268
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging therapeutic targets for retinoblastoma

, , , &
Pages 937-947 | Received 30 Jun 2021, Accepted 12 Dec 2022, Published online: 26 Dec 2022

References

  • Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. BMJ Publishing Group Ltd; 2009. p. 1129–1131.
  • Parkin DM, Stiller CA, Draper GJ, et al. The international incidence of childhood cancer. Int J Cancer. 1988;42(4):511–520.
  • Kaliki S, Patel A, Iram S, et al. Retinoblastoma in India: clinical presentation and outcome in 1,457 patients (2,074 eyes). Retina. 2019;39(2):379–391.
  • Gupta SK, Meshram M, Kumar A, et al. Survival and outcome of retinoblastoma treated by neo‐adjuvant chemotherapy in India. Cancer Rep. 2019;2(3):e1137.
  • Munier FL, Beck-Popovic M, Chantada GL, et al. Conservative management of retinoblastoma: challenging orthodoxy without compromising the state of metastatic grace.“Alive, with good vision and no comorbidity.” Prog Retin Eye Res. 2019;73:100764.
  • Shields CL, Shields JA, Baez K, et al. Optic nerve invasion of retinoblastoma. Metastatic potential and clinical risk factors. Cancer. 1994;73(3):692–698.
  • Tomar AS, Finger PT, Gallie B, et al. Global retinoblastoma treatment outcomes: association with national income level. Ophthalmology. 2021;128(5):740–753.
  • Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Nat Acad Sci. 1971;68(4):820–823.
  • Dimaras H, Kimani K, Dimba EA, et al. Retinoblastoma. Lancet. 2012;379(9824):1436–1446.
  • Nork TM, Schwartz TL, Doshi HM, et al. Retinoblastoma: cell of origin. Arch Ophtalmol. 1995;113(6):791–802.
  • Kyritsis A, Tsokos M, Triche T, et al. Retinoblastoma—origin from a primitive neuroectodermal cell? Nature. 1984;307(5950):471–473.
  • Xu XL, Singh HP, Wang L, et al. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature. 2014;514(7522):385–388.
  • Singh HP, Wang S, Stachelek K, et al. Developmental stage-specific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors. Proc Nat Acad Sci. 2018;115(40):E9391–E9400.
  • Liu J, Ottaviani D, Sefta M, et al. A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun. 2021;12(1):1–20.
  • Seigel GM, Campbell LM, Narayan M, et al. Cancer stem cell characteristics in retinoblastoma. Mol Vis. 2005;11(12):729–737.
  • Seigel GM, Hackam AS, Ganguly A, et al. Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis. 2007;13:823.
  • Balla MM, Vemuganti GK, Kannabiran C, et al. Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci. 2009;50(4):1506–1514.
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303(5659):844–848.
  • Laurie NA, Donovan SL, Shih C-S, et al. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006;444(7115):61–66.
  • Brennan RC, Federico S, Bradley C, et al. Targeting the p53 pathway in retinoblastoma with subconjunctival Nutlin-3a. Cancer Res. 2011;71(12):4205–4213.
  • Lau L, Nugent J, Zhao X, et al. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene. 2008;27(7):997–1003.
  • Yao X, Shen H, Peng Q, et al. TP53/miR-129/MDM2/4/TP53 feedback loop modulates cell proliferation and apoptosis in retinoblastoma. Cell Cycle. 2021;20(5–6):603–615.
  • Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8(5):361–375.
  • Kim D-R, Rah SH, Sohn JH, et al. Calcium mobilization by activation of M3/M5 muscarinic receptors in the human retinoblastoma. J Pharmacol Sci. 2007;105(2):184–192.
  • Mergler S, Cheng Y, Skosyrski S, et al. Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp Eye Res. 2012;94(1):157–173.
  • Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta-Mol Cell Res. 2014;1843(1):150–162.
  • Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans. 2007;35(1):12–17.
  • Thibaudeau TA, Smith DM, Ma Q. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71(2):170–197.
  • Poulaki V, Mitsiades CS, Kotoula V, et al. The proteasome inhibitor bortezomib induces apoptosis in human retinoblastoma cell lines in vitro. Invest Ophthalmol Vis Sci. 2007;48(10):4706–4719.
  • Zhang Z, Liang X, Zhou J, et al. Exosomes in the pathogenesis and treatment of ocular diseases. Exp Eye Res. 2021;209:108626.
  • Ruivo CF, Adem B, Silva M, et al. The biology of cancer exosomes: insights and new perspectives Biology of cancer exosomes. Cancer Res. 2017;77(23):6480–6488.
  • Manukonda R, Attem J, Yenuganti VR, et al. Exosomes in the visual system: new avenues in ocular diseases. Tumor Biol. 2022;44(1):129–152.
  • Chen S, Chen X, Qiu J, et al. Exosomes derived from retinoblastoma cells enhance tumour deterioration by infiltrating the microenvironment. Oncol Rep. 2021;45(1):278–290.
  • Tsering T, Laskaris A, Abdouh M, et al. Uveal melanoma-derived extracellular vesicles display transforming potential and carry protein cargo involved in metastatic niche preparation. Cancers (Basel). 2020;12(10):2923.
  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659.
  • Yang Y, Mei Q. miRNA signature identification of retinoblastoma and the correlations between differentially expressed miRNAs during retinoblastoma progression. Mol Vis. 2015;21:1307.
  • Martin J, Bryar P, Mets M, et al. Differentially expressed miRNAs in retinoblastoma. Gene. 2013;512(2):294–299.
  • Xu X, Jia R, Zhou Y, et al. Microarray-based analysis: identification of hypoxia-regulated microRNAs in retinoblastoma cells. Int J Oncol. 2011;38(5):1385–1393.
  • Galardi A, Colletti M, Lavarello C, et al. Proteomic profiling of retinoblastoma-derived exosomes reveals potential biomarkers of vitreous seeding. Cancers (Basel). 2020;12(6):1555.
  • Manukonda R, Yenuganti VR, Nagar N, et al. Comprehensive analysis of serum small extracellular vesicles-derived coding and non-coding RNAs from retinoblastoma patients for identifying regulatory interactions. Cancers (Basel). 2022;14(17):4179.
  • Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–1134.
  • Kim J-K, Jeon H-Y, Kim H. The molecular mechanisms underlying the therapeutic resistance of cancer stem cells. Arch Pharm Res. 2015;38(3):389–401.
  • Narayana RV, Jana P, Tomar N, et al. Carboplatin-and etoposide-loaded lactoferrin protein nanoparticles for targeting cancer stem cells in retinoblastoma in vitro. Invest Ophthalmol Vis Sci. 2021;62(14):13.
  • Nair RM, Balla M, Khan I, et al. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line. BMC Cancer. 2017;17(1):1–12.
  • Hu H, Deng F, Liu Y, et al. Characterization and retinal neuron differentiation of WERI-Rb1 cancer stem cells. Mol Vis. 2012;18:2388.
  • Balaji S, Santhi R, Kim U, et al. Cancer stem cells with overexpression of neuronal markers enhance chemoresistance and invasion in retinoblastoma. Curr Cancer Drug Targets. 2020;20(9):710–719.
  • Balicki D, Beaulieu R. Cancer stem cell side populations. In: Bapat SA, editor. cancer stem cells: identification and Targets. John Wiley & Sons; 2008. p. 73.
  • Winter U, Aschero R, Fuentes F, et al. Tridimensional retinoblastoma cultures as vitreous seeds models for live-cell imaging of chemotherapy penetration. Int J Mol Sci. 2019;20(5):1077.
  • Pascual-Pasto G, Olaciregui NG, Vila-Ubach M, et al. Preclinical platform of retinoblastoma xenografts recapitulating human disease and molecular markers of dissemination. Cancer Lett. 2016;380(1):10–19.
  • Youssef NS, Said AM. Said AMJIjoc, pathology e. Immunohistochemical expression of CD117 and vascular endothelial growth factor in retinoblastoma: possible targets of new therapies. Inter J Cli Experi Pathol. 2014;7(9):5725.
  • Theodoropoulou S, Brodowska K, Kayama M, et al. Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis. PloS one. 2013;8(1):e52852.
  • Santiago JG, Burgos-Tirado N, Lafontaine DD, et al. Adhesion G protein-coupled receptor, ELTD1, is a potential therapeutic target for retinoblastoma migration and invasion. BMC Cancer. 2021;21(1):1–13.
  • Pina Y, Boutrid H, Murray TG, et al. Impact of tumor-associated macrophages in LHBETATAG Mice on retinal tumor progression: relation to macrophage subtype. Invest Ophthalmol Vis Sci. 2010;51(5):2671–2677.
  • Gallud A, Warther D, Maynadier M, et al. Identification of MRC2 and CD209 receptors as targets for photodynamic therapy of retinoblastoma using mesoporous silica nanoparticles. RSC advances. 2015;5(92):75167–75172.
  • Basavarajappa HD, TWJFmc C. KIF14 as an oncogene in retinoblastoma: a target for novel therapeutics? Future Med Chem. 2012;4(17):2149–2152.
  • O’Hare M, Shadmand M, Sulaiman RS, et al. Kif14 overexpression accelerates murine retinoblastoma development. Inter JCancer. 2016;139(8):1752–1758.
  • Jockovich M-E, Suarez F, Alegret A, et al. Mechanism of retinoblastoma tumor cell death after focal chemotherapy, radiation, and vascular targeting therapy in a mouse model. Investig Ophthalmol Vis Sci. 2007;48(12):5371–5376.
  • Dalgard CL, Van Quill KR, Jmjccr O. Evaluation of the in vitro and in vivo antitumor activity of histone deacetylase inhibitors for the therapy of retinoblastoma. Clin Cancer Res: an Official J of the American Association for Cancer Res. 2008;14(10):3113–3123.
  • Elison JR, Cobrinik D, Claros N, et al. Small molecule inhibition of HDM2 leads to p53-mediated cell death in retinoblastoma cells. Arch Ophthalmol (Chicago, Ill.: 1960). 2006;124(9):1269–1275.
  • Li J, Di C, Jing J, et al. OTX2 is a therapeutic target for retinoblastoma and may function as a common factor between C-MYC, CRX, and phosphorylated RB pathways. Inter J Oncol. 2015;47(5):1703–1710.
  • Chai Y, Xiao J, Du Y, et al. A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system. Iran J Basic Med Sci. 2017;20(7):739.
  • Sousa DC, Zoroquiain P, Orellana ME, et al. HER2 overexpression in retinoblastoma: a potential therapeutic target. Ocul Oncol Pathol. 2017;3(3):210–215.
  • Asnaghi L, White DT, Key N, et al. ACVR1C/SMAD2 signaling promotes invasion and growth in retinoblastoma. Oncogene. 2019;38(12):2056–2075.
  • Piña Y, Decatur C, Murray T, et al. Advanced retinoblastoma treatment: targeting hypoxia by inhibition of the mammalian target of rapamycin (mTOR) in LHBetaTag retinal tumors. Cli Ophthalmol (Auckland, N.Z.). 2011;5:337.
  • Pina Y, Houston SK, Murray TG, et al. Focal, periocular delivery of 2-deoxy-D-glucose as adjuvant to chemotherapy for treatment of advanced retinoblastoma. Invest Ophthalmol Vis Sci. 2010;51(12):6149–6156.
  • Ii RP, Chan -C-C, Ni M, et al. Human retinoblastoma cells express αB-crystallin in vivo and in vitro. Curr Eye Res. 1993;12(3):239–245.
  • Kase S, Parikh JG, NAJAoo R. Expression of α-crystallin in retinoblastoma. Arch Ophthalmol (Chicago, Ill.: 1960). 2009;127(2):187–192.
  • Martin A, Jones A, Bryar PJ, et al. MicroRNAs-449a and-449b exhibit tumor suppressive effects in retinoblastoma. Biochem Biophys Res Commun. 2013;440(4):599–603.
  • Pascual-Pasto G, Bazan-Peregrino M, Olaciregui NG, et al. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med. 2019;11(476). DOI: 10.1126/scitranslmed.aat9321
  • Nalini V, Deepa PR, Raguraman R, et al. Targeting HMGA2 in retinoblastoma cells in vitro using the aptamer strategy. Ocular Oncology and Pathology. 2016;2(4):262–269.
  • Apte RS, Harbour JW. Inhibiting angiogenesis in retinoblastoma. Ophthalmic Res. 2007;39(4):188.
  • Di Fiore R, Drago-Ferrante R, D’Anneo A, et al. In human retinoblastoma Y79 cells okadaic acid–parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player. Cancer Biol Ther. 2013;14(10):922–931.
  • Liu K, Liu Y, Zhao G. Targeting survivin suppresses proliferation and invasion of retinoblastoma cells in vitro and in vivo. Int J Clin Exp Pathol. 2017;10(9):9352.
  • Allaman-Pillet N, Oberson A, Munier F, et al. The Bcl-2/Bcl-XL inhibitor ABT-737 promotes death of retinoblastoma cancer cells. Ophthalmic Genet. 2013;34(1–2):1–13.
  • Mao Y, Sun Y, Wu Z, et al. Targeting of histone methyltransferase DOT1L plays a dual role in chemosensitization of retinoblastoma cells and enhances the efficacy of chemotherapy. Cell Death Dis. 2021;12(12):1–11.
  • Li Z, Zhang L, Liu D, et al. Knockdown of NRMT enhances sensitivity of retinoblastoma cells to cisplatin through upregulation of the CENPA/Myc/Bcl2 axis. Cell Death Discov. 2022;8(1):1–11.
  • Kalmodia S, Parameswaran S, Ganapathy K, et al. Characterization and molecular mechanism of peptide-conjugated gold nanoparticle inhibiting p53-HDM2 interaction in retinoblastoma. Molecular Therapy - Nucleic Acids. 2017;9:349–364.
  • Aubry A, Pearson JD, Huang K, et al. Functional genomics identifies new synergistic therapies for retinoblastoma. Oncogene. 2020;39(31):5338–5357.
  • Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396.
  • Wainwright EN, Scaffidi P. Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity. Trends Cancer. 2017;3(5):372–386.
  • Singh U, Malik MA, Goswami S, et al. Epigenetic regulation of human retinoblastoma. Tumor Biol. 2016;37(11):14427–14441.
  • Greger V, Passarge E, Höpping W, et al. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83(2):155–158.
  • Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481(7381):329–334.
  • Kim JK, Kan G, Mao Y, et al. UHRF1 downmodulation enhances antitumor effects of histone deacetylase inhibitors in retinoblastoma by augmenting oxidative stress‐mediated apoptosis. Mol Oncol. 2020;14(2):329–346.
  • Zocchi L, Wu SC, Benavente CA. Heavenly HELLS? A potential new therapeutic target for retinoblastoma. Oncoscience. 2020;7(3–4):23.
  • Nagare R P, Sneha S, Krishna Priya S, et al. Cancer stem cells–are surface markers alone sufficient? Curr Stem Cell Res Ther. 2017;12(1):37–44.
  • Douville J, Beaulieu R, Balicki D. ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev. 2009;18(1):17–26.
  • Mitra M, Kandalam M, Harilal A, et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy. Mol Vis. 2012;18:290–308.
  • Salem ML, El-Badawy AS, Li Z. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology. 2015;67(5):749–759.
  • Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16(12):3153–3162.
  • Wang Z, Yang H, Wang X, et al. The molecular mechanism and regulatory pathways of cancer stem cells. Cancer Trans Med. 2016;2(5):1–6.
  • Asnaghi L, Tripathy A, Yang Q, et al. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget. 2016;7(43):70028.
  • Song Z, Du Y, Tao Y. Blockade of sonic hedgehog signaling decreases viability and induces apoptosis in retinoblastoma cells: the key role of the PI3K/Akt pathway. Oncol Lett. 2017;14(4):4099–4105.
  • Wu S, Han M, Zhang C. Overexpression of microRNA‐186 inhibits angiogenesis in retinoblastoma via the Hedgehog signaling pathway by targeting ATAD2. J Cell Physiol. 2019;234(10):19059–19072.
  • Menendez JA, Corominas-Faja B, Cuyàs E, et al. Metabostemness: metaboloepigenetic reprogramming of cancer stem-cell functions. Oncoscience. 2014;1(12):803.
  • Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16(1):9–17.
  • Vandhana S, Coral K, Jayanthi U, et al. Biochemical changes accompanying apoptotic cell death in retinoblastoma cancer cells treated with lipogenic enzyme inhibitors. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids. 2013;1831(9):1458–1466.
  • Sahoo S, Ravi Kumar RK, Nicolay B, et al. Metabolite systems profiling identifies exploitable weaknesses in retinoblastoma. FEBS Lett. 2019;593(1):23–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.