser D. Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression. Am J Pathol. 2010 Mar;176(3):1139–1147.
  • Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003 Jul;9(7):964–968.
  • Veerasamy M, Nguyen TQ, Motazed R, et al. Differential regulation of E-cadherin and alpha-smooth muscle actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis. Am J Physiol Renal Physiol. 2009 Nov;297(5):F1238–48.
  • Wang S, Hirschberg R. BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol. 2003 May;284(5):F1006–13.
  • De Petris L, Hruska KA, Chiechio S, et al. Bone morphogenetic protein-7 delays podocyte injury due to high glucose. Nephrol Dialysis Transplantation. 2007;22(12):3442–3450.
  • Bramlage CP, Tampe B, Koziolek M, et al. Bone morphogenetic protein (BMP)-7 expression is decreased in human hypertensive nephrosclerosis. BMC Nephrol. 2010 ;11(1):31.
  • Wang S, Chen Q, Simon TC, et al. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int. 2003 Jun;63(6):2037–2049.
  • Wang S, de Caestecker M, Kopp J, et al. Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol. 2006 Sep;17(9):2504–2512.
  • Sugimoto H, Grahovac G, Zeisberg M, et al. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes. 2007 Jul;56(7):1825–1833.
  • Xiao HQ, Shi W, Zhang Y, et al. Effect of bone morphogenic protein 7 on nephrin expression and distribution in diabetic rat kidneys. Nan Fang Yi Ke Da Xue Xue Bao. 2009 Apr;29(4):671–675.
  • Liu L, Wang Y, Yan R, et al. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Life Sci. 2019 Dec 1;238:116957.
  • Sugimoto H, LeBleu VS, Bosukonda D, et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med. 2012 Feb 5; 18(3):396–404.
  • Himmelfarb J, Chertow GM, McCullough PA, et al. Perioperative THR-184 and AKI after Cardiac Surgery. J Am Soc Nephrol. 2018 Feb;29(2):670–679.
  • Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol. 2004 Jul;287(1):F7–16.
  • Yang J, Dai C, Liu Y. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol. 2003 Aug;163(2):621–632.
  • Kretzschmar M, Doody J, Timokhina I, et al. A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev. 1999 Apr 1; 13(7):804–816.
  • Dai C, Liu Y. Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J Am Soc Nephrol. 2004 Jun;15(6):1402–1412.
  • Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol. 2005 Jan;16(1):68–78.
  • Mizuno S, Nakamura T. Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol Renal Physiol. 2004 Jan;286(1):F134–43.
  • Tang Y-L, Dong X-Y, Zeng Z-G, et al. Gene expression-based analysis identified NTNG1 and HGF as biomarkers for diabetic kidney disease. Medicine (Baltimore). 2020;99(1):e18596–e96.
  • Cruzado JM, Lloberas N, Torras J, et al. Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats. Diabetes. 2004 Apr;53(4):1119–1127.
  • Dai C, Yang J, Bastacky S, et al. Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice. J Am Soc Nephrol. 2004;15(10):2637.
  • Laping NJ, Olson BA, Ho T, et al. Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells. Biochem Pharmacol. 2000 Apr 1; 59(7):847–853.
  • Narayan P, Duan B, Jiang K, et al. Late intervention with the small molecule BB3 mitigates postischemic kidney injury. Am J Physiol Renal Physiol. 2016;311(2):F352–F61.
  • Chai Z, Sarcevic B, Mawson A, et al. SET-related cell division autoantigen-1 (CDA1) arrests cell growth. J Biol Chem. 2001;276(36):33665–33674.
  • Delbridge ML, Longepied G, Depetris D, et al. TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X - implications for Y chromosome evolution. Chromosome Res. 2004;12(4):345–356.
  • Ozbun LL, You L, Kiang S, et al. Identification of differentially expressed nucleolar TGF-beta1 target (DENTT) in human lung cancer cells that is a new member of the TSPY/SET/NAP-1 superfamily. Genomics. 2001;73(2):179–193.
  • Chen L, Wu J, Hu B, et al. The role of cell division autoantigen 1 (CDA1) in renal fibrosis of diabetic nephropathy. Biomed Res Int. 2021;6651075. 10.1155/2021/6651075
  • Tu Y, Wu T, Dai A, et al. Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-ОІ in diabetic nephropathy. Kidney Int. 2011;79(2):199–209.
  • Magni M, Buscemi G, Maita L, et al. TSPYL2 is a novel regulator of SIRT1 and p300 activity in response to DNA damage. Cell Death Differ. 2019;26(5):918–931.
  • Zhonglin C, Aozhi DAI, Yugang TU, et al. Genetic deletion of cell division autoantigen 1 retards diabetes-associated renal injury. J Am Soc Nephrol. 2013;24(11):1782–1792.
  • Chai Z, Wu T, Dai A, et al. Targeting the CDA1/CDA1BP1 axis retards renal fibrosis in experimental diabetic nephropathy. Diabetes. 2019;68(2):395–408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.