312
Views
1
CrossRef citations to date
0
Altmetric
Review

The molecular mechanisms and targeting strategies of transcription factors in cholangiocarcinoma

, , , , , , & show all
Pages 781-789 | Received 30 Jun 2022, Accepted 13 Oct 2022, Published online: 19 Oct 2022

References

  • J M B, Cardinale V, Carpino G, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European network for the study of cholangiocarcinoma (ENS-CCA)[J]. Nat Rev Gastroenterol Hepatol. 2016;13(5):261–280.
  • J M B, J J G M, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol. 2020;17(9):557–588.
  • Rizvi S, S A K, C L H, et al. Cholangiocarcinoma - evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol. 2018;15(2):95–111.
  • L DM, S C C, J L C, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution[J]. Ann Surg. 2007;245(5):755–762.
  • Nakeeb A, H A P, T A S, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors[J]. Ann Surg. 1996;224(4):463–473. discussion 473-5.
  • Lindnér P, Rizell M, Hafström L. The impact of changed strategies for patients with cholangiocarcinoma in this millenium[J]. HPB Surg. 2015;2015:736049.
  • Kamsa-Ard S, Luvira V, Suwanrungruang K, et al. Cholangiocarcinoma trends, incidence, and relative survival in Khon Kaen, Thailand from 1989 through 2013: a population-based cancer registry study[J]. J Epidemiol. 2019;29(5):197–204.
  • Vallejo A, Erice O, Entrialgo-Cadierno R, et al. FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted[J]. J Hepatol. 2021;75(2):363–376.
  • Marti P, Stein C, Blumer T, et al. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors[J]. Hepatology. 2015;62(5):1497–1510.
  • Isomoto H, Kobayashi S, Werneburg NW, et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells[J]. Hepatology. 2005;42(6):1329–1338.
  • Liu L, Wu J, Guo Y, et al. Overexpression of FoxM1 predicts poor prognosis of intrahepatic cholangiocarcinoma[J]. Aging (Albany NY). 2018;10(12):4120–4140.
  • Sobolev VV, Khashukoeva AZ, Evina OE, et al. Role of the transcription factor FOSL1 in organ development and tumorigenesis[J]. Int J Mol Sci. 2022;23(3):1521.
  • Matsumori T, Kodama Y, Takai A, et al. Hes1 is essential in proliferating ductal cell-mediated development of intrahepatic cholangiocarcinoma[J]. Cancer Res. 2020;80(23):5305–5316.
  • Boerner T, Drill E, Pak LM, et al. Genetic determinants of outcome in cholangiocarcinoma[J]. Hepatology. 2021;74(3):1429–1444.
  • Yoshino J, Akiyama Y, Shimada S, et al. Loss of ARID1A induces a stemness gene ALDH1A1 expression with histone acetylation in the malignant subtype of cholangiocarcinoma[J]. Carcinogenesis. 2020;41(6):734–742.
  • Dachrut S, Banthaisong S, Sripa M, et al. DNA copy-number loss on 1p36.1 harboring RUNX3 with promoter hypermethylation and associated loss of RUNX3 expression in liver fluke-associated intrahepatic cholangiocarcinoma[J]. Asian Pac J Cancer Prev. 2009;10(4):575–582.
  • Khaenam P, Niibori A, Okada S, et al. Contribution of RIZ1 to regulation of proliferation and migration of a liver fluke-related cholangiocarcinoma cell[J]. Asian Pac J Cancer Prev. 2012;13(8):4007–4011.
  • Lozano E, Asensio M, Perez-Silva L, et al. MRP3-mediated chemoresistance in cholangiocarcinoma: target for chemosensitization through restoring SOX17 expression[J]. Hepatology. 2020;72(3):949–964.
  • Dana P, Saisomboon S, Kariya R, et al. CD147 augmented monocarboxylate transporter-1/4 expression through modulation of the Akt-FoxO3-NF-κB pathway promotes cholangiocarcinoma migration and invasion[J]. Cell Oncol (Dordr). 2020;43(2):211–222.
  • Armartmuntree N, Murata M, Techasen A, et al. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis[J]. Redox Biol. 2018;14:637–644.
  • Chiang NJ, S SY, Hung WC, et al. Epigenetic regulation in the carcinogenesis of cholangiocarcinoma[J]. Int J Biochem Cell Biol. 2015;67:110–114.
  • Merino-Azpitarte M, Lozano E, J PM, et al. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma[J]. J Hepatol. 2017;67(1):72–83.
  • W YX, Li L, J HG, et al. STAT3 overexpression promotes metastasis in intrahepatic cholangiocarcinoma and correlates negatively with surgical outcome[J]. Oncotarget. 2017;8(5):7710–7721.
  • Tian F, Li D, Chen J, et al. Aberrant expression of GATA binding protein 6 correlates with poor prognosis and promotes metastasis in cholangiocarcinoma[J]. Eur J Cancer. 2013;49(7):1771–1780.
  • He J, Gerstenlauer M, K CL, et al. Block of NF-kB signaling accelerates MYC-driven hepatocellular carcinogenesis and modifies the tumor phenotype towards combined hepatocellular cholangiocarcinoma[J]. Cancer Lett. 2019;458:113–122.
  • Lambert M, Jambon S, Depauw S, et al. Targeting transcription factors for cancer treatment[J]. Molecules. 2018;23(6):1479.
  • M VJ, K KS, A TS, et al. A census of human transcription factors: function, expression and evolution[J]. Nat Rev Genet. 2009;10(4):252–263.
  • Lambert SA, Jolma A, F CL, et al. The human transcription factors[J]. Cell. 2018;172(4):650–665
  • Konstantinopoulos PA, Papavassiliou AG. Seeing the future of cancer-associated transcription factor drug targets[J]. Jama. 2011;305(22):2349–2350.
  • Li H, Wolfe A, Septer S, et al. Deregulation of hippo kinase signalling in human hepatic malignancies[J]. Liver Int. 2012;32(1):38–47.
  • Tao J, F CD, Ranganathan S, et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice[J]. Gastroenterology. 2014;147(3):690–701.
  • Pei T, Li Y, Wang J, et al. YAP is a critical oncogene in human cholangiocarcinoma[J]. Oncotarget. 2015;6(19):17206–17220.
  • Wu H, Liu Y, W JX, et al. Clinicopathological and prognostic significance of Yes-associated protein expression in hepatocellular carcinoma and hepatic cholangiocarcinoma[J]. Tumour Biol. 2016;37(10):13499–13508.
  • Lee K, Lee KB, Y JH, et al. The correlation between poor prognosis and increased yes-associated protein 1 expression in keratin 19 expressing hepatocellular carcinomas and cholangiocarcinomas[J]. BMC Cancer. 2017;17(1):441.
  • Zhang Y, Xu H, Cui G, et al. β-catenin sustains and is required for YES-associated protein oncogenic activity in cholangiocarcinoma[J]. Gastroenterology. 2022;163(2):481–494.
  • Bharadwaj U, M KM, Robinson P, et al. Targeting janus kinases and signal transducer and activator of transcription 3 to Treat inflammation, fibrosis, and cancer: rationale, progress, and caution[J]. Pharmacol Rev. 2020;72(2):486–526.
  • Puigdevall L, Michiels C, Stewardson C, et al. JAK/STAT: why choose a classical or an alternative pathway when you can have both?[J]. J Cell Mol Med. 2022;26(7):1865–1875.
  • Chen H, Zhu B, Zhao L, et al. Allicin inhibits proliferation and invasion in vitro and in vivo via SHP-1-mediated STAT3 signaling in cholangiocarcinoma[J]. Cell Physiol Biochem. 2018;47(2):641–653.
  • R BB, L SR, F BS, et al. Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2[J]. Hepatology. 2009;50(6):1861–1870.
  • Saengboonmee C, Seubwai W, Cha’on U, et al. Metformin exerts antiproliferative and anti-metastatic effects against cholangiocarcinoma cells by targeting STAT3 and NF-ĸB[J]. Anticancer Res. 2017;37(1):115–123.
  • B AB, Sethi G, S AK, et al. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution[J]. Ann N Y Acad Sci. 2006;1091(1):151–169.
  • Zheng T, Hong X, Wang J, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma[J]. Hepatology. 2014;59(3):935–946.
  • Golson ML, Kaestner KH. Fox transcription factors: from development to disease[J]. Development. 2016;143(24):4558–4570.
  • Yokomine K, Senju S, Nakatsura T, et al. The forkhead box M1 transcription factor as a candidate of target for anti-cancer immunotherapy[J]. Int J Cancer. 2010;126(9):2153–2163.
  • Detarya M, Thaenkaew S, Seubwai W, et al. High glucose upregulates FOXM1 expression via EGFR/STAT3 dependent activation to promote progression of cholangiocarcinoma[J]. Life Sci. 2021;271:119114.
  • Chan-On W, T HN, Songtawee N, et al. Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells[J]. Drug Des Devel Ther. 2015;9:2033–2047.
  • Yang L, Feng S, Yang Y. Identification of transcription factors (TFs) and targets involved in the cholangiocarcinoma (CCA) by integrated analysis[J]. Cancer Gene Ther. 2016;23(12):439–445.
  • Liu Z, Sun R, Zhang X, et al. Transcription factor 7 promotes the progression of perihilar cholangiocarcinoma by inducing the transcription of c-Myc and FOS-like antigen 1[J]. EBioMedicine. 2019;45:181–191.
  • Gu Y, Xiao L, Ming Y, et al. Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo[J]. Int J Oncol. 2016;48(5):1868–1876.
  • Peng T, Deng X, Tian F, et al. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma[J]. Int J Oncol. 2019;55(3):657–670.
  • Deng X, Jiang P, Chen J, et al. GATA6 promotes epithelial-mesenchymal transition and metastasis through MUC1/β-catenin pathway in cholangiocarcinoma[J]. Cell Death Dis. 2020;11(10):860.
  • Samatiwat P, Prawan A, Senggunprai L, et al. Nrf2 inhibition sensitizes cholangiocarcinoma cells to cytotoxic and antiproliferative activities of chemotherapeutic agents[J]. Tumour Biol. 2016;37(8):11495–11507.
  • Samatiwat P, Prawan A, Senggunprai L, et al. Repression of Nrf2 enhances antitumor effect of 5-fluorouracil and gemcitabine on cholangiocarcinoma cells[J]. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(6):601–612.
  • Chen Q, Li W, Wan Y, et al. Amplified in breast cancer 1 enhances human cholangiocarcinoma growth and chemoresistance by simultaneous activation of Akt and Nrf2 pathways[J]. Hepatology. 2012;55(6):1820–1829.
  • Guan L, Zhang L, Gong Z, et al. FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1-Nrf2 signaling[J]. Hepatology. 2016;63(6):1914–1927.
  • H WZ, Y JT, Y SY, et al. RPB5-mediating protein promotes cholangiocarcinoma tumorigenesis and drug resistance by competing with NRF2 for KEAP1 binding[J]. Hepatology. 2020;71(6):2005–2022.
  • He H, Sinha I, Fan R, et al. c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer[J]. Oncogene. 2018;37(19):2586–2600.
  • Wolter S, Doerrie A, Weber A, et al. c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene[J]. Mol Cell Biol. 2008;28(13):4407–4423.
  • Zhao Q, Wirka R, Nguyen T, et al. TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression[J]. Genome Med. 2019;11(1):23.
  • He K, Feng Y, An S, et al. Integrative epigenomic profiling reveal AP-1 is a key regulator in intrahepatic cholangiocarcinoma[J]. Genomics. 2022;114(1):241–252.
  • Zhang D, Li H, Jiang X, et al. Role of AP-2α and MAPK7 in the regulation of autocrine TGF-β/miR-200b signals to maintain epithelial-mesenchymal transition in cholangiocarcinoma[J]. J Hematol Oncol. 2017;10(1):170.
  • Choodetwattana P, Proungvitaya S, Jearanaikoon P, et al. The upregulation of OCT4 in acidic extracellular pH is associated with gemcitabine resistance in cholangiocarcinoma cell lines[J]. Asian Pac J Cancer Prev. 2019;20(9):2745–2748.
  • Lu M, Qin X, Zhou Y, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis[J]. Cell Death Dis. 2021;12(1):72.
  • Duncan CJA, Hambleton S. Human disease phenotypes associated with loss and gain of function mutations in STAT2: viral susceptibility and type I interferonopathy[J]. J Clin Immunol. 2021;41(7):1446–1456.
  • Huang Z, Yu C, Yu L, et al. The roles of FHL3 in cancer[J]. Front Oncol. 2022;12:887828.
  • Tan X, Tong L, Li L, et al. Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation[J]. Nat Commun. 2021;12(1):4853.
  • Kastenhuber ER, Lowe SW. Putting p53 in context[J]. Cell. 2017;170(6):1062–1078.
  • Limpaiboon T, Krissadarak K, Sripa B, et al. Microsatellite alterations in liver fluke related cholangiocarcinoma are associated with poor prognosis[J]. Cancer Lett. 2002;181(2):215–222.
  • Jusakul A, Cutcutache I, H YC, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov. 2017;7(10):1116–1135.
  • M RP, D RS, Portmann B, et al. p53 protein overexpression in cholangiocarcinoma arising in primary sclerosing cholangitis[J]. Gut. 1996;38(2):265–268.
  • M BK, Schrumpf E, Bergquist A, et al. Cholangiocarcinoma in primary sclerosing cholangitis: k-ras mutations and Tp53 dysfunction are implicated in the neoplastic development[J]. J Hepatol. 2000;32(3):374–380.
  • M MS, Y BJ, Koszarek A, et al. Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss[J]. Hepatology. 2012;55(1):121–131.
  • Liu Y, Xin B, Yamamoto M, et al. Generation of combined hepatocellular-cholangiocarcinoma through transdifferentiation and dedifferentiation in p53-knockout mice[J]. Cancer Sci. 2021;112(8):3111–3124.
  • Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression[J]. Nat Rev Genet. 2016;17(5):284–299.
  • O’rourke CJ, Lafuente-Barquero J, Andersen JB. Epigenome remodeling in cholangiocarcinoma[J]. Trends Cancer. 2019;5(6):335–350.
  • Jiao Y, M PT, A AR, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas[J]. Nat Genet. 2013;45(12):1470–1473.
  • Mathur R. ARID1A loss in cancer: towards a mechanistic understanding[J]. Pharmacol Ther. 2018;190:15–23.
  • Z YS, Q WA, Du J, et al. Low expression of ARID1A correlates with poor prognosis in intrahepatic cholangiocarcinoma[J]. World J Gastroenterol. 2016;22(25):5814–5821.
  • Zou S, Li J, Zhou H, et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun. 2014;5(1):5696.
  • Farshidfar F, Zheng S, C GM, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles[J]. Cell Rep. 2017;18(11):2780–2794.
  • Sriraksa R, Zeller C, A E-BM, et al. CpG-island methylation study of liver fluke-related cholangiocarcinoma[J]. Br J Cancer. 2011;104(8):1313–1318.
  • H PJ, C SW, B SS, et al. Peroxiredoxin 6 expression is inversely correlated with nuclear factor-κB activation during Clonorchis sinensis infestation[J]. Free Radic Biol Med. 2016;99:273–285.
  • Harder L, Eschenburg G, Zech A, et al. Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia[J]. J Exp Med. 2013;210(11):2289–2304.
  • Armartmuntree N, Jusakul A, Sakonsinsiri C, et al. Promoter hypermethylation of early B cell factor 1 (EBF1) is associated with cholangiocarcinoma progression[J]. J Cancer. 2021;12(9):2673–2686.
  • Lee MJ, R YG, J YH, et al. ANXA8 down-regulation by EGF-FOXO4 signaling is involved in cell scattering and tumor metastasis of cholangiocarcinoma[J]. Gastroenterology. 2009;137(3):1138–50, 1150.e1–9.
  • Lu D, Han C, Wu T. Microsomal prostaglandin E synthase-1 inhibits PTEN and promotes experimental cholangiocarcinogenesis and tumor progression[J]. Gastroenterology. 2011;140(7):2084–2094.
  • Shen J, Zhou Y, Zhang X, et al. Loss of FoxA2 accelerates neoplastic changes in the intrahepatic bile duct partly via the MAPK signaling pathway[J]. Aging (Albany NY). 2019;11(21):9280–9294.
  • You Z, Xu J, Li B, et al. The mechanism of ATF3 repression of epithelial-mesenchymal transition and suppression of cell viability in cholangiocarcinoma via p53 signal pathway[J]. J Cell Mol Med. 2019;23(3):2184–2193.
  • Kam AE, Masood A, Shroff RT. Current and emerging therapies for advanced biliary tract cancers[J]. Lancet Gastroenterol Hepatol. 2021;6(11):956–969.
  • K A-AG, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study[J]. Lancet Oncol. 2020;21(5):671–684.
  • Stadhouders R, Filion GJ, Graf T. Transcription factors and 3D genome conformation in cell-fate decisions[J]. Nature. 2019;569(7756):345–354.
  • Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy[J]. Nat Rev Clin Oncol. 2021;18(10):645–661.
  • Bushweller JH. Targeting transcription factors in cancer - from undruggable to reality[J]. Nat Rev Cancer. 2019;19(11):611–624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.