253
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging pharmacologic interventions for pre-eclampsia treatment

, , , , , ORCID Icon, & show all
Pages 739-759 | Received 19 Mar 2022, Accepted 07 Oct 2022, Published online: 19 Oct 2022

References

  • Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019 May;145(Suppl 1):1–33.
  • Bernardes TP, Zwertbroek EF, Broekhuijsen K, et al. Delivery or expectant management for prevention of adverse maternal and neonatal outcomes in hypertensive disorders of pregnancy: an individual participant data meta-analysis. Ultrasound Obstet Gynecol. 2019 Apr;53(4):443–453.
  • Chiarello DI, Abad C, Rojas D, et al. Oxidative stress: normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165354.
  • Zou YF, Zuo Q, Huang SY, et al. Resveratrol inhibits trophoblast apoptosis through oxidative stress in preeclampsia-model rats. Molecules. 2014 Dec;19(12):20570–20579.
  • Wang P, Huang CX, Gao JJ, et al. Resveratrol induces SIRT1-dependent autophagy to prevent H2O2-Induced oxidative stress and apoptosis in HTR8/SVneo cells. Placenta. 2020 Feb;91:11–18.
  • Ding J, Kang Y, Fan Y, et al. Efficacy of resveratrol to supplement oral nifedipine treatment in pregnancy-induced preeclampsia. Endocr Connect. 2017 Nov;6(8):595–600.
  • de Alwis N, Binder NK, Beard S, et al. Novel approaches to combat preeclampsia: from new drugs to innovative delivery. Placenta. 2020 Dec;102:10–16.
  • Phipps EA, Thadhani R, Benzing T, et al. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019 May;15(5):275–289.
  • Ramma W, Ahmed A. Therapeutic potential of statins and the induction of heme oxygenase-1 in preeclampsia. J Reprod Immunol. 2014 Mar;101-102:153–160.
  • Li C, Raikwar NS, Santillan MK, et al. Aspirin inhibits expression of sFLT1 from human cytotrophoblasts induced by hypoxia, via cyclo-oxygenase 1. Placenta. 2015 Apr;36(4):446–453.
  • Gong W, Wan J, Yuan Q, et al. Ferulic acid alleviates symptoms of preeclampsia in rats by upregulating vascular endothelial growth factor. Clin Exp Pharmacol Physiol. 2017 Oct;44(10):1026–1031.
  • Taubert D, Berkels R, Grosser N, et al. Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action. Br J Pharmacol. 2004 Sep;143(1):159–165.
  • Helgadottir H, Tropea T, Gizurarson S, et al. Aspirin causes endothelium-dependent vasodilation of resistance arteries from non-gravid and gravid rats. Pregnancy Hypertens. 2019 Jan;15:141–145.
  • Unadkat JD, Dahlin A, Vijay S. Placental drug transporters. Curr Drug Metab. 2004 Feb;5(1):125–131.
  • Dathe K, Schaefer C. Drug safety in pregnancy: the German Embryotox institute. Eur J Clin Pharmacol. 2018 Feb;74(2):171–179.
  • Pels A, Derks J, Elvan-Taspinar A, et al. Maternal sildenafil vs placebo in pregnant women with severe early-onset fetal growth restriction: a randomized clinical trial. JAMA Network Open. 2020;3(6):e205323.
  • Mitchell MJ, Jain RK, Langer R. Engineering and physical sciences in oncology: challenges and opportunities. Nat Rev Cancer. 2017 Nov;17(11):659–675.
  • Turanov AA, Lo A, Hassler MR, et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat Biotechnol. 2018;36(12):1164–1173.
  • Refuerzo JS, Alexander JF, Leonard F, et al. Liposomes: a nanoscale drug carrying system to prevent indomethacin passage to the fetus in a pregnant mouse model. Am J Obstet Gynecol. 2015 Apr;212(4):508.e1–7.
  • King A, Ndifon C, Lui S, et al., Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci Adv. 2016;2(5): e1600349–e1600349.
  • Staff AC. The two-stage placental model of preeclampsia: an update. J Reprod Immunol. 2019 Sep;134:1–10.
  • Burton GJ, Redman CW, Roberts JM, et al. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;366:l2381.
  • Chaiworapongsa T, Chaemsaithong P, Yeo L, et al. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014 Aug;10(8):466–480.
  • Velicky P, Knofler M, Pollheimer J. Function and control of human invasive trophoblast subtypes: intrinsic vs. maternal control. Cell Adh Migr. 2016; 10(1–2):154–162.
  • Pérez-López FR, Pasupuleti V, Mezones-Holguin E, et al. Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2015;103(5):1278–1288.e4.
  • Shi DD, Wang Y, Guo JJ, et al. Vitamin D enhances efficacy of oral nifedipine in treating preeclampsia with severe features: a double blinded, placebo-controlled and randomized clinical trial. Front Pharmacol. 2017;8:865.
  • Rossi AC, Mullin PM. Prevention of pre-eclampsia with low-dose aspirin or vitamins C and E in women at high or low risk: a systematic review with meta-analysis.Eur J Obstetrics Gynecol Reprod Biol. 2011;158(1):9–16.
  • Z-m F, Z-z M, G-j L, et al. Vitamins supplementation affects the onset of preeclampsia. J Formosan Med Assoc. 2018;117(1):6–13.
  • Teran E, Hernandez I, Nieto B, et al. Coenzyme Q10 supplementation during pregnancy reduces the risk of pre-eclampsia. Int J Gynaecol Obstet. 2009 Apr;105(1):43–45.
  • Xu M, Guo D, Gu H, et al. Selenium and preeclampsia: a systematic review and meta-analysis. Biol Trace Elem Res. 2016 Jun;171(2):283–292.
  • Mesdaghinia E, Shahin F, Ghaderi A, et al. The effect of selenium supplementation on clinical outcomes, metabolic profiles, and pulsatility index of the uterine artery in high-risk mothers in terms of preeclampsia screening with quadruple test: a randomized, double-blind, placebo-controlled clinical trial: selenium and preeclampsia. Biol Trace Elem Res. 2022. doi: 10.1007/s12011-022-03178-7
  • Duntas LH. Selenium and at-risk pregnancy: challenges and controversies. Thyroid Res. 2020;13(1):16.
  • Costantine MM, West H, Wisner KL, et al. A randomized pilot clinical trial of pravastatin versus placebo in pregnant patients at high risk of preeclampsia. Am J Obstet Gynecol. 2021;225(6):666.e1–666.e15.
  • Döbert M, Varouxaki AN, Mu AC, et al. Pravastatin versus placebo in pregnancies at high risk of term preeclampsia. Circulation. 2021;144(9):670–679.
  • Vahedian-Azimi A, Karimi L, Reiner Z, et al. Effects of statins on preeclampsia: a systematic review. Pregnancy Hypertens. 2021;23:123–130.
  • Cluver CA, Hiscock R, Decloedt EH, et al. Use of metformin to prolong gestation in preterm pre-eclampsia: randomised, double blind, placebo controlled trial. BMJ (Clinical Research Ed.). 2021;374(n2103). doi:10.1136/bmj.n2103.
  • Xu L, Wang X, Wang C, et al. l-arginine supplementation improved neonatal outcomes in pregnancies with hypertensive disorder or intrauterine growth restriction: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2022;41(7):1512–1522.
  • Ferreira R, Negrini R, Bernardo WM, et al. The effects of sildenafil in maternal and fetal outcomes in pregnancy: a systematic review and meta-analysis. PLoS One. 2019;14(7):e0219732.
  • Xia Y, Guo M, Xu T, et al. siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy. Int J Nanomedicine. 2018;13:1539–1552.
  • Gupta SK, Malhotra SS, Malik A, et al. Cell signaling pathways involved during invasion and syncytialization of trophoblast cells. Am J Reprod Immunol. 2016 Mar;75(3):361–371.
  • Gleeson LM, Chakraborty C, McKinnon T, et al. Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through alpha 5 beta 1 integrin via mitogen-activated protein kinase pathway. J Clin Endocrinol Metab. 2001 Jun;86(6):2484–2493.
  • Tanaka K, Sakai K, Matsushima M, et al. Branched-chain amino acids regulate insulin-like growth factor-binding protein 1 (IGFBP1) production by decidua and influence trophoblast migration through IGFBP1. Mol Hum Reprod. 2016 Aug;22(8):590–599.
  • Leach RE, Romero R, Kim YM, et al. Pre-eclampsia and expression of heparin-binding EGF-like growth factor. Lancet. 2002;360(9341):1215–1219.
  • Yu YP, Fang LL, Wang SJ, et al. Amphiregulin promotes trophoblast invasion and increases MMP9/TIMP1 ratio through ERK1/2 and Akt signal pathways. Life Sci. 2019 Nov;236:116899.
  • Bolnick AD, Bolnick JM, Kohan-Ghadr HR, et al. Enhancement of trophoblast differentiation and survival by low molecular weight heparin requires heparin-binding EGF-like growth factor. Hum Reprod. 2017;32(6):1218–1229.
  • Fluhr H, Spratte J, Ehrhardt J, et al. Heparin and low-molecular-weight heparins modulate the decidualization of human endometrial stromal cells. Fertil Steril. 2010 93(8):2581–2587.
  • Zhu R, Huang YH, Tao Y, et al. Hyaluronan up-regulates growth and invasion of trophoblasts in an autocrine manner via PI3K/AKT and MAPK/ERK1/2 pathways in early human pregnancy. Placenta. 2013 Sep;34(9):784–791.
  • DaSilva-Arnold S, James JL, Al-Khan A, et al. Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial-mesenchymal transition. Placenta. 2015 Dec;36(12):1412–1418.
  • Davies JE, Pollheimer J, Yong HEJ, et al. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adh Migr. 2016;10(3):310–321.
  • Tayebjee MH, Karalis I, Nadar SK, et al. Circulating matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases-1 and −2 levels in gestational hypertension. Am J Hypertens. 2005 Mar;18(3):325–329.
  • Zou YF, Li SH, Wu D, et al. Resveratrol promotes trophoblast invasion in pre-eclampsia by inducing epithelial-mesenchymal transition. J Cell Mol Med. 2019 Apr;23(4):2702–2710.
  • Su MT, Wang CY, Tsai PY, et al. Aspirin enhances trophoblast invasion and represses soluble fms-like tyrosine kinase 1 production: a putative mechanism for preventing preeclampsia. J Hypertens. 2019 Dec;37(12):2461–2469.
  • Chan SY, Susarla R, Canovas D, et al. Vitamin D promotes human extravillous trophoblast invasion in vitro. Placenta. 2015 Apr;36(4):403–409.
  • Zhou C, Zou QY, Jiang YZ, et al. Role of oxygen in fetoplacental endothelial responses: hypoxia, physiological normoxia, or hyperoxia? Am J Physiol Cell Physiol. 2020 May;318(5):C943–C953.
  • Huppertz B, Weiss G, Moser G. Trophoblast invasion and oxygenation of the placenta: measurements versus presumptions. J Reprod Immunol. 2014 Mar;101-102:74–79.
  • Burton GJ, Cindrova-Davies T, Yung HW, et al. HYPOXIA AND REPRODUCTIVE HEALTH: oxygen and development of the human placenta. Reproduction. 2021 Jan;161(1):F53–F65.
  • Rajakumar A, Conrad KP. Expression, ontogeny, and regulation of hypoxia-inducible transcription factors in the human placenta. Biol Reprod. 2000 Aug;63(2):559–569.
  • Sasagawa T, Nagamatsu T, Morita K, et al. HIF-2α, but not HIF-1α, mediates hypoxia-induced up-regulation of Flt-1 gene expression in placental trophoblasts. Sci Rep. 2018;8(1):17375.
  • Rajakumar A, Brandon HM, Daftary A, et al. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta. 2004 Nov;25(10):763–769.
  • Rana S, Rajakumar A, Geahchan C, et al. Ouabain inhibits placental sFlt1 production by repressing HSP27-dependent HIF-1alpha pathway. FASEB J. 2014 Oct;28(10):4324–4334.
  • Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease.Physiol Rev. 2016;96(4):1509–1565.
  • Vaka VR, McMaster KM, Cunningham MW Jr., et al. Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia. Hypertens. 2018;72(3):703–711.
  • Guerby P, Swiader A, Auge N, et al. High glutathionylation of placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2019;22:101126.
  • Tannetta D, Masliukaite I, Vatish M, et al. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J Reprod Immunol. 2017 Feb;119:98–106.
  • Shaker OG, Sadik NA. Pathogenesis of preeclampsia: implications of apoptotic markers and oxidative stress. Hum Exp Toxicol. 2013 Nov;32(11):1170–1178.
  • Huang QT, Wang SS, Zhang M, et al. Advanced oxidation protein products enhances soluble Fms-like tyrosine kinase 1 expression in trophoblasts: a possible link between oxidative stress and preeclampsia. Placenta. 2013 Oct;34(10):949–952.
  • Aouache R, Biquard L, Vaiman D, et al. Oxidative Stress in Preeclampsia and Placental Diseases. Int J Mol Sci. 2018;19(5):1496.
  • Ahmad KA, Yuan DY, Nawaz W, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res. 2017;51(4):428–438.
  • Khera A, Vanderlelie JJ, Holland O, et al. Overexpression of endogenous anti-oxidants with selenium supplementation protects trophoblast cells from reactive oxygen species-induced apoptosis in a Bcl-2-dependent manner. Biol Trace Elem Res. 2017 Jun;177(2):394–403.
  • Tenorio MB, Ferreira RC, Moura FA, et al. Oral antioxidant therapy for prevention and treatment of preeclampsia: meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2018 Sep;28(9):865–876.
  • Xu X, Pan JR, Zhang YZ. CoQ10 alleviate preeclampsia symptoms by enhancing the function of mitochondria in the placenta of pregnant rats with preeclampsia. Hypertens Pregnancy. 2019 Nov;38(4):217–222.
  • Williamson RD, McCarthy FP, Manna S, et al. L-(+)-ergothioneine significantly improves the clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model. Hypertension. 2020 Feb;75(2):561–568.
  • Yang Y, Xu P, Zhu F, et al. The potent antioxidant MitoQ protects against preeclampsia during late gestation but increases the risk of preeclampsia when administered in early pregnancy. Antioxid Redox Signal. 2020;34(2):118–136.
  • Ahmed A, Rahman M, Zhang X, et al. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation. Mol Med. 2000 May;6(5):391–409.
  • Zhao H, Wong RJ, Kalish FS, et al. Effect of heme oxygenase-1 deficiency on placental development. Placenta. 2009 Oct;30(10):861–868.
  • Cudmore M, Ahmad S, Al-Ani B, et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation. 2007;115(13):1789–1797.
  • Kweider N, Huppertz B, Kadyrov M, et al. A possible protective role of Nrf2 in preeclampsia. Ann Anat. 2014 Sep;196(5):268–277.
  • George EM, Cockrell K, Aranay M, et al. Induction of heme oxygenase 1 attenuates placental ischemia-induced hypertension. Hypertension. 2011 May;57(5):941–948.
  • Onda K, Tong S, Beard S, et al. Proton pump inhibitors decrease soluble fms-like tyrosine Kinase-1 and soluble endoglin secretion, decrease hypertension, and rescue endothelial dysfunction. Hypertension. 2017 Mar;69(3):457–468.
  • El-Mousleh T, Casalis PA, Wollenberg I, et al. Exploring the potential of low doses carbon monoxide as therapy in pregnancy complications. Med Gas Res. 2012 2(1):4.
  • Cudmore MJ, Ramma W, Cai M, et al. Resveratrol inhibits the release of soluble fms-like tyrosine kinase (sFlt-1) from human placenta. Am J Obstet Gynecol. 2012 Mar;206(3):253.e10–253.e15.
  • Wang R, Szabo C, Ichinose F, et al. The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci. 2015 Sep;36(9):568–578.
  • Wang K, Ahmad S, Cai M, et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine gamma-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation. 2013 127(25):2514–2522.
  • Sanchez-Aranguren LC, Ahmad S, Dias IHK, et al. Bioenergetic effects of hydrogen sulfide suppress soluble Flt-1 and soluble endoglin in cystathionine gamma-lyase compromised endothelial cells. Sci Rep. 2020 10(1):15810.
  • Covarrubias AE, Lecarpentier E, Lo A, et al. AP39, a modulator of mitochondrial bioenergetics, reduces antiangiogenic response and oxidative stress in hypoxia-exposed trophoblasts: relevance for preeclampsia pathogenesis. Am J Pathol. 2019 Jan;189(1):104–114.
  • Saif J, Ahmad S, Rezai H, et al. Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol. 2021 Jan;38:101814.
  • Grosser N, Abate A, Oberle S, et al. Heme oxygenase-1 induction may explain the antioxidant profile of aspirin. Biochem Biophys Res Commun. 2003 308(4):956–960.
  • Rezai H, Ahmad S, Alzahrani FA, et al. MZe786, a hydrogen sulfide-releasing aspirin prevents preeclampsia in heme oxygenase-1 haplodeficient pregnancy under high soluble flt-1 environment. Redox Biol. 2021 Jan;38:101768.
  • Gil-Villa AM, Alvarez AM, Velasquez-Berrio M, et al. Role of aspirin-triggered lipoxin A4, aspirin, and salicylic acid in the modulation of the oxidative and inflammatory responses induced by plasma from women with pre-eclampsia. Am J Reprod Immunol. 2020 Feb;83(2):e13207.
  • Charnock-Jones DS. Placental hypoxia, endoplasmic reticulum stress and maternal endothelial sensitisation by sFLT1 in pre-eclampsia. J Reprod Immunol. 2016Apr;114:81–85.
  • Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006 Jun;12(6):642–649.
  • Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.
  • Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–683.
  • Maharaj AS, Walshe TE, Saint-Geniez M, et al. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med. 2008;205(2):491–501.
  • Kimura H, Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol. 2003;50(1):49–59.
  • Jardim LL, Rios DRA, Perucci LO, et al. Is the imbalance between pro-angiogenic and anti-angiogenic factors associated with preeclampsia? Clin Chim Acta. 2015;447:34–38.
  • Burke SD, Zsengeller ZK, Khankin EV, et al. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia. J Clin Invest. 2016;126(7):2561–2574.
  • Gubenšek J, Ponikvar R, Premru Sršen T, et al. Treatment of preeclampsia at extremely preterm gestation with therapeutic plasma exchange. Clin Nephrol. 2021;96(1):101–106.
  • Gilbert JS, Verzwyvelt J, Colson D, et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension. 2010 Feb;55(2):380–385.
  • Spradley FT, Tan AY, Joo WS, et al. Placental growth factor administration abolishes placental ischemia-induced hypertension. Hypertension. 2016 Apr;67(4):740–747.
  • Makris A, Yeung KR, Lim SM, et al. Placental growth factor reduces blood pressure in a uteroplacental ischemia model of preeclampsia in nonhuman primates. Hypertension. 2016 Jun;67(6):1263–1272.
  • Hannan NJ, Brownfoot FC, Cannon P, et al. Resveratrol inhibits release of soluble fms-like tyrosine kinase (sFlt-1) and soluble endoglin and improves vascular dysfunction – implications as a preeclampsia treatment. Sci Rep. 2017;7(1):1819.
  • George EM. New approaches for managing preeclampsia: clues from clinical and basic research. Clin Ther. 2014; 36(12):1873–1881.
  • Nejabati HR, Latifi Z, Ghasemnejad T, et al. Placental growth factor (PlGF) as an angiogenic/inflammatory switcher: lesson from early pregnancy losses. Gynecological Endocrinol. 2017;33(9):668–674.
  • Hong F, Li Y, Xu Y. Decreased placental miR-126 expression and vascular endothelial growth factor levels in patients with pre-eclampsia.J Int Med Res. 2014;42(6):1243–1251.
  • Jin Y, Jia T, Wu X, et al. The predictive value of microRNA in early hypertensive disorder complicating pregnancy (HDCP). Am J Transl Res. 2021;13(6):7288–7293.
  • Yan T, Cui K, Huang X, et al. Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta. 2014 Jan;35(1):23–29.
  • Brownfoot FC, Hastie R, Hannan NJ, et al. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. Am J Obstet Gynecol. 2016 Mar;214(3):356.e1–356.e15.
  • Kalafat E, Sukur YE, Abdi A, et al. Metformin for prevention of hypertensive disorders of pregnancy in women with gestational diabetes or obesity: systematic review and meta-analysis of randomized trials. Ultrasound Obstet Gynecol. 2018 Dec;52(6):706–714.
  • Jorquera G, Echiburu B, Crisosto N, et al. Metformin during pregnancy: effects on offspring development and metabolic function. Front Pharmacol. 2020;11:653.
  • TuJ K-L, Brownfoot FC, Beard S, et al., Combining metformin and esomeprazole is additive in reducing sFlt-1 secretion and decreasing endothelial dysfunction - implications for treating preeclampsia. PloS One. 2018;13(2): e0188845–e0188845.
  • Hastie R, Bergman L, Cluver CA, et al. Proton Pump inhibitors and preeclampsia risk among 157 720 women a Swedish population register-based cohort study. Hypertension. 2019 May;73(5):1097–1103.
  • Moore KH, Chapman H, George EM. Unfractionated heparin displaces sFlt-1 from the placental extracellular matrix. Biol Sex Differ. 2020; 11(1):34.
  • Sela S, Natanson-Yaron S, Zcharia E, et al. Local retention versus systemic release of soluble VEGF receptor-1 are mediated by heparin-binding and regulated by heparanase. Circ Res. 2011;108(9):1063–1070.
  • McLaughlin K, Nadeem L, Wat J, et al. Low molecular weight heparin promotes transcription and release of placental growth factor from endothelial cells. Am J Physiol Heart Circ Physiol. 2020;318(4):H1008–H1017.
  • Yinon Y, Ben Meir E, Margolis L, et al. Low molecular weight heparin therapy during pregnancy is associated with elevated circulatory levels of placental growth factor. Placenta. 2015 Feb;36(2):121–124.
  • Tasatargil A, Ogutman C, Golbasi I, et al. Comparison of the vasodilatory effect of nadroparin, enoxaparin, dalteparin, and unfractioned heparin in human internal mammary artery. J Cardiovasc Pharmacol. 2005 Jun;45(6):550–554.
  • Cruz-Lemini M, Vázquez JC, Ullmo J, et al. Low-molecular-weight heparin for prevention of preeclampsia and other placenta-mediated complications: a systematic review and meta-analysis. Am J Obstet Gynecol. 2022;226(2, Supplement):S1126–S1144.e17.
  • Vadillo-Ortega F, Perichart-Perera O, Espino S, et al. Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial. BMJ. 2011;342(may19 1):d2901.
  • Sankaralingam S, Xu H, Davidge ST. Arginase contributes to endothelial cell oxidative stress in response to plasma from women with preeclampsia. Cardiovasc Res. 2010; 85(1):194–203.
  • Weckman AM, McDonald CR, Baxter JB, et al. Perspective: l-arginine and L-citrulline supplementation in pregnancy: a potential strategy to improve birth outcomes in low-resource settings. Adv Nutr. 2019;10(5):765–777.
  • Groten T, Lehmann T, Fitzgerald J, et al. Reduction of preeclampsia related complications with with the NO-donor penterythriltetranitrat (PETN) in risk pregnancies - a prospective randomized double-blind placebo pilot study. J Reprod Immunol. 2012 May;94(1):120.
  • Johal T, Lees CC, Everett TR, et al. The nitric oxide pathway and possible therapeutic options in pre-eclampsia. Br J Clin Pharmacol. 2014 Aug;78(2):244–257.
  • Sayed N, Kim DD, Fioramonti X, et al. Nitroglycerin-induced S-nitrosylation and desensitization of soluble guanylyl cyclase contribute to nitrate tolerance. Circ Res. 2008;103(6):606–614.
  • Chen QM, Sievers RE, Varga M, et al. Pharmacological inhibition of S-nitrosoglutathione reductase improves endothelial vasodilatory function in rats in vivo. J Appl Physiol. 2013 Mar;114(6):752–760.
  • Paauw ND, Terstappen F, Ganzevoort W, et al. Sildenafil during pregnancy: a preclinical meta-analysis on fetal growth and maternal blood Pressure. Hypertension. 2017 Nov;70(5):998–1006.
  • Hitzerd E, Broekhuizen M, Mirabito Colafella KM, et al. Placental effects and transfer of sildenafil in healthy and preeclamptic conditions. EBioMedicine. 2019 Jul;45:447–455.
  • Saad AF, Kechichian T, Yin H, et al. Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia. Reprod Sci. 2014 Jan;21(1):138–145.
  • Fox KA, Longo M, Tamayo E, et al. Effects of pravastatin on mediators of vascular function in a mouse model of soluble Fms-like tyrosine kinase-1-induced preeclampsia. Am J Obstet Gynecol. 2011 Oct;205(4):366.e1–366.e5.
  • Vaughan JE, Walsh SW. Activation of NF-kappa B in Placentas of Women with Preeclampsia. Hypertens Pregnancy. 2012;31(2):243–251.
  • Socha MW, Malinowski B, Puk O, et al. The role of NF-kappa B in uterine spiral arteries remodeling, insight into the cornerstone of preeclampsia. Int J Mol Sci. 2021 Jan;22(2):704.
  • Matias ML, Gomes VJ, Romao-Veiga M, et al. Silibinin downregulates the NF-B pathway and NLRP1/NLRP3 Inflammasomes in monocytes from pregnant women with preeclampsia. Molecules. 2019;24(8):1548.
  • Hu JL, Zhang JM, Zhu BS. Protective effect of metformin on a rat model of lipopolysaccharide-induced preeclampsia. Fundam Clin Pharmacol. 2019 Dec;33(6):649–658.
  • Li GL, Ma LY, Lin L, et al. The intervention effect of aspirin on a lipopolysaccharide-induced preeclampsia-like mouse model by inhibiting the nuclear factor-kappa B pathway. Biol Reprod. 2018 Aug;99(2):422–432.
  • Kim J, Lee K-S, Kim J-H, et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med. 2017 Mar;104:185–198.
  • Li G, Wei W, Suo L, et al. Low-dose aspirin prevents kidney damage in LPS-induced preeclampsia by inhibiting the WNT5A and NF-kappaB SIGNALING PATHWays. Front Endocrinol (Lausanne). 2021;12:639592.
  • Guan C, Zhao F, Yang Z, et al. A review of key cytokines based on gene polymorphism in the pathogenesis of pre-eclampsia. Am J Reprod Immunol. 2022 Jan;87(1):e13503.
  • Lau SY, Guild SJ, Barrett CJ, et al. Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis. Am J Reprod Immunol. 2013 Nov;70(5):412–427.
  • Aggarwal R, Jain AK, Mittal P, et al. Association of pro- and anti-inflammatory cytokines in preeclampsia. J Clin Lab Anal. 2019;33(4):e22834.
  • Harmon AC, Cornelius DC, Amaral LM, et al. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond). 2016 Mar;130(6):409–419.
  • Diaz L, Noyola-Martinez N, Barrera D, et al. Calcitriol inhibits TNF-alpha-induced inflammatory cytokines in human trophoblasts. J Reprod Immunol. 2009 Jul;81(1):17–24.
  • Noyola-Martinez N, Diaz L, Avila E, et al. Calcitriol downregulates TNF-alpha and IL-6 expression in cultured placental cells from preeclamptic women. Cytokine. 2013 Jan;61(1):245–250.
  • Chen Y, Xue F, Han C, et al. Ferulic acid ameliorated placental inflammation and apoptosis in rat with preeclampsia. Clin Exp Hypertens. 2019;41(6):524–530.
  • LaMarca B, Speed J, Fournier L, et al. Hypertension in response to chronic reductions in uterine perfusion in pregnant rats: effect of tumor necrosis factor-alpha blockade. Hypertension. 2008 Dec;52(6):1161–1167.
  • Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, et al. Tumor necrosis factor-alpha and pregnancy: focus on BiologicsAn updated and comprehensive review. Clinical Reviews in Allergy & Immunology. 2017 Aug;53(1):40–53.
  • He YD, Xu BN, Wang ML, et al. Dysregulation of complement system during pregnancy in patients with preeclampsia: a prospective study. Mol Immunol. 2020;122:69–79.
  • Vaught AJ, Braunstein EM, Jasem J, et al. Germline mutations in the alternative pathway of complement predispose to HELLP syndrome. JCI Insight. 2018;3(6). doi:10.1172/jci.insight.99128.
  • Gelber SE, Brent E, Redecha P, et al. Prevention of defective placentation and pregnancy loss by blocking innate immune pathways in a syngeneic model of placental insufficiency. J Immunol. 2015 195(3):1129–1138.
  • Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody–induced fetal loss by inhibiting complement activation. Nat Med. 2004 Nov;10(11):1222–1226.
  • Wat JM, Hawrylyshyn K, Baczyk D, et al. Effects of glycol-split low molecular weight heparin on placental, endothelial, and anti-inflammatory pathways relevant to preeclampsia. Biol Reprod. 2018 Nov;99(5):1082–1090.
  • Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012; 367(21):2015–2025.
  • Reed JL, Winger EE. IVIg therapy increases delivery birthweight in babies born to women with elevated preconception proportion of peripheral blood (CD56+/CD3-) natural killer cells. Clin Exp Obstet Gynecol. 2017;44(3):384–391.
  • Ruffatti A, Hoxha A, Favaro M, et al. Additional treatments for high-risk obstetric antiphospholipid syndrome: a comprehensive review. Clin Rev Allergy Immunol. 2017 Aug;53(1):28–39.
  • Burwick RM, Feinberg BB. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta. 2013 Feb;34(2):201–203.
  • Lumbers ER, Delforce SJ, Arthurs AL, et al. Causes and consequences of the dysregulated maternal renin-angiotensin system in preeclampsia. Front Endocrinol (Lausanne). 2019;10:563.
  • Zhou CC, Zhang Y, Irani RA, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14(8):855–862.
  • Cunningham MW, Vaka VR, McMaster K, et al. Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertension-an Int J Womens Cardiovascular Health.2019;15: 72–77
  • Buawangpong N, Teekachunhatean S, Koonrungsesomboon N. Adverse pregnancy outcomes associated with first-trimester exposure to angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers: a systematic review and meta-analysis. Pharmacol Res Perspect. 2020;8(5):e00644.
  • Faulkner JL, Amaral LM, Cornelius DC, et al. Vitamin D supplementation reduces some AT1-AA-induced downstream targets implicated in preeclampsia including hypertension. Am J Physiol Regul Integr Comp Physiol. 2016;312(1):R125–R131.
  • Li H, Kem DC, Zhang L, et al. Novel retro-inverso peptide inhibitor reverses angiotensin receptor autoantibody-induced hypertension in the rabbit. Hypertension. 2015 Apr;65(4):793–799.
  • Cunningham MW, Castillo J, Ibrahim T, et al. AT1-AA (Angiotensin II Type 1 receptor agonistic autoantibody) Blockade prevents preeclamptic symptoms in placental ischemic rats. Hypertension. 2018 May;71(5):886–893.
  • Baksu B, Davas I, Baksu A, et al. Plasma nitric oxide, endothelin-1 and urinary nitric oxide and cyclic guanosine monophosphate levels in hypertensive pregnant women. Int J Gynaecol Obstet. 2005 Aug;90(2):112–117.
  • LaMarca B, Parrish M, Ray LF, et al. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension. 2009 Oct;54(4):905–909.
  • Lankhorst S, Danser AH, van den Meiracker AH. Endothelin-1 and antiangiogenesis. Am J Physiol Regul Integr Comp Physiol. 2016; 310(3):R230–4.
  • George EM, Palei AC, Granger JP. Endothelin as a final common pathway in the pathophysiology of preeclampsia: therapeutic implications. Curr Opin Nephrol Hypertens. 2012 Mar;21(2):157–162.
  • Kingman M, Ruggiero R, Torres F. Ambrisentan, an endothelin receptor type A-selective endothelin receptor antagonist, for the treatment of pulmonary arterial hypertension. Expert Opin Pharmacother. 2009 Aug;10(11):1847–1858.
  • Amraoui F, Spijkers L, Hassani Lahsinoui H, et al. SFlt-1 elevates blood pressure by augmenting endothelin-1-mediated vasoconstriction in mice. PLoS One. 2014;9(3):e91897.
  • Rahman R, Murthi P, Singh H, et al. The effects of hydroxychloroquine on endothelial dysfunction. Pregnancy Hypertens. 2016 Oct;6(4):259–262.
  • Cluver CA, Hannan NJ, van Papendorp E, et al. Esomeprazole to treat women with preterm preeclampsia: a randomized placebo controlled trial. Am J Obstet Gynecol. 2018 Oct;219(4):388 e1–388 e17.
  • Figueroa-Espada CG, Hofbauer S, Mitchell MJ, et al. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev. 2020;160:244–261.
  • Burton GJ, Woods AW, Jauniaux E, et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009 Jun;30(6):473–482.
  • Paul JW, Hua S, Ilicic M, et al. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol. 2017 Mar;216(3):283.e1–283.e14.
  • Zhang BZ, Liang RJ, Zheng MB, et al. Surface-functionalized nanoparticles as efficient tools in targeted therapy of pregnancy complications. Int J Mol Sci. 2019 Aug;20(15):3642.
  • Yin H, Yang J, Zhang Q, et al. iRGD as a tumor‑penetrating peptide for cancer therapy (Review). Mol Med Rep. 2017;15(5):2925–2930.
  • Beards F, Jones LE, Charnock J, et al. Placental homing peptide-microrna inhibitor conjugates for targeted enhancement of intrinsic placental growth signaling. Theranostics. 2017;7(11):2940–2955.
  • Sakai H. Overview of potential clinical applications of hemoglobin vesicles (HbV) as artificial red cells, evidenced by preclinical studies of the academic research consortium. J Funct Biomater. 2017;8(1):10.
  • Ohta H, Kaga M, Li H, et al. Potential new non-invasive therapy using artificial oxygen carriers for pre-eclampsia. J Funct Biomater. 2017;8(3):32.
  • Ganguly E, Aljunaidy MM, Kirschenman R, et al. Sex-specific effects of nanoparticle-encapsulated MitoQ (nMitoQ) Delivery to the placenta in a rat model of fetal hypoxia. Front Physiol. 2019;10:562.
  • Ganguly E, Kirschenman R, Spaans F, et al. Nanoparticle-encapsulated antioxidant improves placental mitochondrial function in a sexually dimorphic manner in a rat model of prenatal hypoxia. FASEB J. 2021 Feb;35(2):e21338.
  • Zhang B, Tan L, Yu Y, et al. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Theranostics. 2018;8(10):2765–2781.
  • Li L, Yang H, Chen P, et al. Trophoblast-targeted nanomedicine modulates placental sFLT1 for PREECLAMPSIA TREATment. Front Bioeng Biotechnol. 2020;8:64.
  • Yu J, Jia J, Guo X, et al. Modulating circulating sFlt1 in an animal model of preeclampsia using PAMAM nanoparticles for siRNA delivery. Placenta. 2017 Oct;58:1–8.
  • Cureton N, Korotkova I, Baker B, et al. Selective targeting of a novel vasodilator to the uterine vasculature to treat impaired uteroplacental perfusion in pregnancy. Theranostics. 2017;7(15):3715–3731.
  • Li L, Li H, Xue J, et al. Nanoparticle-mediated simultaneous downregulation of placental Nrf2 and sFlt1 Improves maternal and fetal outcomes in a preeclampsia mouse model. ACS Biomater Sci Eng. 2020;6(10):5866–5873.
  • Zheng Z, Liu L, Zhou K, et al. Anti-oxidant and anti-endothelial dysfunctional properties of nano-selenium in vitro and in vivo of hyperhomocysteinemic rats. Int J Nanomedicine. 2020;15:4501–4521.
  • Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018;13:2107–2128.
  • Kuna M, Waller JP, Logue OC, et al. Polymer size affects biodistribution and placental accumulation of the drug delivery biopolymer elastin-like polypeptide in a rodent pregnancy model. Placenta. 2018 Dec;72-73:20–27.
  • Logue OC, Mahdi F, Chapman H, et al. A maternally sequestered, biopolymer-stabilized vascular endothelial growth factor (VEGF) chimera for treatment of preeclampsia. J Am Heart Assoc. 2017;6(12). doi:10.1161/JAHA.117.007216.
  • Eddy AC, Howell JA, Chapman H, et al. Biopolymer-delivered, maternally sequestered NF-kappaB (Nuclear Factor-kappaB) inhibitory peptide for treatment of preeclampsia. Hypertension. 2020 Jan;75(1):193–201.
  • Abdelghani M, Shao J, Dht L, et al. Self-assembly or coassembly of multiresponsive histidine-containing elastin-like polypeptide block copolymers. Macromol Biosci. 2021 Jun;21(6):e2100081.
  • Kay HH, Zhu S, Tsoi S. Hypoxia and lactate production in trophoblast cells. Placenta. 2007 Aug-Sep;28(8–9):854–860.
  • Hou CC, Zhu JQ. Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarget. 2017;8(65):109799–109817.
  • Royal College of Obstetricians and Gynaecologists. Developing New Pharmaceutical Treatments for Obstetric Conditions Scientific Impact Paper No. 50, (2015). Accessed September 29 2022. https://www.rcog.org.uk/globalassets/documents/guidelines/scientific-impact-papers/sip-50.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.