185
Views
0
CrossRef citations to date
0
Altmetric
Review

Spotlight on liver macrophages for halting liver disease progression and injury

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 707-719 | Received 16 Jul 2022, Accepted 05 Oct 2022, Published online: 12 Oct 2022

References

  • Guillot A, Tacke F. Liver macrophages: old dogmas and new insights. Hepatol Commun. 2019;3(6):730–743.
  • Heinrich L, Booijink R, Khurana A, et al. Lipoxygenases in chronic liver diseases: current insights and future perspectives. Trends Pharmacol Sci. 2022;43(3):188–205.
  • Khurana A, Sayed N, Allawadhi P, et al. It’s all about the spaces between cells: role of extracellular matrix in liver fibrosis. Ann Transl Med. 2021;9(8):728.
  • Yadav P, Khurana A, Bhatti JS, et al. Glucagon-like peptide 1 and fibroblast growth factor-21 in non-alcoholic steatohepatitis: an experimental to clinical perspective. Pharmacol Res. 2022;184:106426 8.
  • Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Clin Pract Gastroenterol Hepatol. 2019;16(3):145–159.
  • Krenkel O. Tacke F Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17(5):306–321.
  • Blériot C, Ginhoux F. Understanding the heterogeneity of resident liver macrophages. Front Immunol. 2019;10:2694.
  • Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66(6):1300–1312.
  • Li H, Zhou Y, Wang H, et al. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Front Immunol. 2020;11:1169.
  • Wang C, Ma C, Gong L, et al. Macrophage polarization and its role in liver disease. Front Immunol. 2021;12:803037.
  • Isaacs-Ten A, Moreno-Gonzalez M, Bone C, et al. Metabolic regulation of macrophages by SIRT1 determines activation during cholestatic liver disease in mice. Cell Mol Gastroenterol Hepatol. 2022;13(4):1019–1039.
  • Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–449.
  • Zhang C, Yang M, Ericsson AC. Function of macrophages in disease: current understanding on molecular mechanisms. Front Immunol. 2021;12:620510.
  • Nati M, Chung KJ, Chavakis T. The role of innate immune cells in nonalcoholic fatty liver disease. J Innate Immun. 2022;14(1):31–41.
  • Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18(3):151–166.
  • Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411.
  • Viola A, Munari F, Sánchez-Rodríguez R, et al. A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462.
  • Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD - more than inflammation. Nat Rev Endocrinol. 2022;18(8):461–472.
  • Dou L, Shi X, He X, et al. Macrophage phenotype and function in liver disorder. Front Immunol. 2019;10:3112.
  • Liaskou E, Zimmermann HW, Li KK, et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology. 2013;57(1):385–398.
  • Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60(5):1090–1096.
  • Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res. 2016;119(3):414–417.
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.
  • Blériot C, Chakarov S, Ginhoux F. Determinants of resident tissue macrophage identity and function. Immunity. 2020;52(6):957–970.
  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–774.
  • Chiu S, Bharat A. Role of monocytes and macrophages in regulating immune response following lung transplantation. Curr Opin Organ Transplant. 2016;21(3):239–245.
  • Scott CL, Zheng F, De Baetselier P, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7(1):10321.
  • Dal-Secco D, Wang J, Zeng Z, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212(4):447–456.
  • Hu X, Chen J, Wang L, et al. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol. 2007;82(2):237–243.
  • Carlin LM, Stamatiades EG, Auffray C, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell. 2013;153(2):362–375.
  • Wang M, You Q, Lor K, et al. Chronic alcohol ingestion modulates hepatic macrophage populations and functions in mice. J Leukoc Biol. 2014;96(4):657–665.
  • Chu HX, Broughton BR, Kim HA, et al. Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke. 2015;46(7):1929–1937.
  • Ramachandran P, Pellicoro A, Vernon MA, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(46):E3186–3195.
  • Karlmark KR, Zimmermann HW, Roderburg C, et al. The fractalkine receptor CX₃CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010;52(5):1769–1782.
  • Pellicoro A, Aucott RL, Ramachandran P, et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology. 2012;55(6):1965–1975.
  • Roohani S, Tacke F. Liver injury and the macrophage issue: molecular and mechanistic facts and their clinical relevance. Int J Mol Sci. 2021;22(14):7249.
  • Triantafyllou E, Woollard KJ, McPhail MJW, et al. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol. 2018;9:2948.
  • Bernal W, Wendon J. Acute liver failure. N Engl J Med. 2013;369(26):2525–2534.
  • Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345–358.
  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79(1):541–566.
  • He Y, Gao Y, Zhang Q, et al. IL-4 Switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience. 2020;437:161–171.
  • Juhas U, Ryba-Stanisławowska M, Szargiej P, et al. Different pathways of macrophage activation and polarization. Postepy Hig Med Dosw (Online). 2015;69:496–502.
  • Xie J, Wu X, Zhou Q, et al. PICK1 confers anti-inflammatory effects in acute liver injury via suppressing M1 macrophage polarization. Biochimie. 2016;127:121–132.
  • Chen XX, Tang L, Fu YM, et al. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-Toll-like receptor-4 signaling in alveolar macrophages. Int J Mol Med. 2017;40(6):1921–1931.
  • Min L, Wang H, Qi H. Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway. Am J Transl Res. 2022;14(3):1551.
  • Zhang J, Liu Y, Chen H, et al. MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization. Cell Death Dis. 2022;13(4):1–14.
  • Gong J, Li J, Dong H, et al. Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88. BMC Complement Altern Med. 2019;19(1):314.
  • Lu H, Wu L, Liu L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol. 2018;154:203–212.
  • Zhang Y, Cheng J, Su Y, et al. Cordycepin induces M1/M2 macrophage polarization to attenuate the liver and lung damage and immunodeficiency in immature mice with sepsis via NF-κB/p65 inhibition. J Pharm Pharmacol. 2022;74(2):227–235.
  • Wang J, Liu Y, Ding H, et al. Mesenchymal stem cell-secreted prostaglandin E(2) ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization. Stem Cell Res Ther. 2021;12(1):15.
  • Tomar S, Zumbrun EE, Nagarkatti M, et al. Protective role of cannabinoid receptor 2 activation in galactosamine/lipopolysaccharide-induced acute liver failure through regulation of macrophage polarization and microRNAs. J Pharmacol Exp Ther. 2015;353(2):369–379.
  • Zhao J, Chen XD, Yan ZZ, et al. Gut-derived exosomes induce liver injury after intestinal ischemia/reperfusion by promoting hepatic macrophage polarization. Inflammation. 2022. Online ahead of print. DOI:10.1007/s10753-022-01695-0.
  • Gong W, Zhu H, Lu L, et al. A Benzenediamine analog FC-99 drives M2 macrophage polarization and alleviates lipopolysaccharide- (LPS-) induced liver injury. Mediators Inflamm. 2019;2019:7823069.
  • Liu J, Zhang S, Cao H, et al. Deficiency of p38α in macrophage ameliorates d-galactosamine/TNF-α-induced acute liver injury in mice. Febs J. 2017;284(24):4200–4215.
  • Peng J, Li J, Huang J, et al. p300/CBP inhibitor A-485 alleviates acute liver injury by regulating macrophage activation and polarization. Theranostics. 2019;9(26):8344–8361.
  • Canton M, Sánchez-Rodríguez R, Spera I, et al. Reactive oxygen species in macrophages: sources and targets. Front Immunol. 2021;12:734229.
  • Alharthi J, Latchoumanin O, George J, et al. Macrophages in metabolic associated fatty liver disease. World J Gastroenterol. 2020;26(16):1861.
  • Liu T, Liu F, Peng LW, et al. The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol Res. 2018;26(5):817–826.
  • Kim E, Yang J, Beltran CD, et al. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J Cereb Blood Flow Metab. 2014;34(8):1411–1419.
  • Li L, Wei W, Li Z, et al. The spleen promotes the secretion of CCL2 and supports an M1 dominant phenotype in hepatic macrophages during liver fibrosis. Cell Physiol Biochem. 2018;51(2):557–574. Erratum in: Cell Physiol Biochem. 52(6):1586-1587 (2019).
  • Wen Y, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18(1):45–56.
  • Lazarus JV, Mark HE, Anstee QM, et al. Advancing the global public health agenda for NAFLD: a consensus statement. Nat Clin Pract Gastroenterol Hepatol. 2022;19(1):60–78.
  • Xu L, Liu W, Bai F, et al. Hepatic macrophage as a key player in fatty liver disease. Front Immunol. 2021;12:708978.
  • Cheng D, Chai J, Wang H, et al. Hepatic macrophages: key players in the development and progression of liver fibrosis. Liver Int. 2021;41(10):2279–2294.
  • Park JW, Jeong G, Kim SJ, et al. Predictors reflecting the pathological severity of non-alcoholic fatty liver disease: comprehensive study of clinical and immunohistochemical findings in younger Asian patients. J Gastroenterol Hepatol. 2007;22(4):491–497.
  • Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59(4):1393–1405.
  • Guo Q, Furuta K, Lucien F, et al. Integrin β(1)-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. J Hepatol. 2019;71(6):1193–1205.
  • Chen C, Yang RX, Xu HG. STING and liver disease. J Gastroenterol. 2012;56(8):704–712.
  • Luo X, Li H, Ma L, et al. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology. 2018;155(6):1971–1984.e1974.
  • Wang X, Rao H, Zhao J, et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Lab Invest. 2020;100(4):542–552.
  • Sun YY, Li XF, Meng XM, et al. Macrophage phenotype in liver Injury and tepair. Scand J Immunol. 2017;85(3):166–174.
  • Luo W, Xu Q, Wang Q, et al. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep. 2017;7:44612–44612.
  • Sica A, Invernizzi P, Mantovani AJ. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59(5):2034–2042.
  • Thomas JA, Pope C, Wojtacha D, et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011;53(6):2003–2015.
  • Ma PF, Gao CC, Yi J, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 2017;67(4):770–779.
  • Acharya C, Bajaj JS. Hepatic encephalopathy and liver transplantation: the past, present, and future toward equitable access. Liver Transpl. 2021;27(12):1830–1843.
  • Vagefi PA, Bertsimas D, Hirose R, et al. The rise and fall of the model for end-stage liver disease score and the need for an optimized machine learning approach for liver allocation. Curr Opin Organ Transplant. 2020;25(2):122–125.
  • Anstee QM, Castera L, Loomba R. Impact of non-invasive biomarkers on hepatology practice: past, present and future. J Hepatol. 2022;76(6):1362–1378.
  • Fu S, Wu D, Jiang W, et al. Molecular biomarkers in drug-induced liver injury: challenges and future perspectives. Front Pharmacol. 2019;10:1667.
  • Grønbæk H, Rødgaard-Hansen S, Aagaard NK, et al. Macrophage activation markers predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF). J Hepatol. 2016;64(4):813–822.
  • Berdowska A, Zwirska-Korczala K. Neopterin measurement in clinical diagnosis. J Clin Pharm Ther. 2001;26(5):319–329.
  • Sucher R, Schroecksnadel K, Weiss G, et al. Neopterin, a prognostic marker in human malignancies. Cancer Lett. 2010;287(1):13–22.
  • Demirbas S, Cakir E, Akgul EO, et al. Elevated serum neopterin levels in Acetaminophen-induced liver injury. Environ Toxicol Pharmacol. 2011;31(1):165–170.
  • Craig DG, Lee P, Pryde EA, et al. Serum neopterin and soluble CD163 as markers of macrophage activation in paracetamol (Acetaminophen)-induced human acute liver injury. Aliment Pharmacol Ther. 2013;38(11–12):1395–1404.
  • Wang L, Zhu Y, Liu Y, et al. Serum neopterin and indoleamine 2, 3-dioxyg activity are promising biomarkers for presence and progression of hepatitis B. Pteridines. 2022;33(1):9–10.
  • Venereau E, De Leo F, Mezzapelle R, et al. HMGB1 as biomarker and drug target. Pharmacol Res. 2016;111:534–544.
  • Yamamoto T, Tajima Y. HMGB1 is a promising therapeutic target for acute liver failure. Expert Rev Gastroenterol Hepatol. 2017;11(7):673–682.
  • Zamora R, Barclay D, Yin J, et al. HMGB1 is a central driver of dynamic pro-inflammatory networks in pediatric acute liver failure induced by Acetaminophen. Sci Rep. 2019;9(1):1–11.
  • Cheng X, Zhu J, Li Y, et al. Serum biomarkers of isoniazid‐induced liver injury: aminotransferases are insufficient, and OPN, L‐FABP and HMGB1 can be promising novel biomarkers. J Appl Toxicol. 2022;42(3):516–528.
  • Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102.
  • Korver S, Bowen J, Pearson K, et al. The application of cytokeratin-18 as a biomarker for drug-induced liver injury. Arch Toxicol. 2021;95(11):3435–3448.
  • Yang H, Xing Z, Shao H, et al. The expression of cytokeratin and apoptosis-related molecules in echinococcosis related liver injury. Mol Biochem Parasitol. 2022;248:111455.
  • Li M, Tang Y, Wu L, et al. The hepatocyte-specific HNF4α/miR-122 pathway contributes to iron overload-mediated hepatic inflammation. Blood. 2017;130(8):1041–1051.
  • Bakshi S, Kaur M, Saini N, et al. Altered expressions of circulating microRNAs 122 and 192 during antitubercular drug induced liver injury indicating their role as potential biomarkers. Hum Exp Toxicol. 2021;40(9):1474–1484.
  • Rupprechter SAE, Sloan DJ, Oosthuyzen W, et al. MicroRNA-122 and cytokeratin-18 have potential as a biomarkers of drug-induced liver injury in European and African patients on treatment for mycobacterial infection. Br J Clin Pharmacol. 2021;87(8):3206–3217.
  • Starkey Lewis PJ, Dear J, Platt V, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology. 2011;54(5):1767–1776.
  • Possamai LA, Thursz MR, Wendon JA, et al. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J Hepatol. 2014;61(2):439–445.
  • Schmidt LE, Dalhoff K. Alpha-fetoprotein is a predictor of outcome in Acetaminophen-induced liver injury. Hepatology. 2005;41(1):26–31.
  • Lu CY, Changelian P, Unanue E. Alpha-fetoprotein inhibits macrophage expression of Ia antigens. J Immunol. 1984;132(4):1722–1727.
  • Schmidt LE, Dalhoff K. Serum phosphate is an early predictor of outcome in severe Acetaminophen-induced hepatotoxicity. Hepatology. 2002;36(3):659–665.
  • Possamai LA, Antoniades CG, Anstee QM, et al. Role of monocytes and macrophages in experimental and human acute liver failure. World J Gastroenterol. 2010;16(15):1811.
  • Llewellyn HP, Vaidya VS, Wang Z, et al. Evaluating the sensitivity and specificity of promising circulating biomarkers to diagnose liver injury in humans. Toxicol Sci. 2021;181(1):23–34.
  • Aithal GP, Guha N, Fallowfield J, et al. Biomarkers in liver disease: emerging methods and potential applications. Int J Hepatol. 2012;2012:437508.
  • Senior JR. 13 - ‘Classic’ biomarkers of liver injury. In: Goodsaid F, Mattes WB, editors. The path from biomarker discovery to regulatory qualification. edn ed. San Diego: Academic Press; 2013. p. 111–128.
  • Zhao R, Zhao H, Y-Q G, et al. Usefulness of noncontrast MRI-based radiomics combined clinic biomarkers in stratification of liver fibrosis. Can J Gastroenterol Hepatol. 2022;2022:2249447.
  • Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol. 2018;30(11):511–528.
  • Lauterbach MA, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch. Pflug Arch Eur J Phy. 2017;469(3):385–396.
  • Nielsen MC, Hvidbjerg Gantzel R, Clària J, et al. Macrophage activation markers, CD163 and CD206, in acute-on-chronic liver failure. Cells. 2020;9(5):1175.
  • Alharthi J, Eslam M. Biomarkers of metabolic (dysfunction)-associated fatty liver disease: an update. J Clin Transl Hepatol. 2022;10(1):134–139.
  • Fabriek BO, Dijkstra CD, van den Berg TK. The macrophage scavenger receptor CD163. Immunobiology. 2005;210(2):153–160.
  • Z-J X, Gu Y, Wang C-Z, et al. The M2 macrophage marker CD206: a novel prognostic indicator for acute myeloid leukemia. Oncoimmunology. 2019;9(1):1683347–1683347.
  • Shoji H, Yoshio S, Mano Y, et al. Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Sci Rep. 2016;6(1):28814.
  • Kumagai E, Mano Y, Yoshio S, et al. Serum YKL-40 as a marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Sci Rep. 2016;6(1):35282.
  • Martinou E, Pericleous M, Stefanova I, et al. Diagnostic modalities of non-alcoholic fatty liver disease: from biochemical biomarkers to multi-Omics non-Invasive approaches. Diagnostics. 2022;12(2):407.
  • Sakamoto Y, Yoshio S, Doi H, et al. Serum soluble sialic acid-binding immunoglobulin-like lectin-7 concentration as an indicator of liver macrophage activation and advanced fibrosis in patients with non-alcoholic fatty liver disease. Hepatol Res. 2020;50(4):466–477.
  • Xue Q, Yan Y, Zhang R, et al. Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci. 2018;19(12):3805.
  • Liu XL, Pan Q, Cao HX, et al. Lipotoxic hepatocyte‐derived exosomal microRNA 192‐5p activates macrophages through rictor/Akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease. Hepatology. 2020;72(2):454–469.
  • Cervantes-Alvarez E, Limon-de la Rosa N, Vilatoba M, et al. Galectin-3 is overexpressed in advanced cirrhosis and predicts post-liver transplant infectious complications. Liver Int. 2022;42(10):2260–2273. .
  • Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103(13):5060–5065.
  • Li LC, Li J, Gao J. Functions of galectin-3 and its role in fibrotic diseases. J Pharmacol Exp Ther. 2014;351(2):336–343.
  • Siwicki M, Gort-Freitas NA, Messemaker M, et al. Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Sci Immunol. 2021;6(61):eabi7083.
  • Lee K-J, Kim M-Y, Han Y-H. Roles of heterogenous hepatic macrophages in the progression of liver diseases. BMB Rep. 2022;55(4):166.
  • Singh V, Khurana A, Allawadhi P, et al. Emerging role of PD-1/PD-L1 inhibitors in chronic liver diseases. Front Pharmacol. 2021;12:790963.
  • Thibaut R, Gage MC, Pineda‐Torra I, et al. Liver macrophages and inflammation in physiology and physiopathology of non‐alcoholic fatty liver disease. FEBS J. 2022;289(11):3024–3057.
  • Daemen S, Gainullina A, Kalugotla G, et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 2021;34(2):108626.
  • Bartneck M, Koppe C, Fech V, et al. Roles of CCR2 and CCR5 for hepatic macrophage polarization in mice with liver parenchymal cell-specific NEMO deletion. Cell Mol Gastroenterol Hepatol. 2021;11(2):327–347.
  • Lai WY, Mueller A. Latest update on chemokine receptors as therapeutic targets. Biochem Soc Trans. 2021;49(3):1385–1395.
  • Tacke F, Weiskirchen R. Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: mechanisms, treatment and prevention. Ann Transl Med. 2021;9(8):729.
  • Attia SL, Softic S, Mouzaki M. Evolving role for pharmacotherapy in NAFLD/NASH. Clin Transl Sci. 2021;14(1):11–19.
  • Rowe IA, Wong VW-S, Loomba R. Treatment candidacy for pharmacologic therapies for NASH. Clin Gastroenterol Hepatol. 2022;20(6):1209–1217.
  • Wang T-Y, Wang R-F, Z-Y B, et al. Metabolic dysfunction-associated fatty liver disease: association with kidney disease. Nat Rev Nephrol. 2022;18(4):259–268.
  • Keshvari S, Genz B, Teakle N, et al. Therapeutic potential of macrophage colony-stimulating factor in chronic liver disease. Dis Model Mech. 2022;15(4):dmm049387.
  • Muñoz-Garcia J, Cochonneau D, Télétchéa S, et al. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics. 2021;11(4):1568.
  • Bailey SR, Vatsa S, Larson RC, et al. Blockade or deletion of IFNγ reduces macrophage activation without compromising CAR T-cell function in hematologic malignancies. Blood Cancer Discovery. 2022;3(2):136–153.
  • Ma J, Chen T, Mandelin J, et al. Regulation of macrophage activation. Cell Mol Life Sci. 2003;60(11):2334–2346.
  • Brenner C, Galluzzi L, Kepp O, et al. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59(3):583–594.
  • Singanayagam A, Triantafyllou E. Macrophages in chronic liver failure: diversity, plasticity and therapeutic targeting. Front Immunol. 2021;12:661182.
  • Weiskirchen R, Tacke F. Liver fibrosis: from pathogenesis to novel therapies. Dig Dis. 2016;34(4):410–422.
  • Navik U, Sheth VG, Khurana A, et al. Methionine as a double-edged sword in health and disease: current perspective and future challenges. Ageing Res Rev. 2021;72:101500.
  • Singh V, Khurana A, Navik U, et al. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Sci. 2022;4(2):15.
  • Loomba R, Lawitz E, Mantry PS, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology. 2018;67(2):549–559.
  • Maradana MR, Yekollu SK, Zeng B, et al. Immunomodulatory liposomes targeting liver macrophages arrest progression of nonalcoholic steatohepatitis. Metabolism. 2018;78:80–94.
  • Wang H, Mehal W, Nagy LE, et al. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol. 2021;18(1):73–91.
  • Jindal S, Chockalingam S, Ghosh SS, et al. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res. 2021;235:144–167.
  • Bartneck M, Warzecha KT, Tacke F. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surg Nutr. 2014;3(6):364–376.
  • Traber PG, Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One. 2013;8(12):e83481.
  • Bukong TN, Iracheta-Vellve A, Saha B, et al. Inhibition of spleen tyrosine kinase activation ameliorates inflammation, cell death, and steatosis in alcoholic liver disease. Hepatology. 2016;64(4):1057–1071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.