200
Views
1
CrossRef citations to date
0
Altmetric
Review

Combining inhibition of immune checkpoints and PARP: rationale and perspectives in cancer treatment

ORCID Icon, , , , &
Pages 923-936 | Received 31 Jul 2022, Accepted 12 Dec 2022, Published online: 22 Dec 2022

References

  • Duffy MJ, Crown J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin Chem. 2019;65(10):1228–1238.
  • Yap TA, Parkes EE, Peng W, et al. Development of immunotherapy combination strategies in cancer. Cancer Discov. 2021;11(6):1368–1397.
  • Cortesi L, Rugo HS, Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 2021;16(3):255–282.
  • Armstrong DK Use of PARP inhibitors for ovarian cancer. In Proceedings of the JNCCN Journal of the National Comprehensive Cancer Network; Harborside Press, 2021; Vol. 19, pp. 636–638.
  • Hammel P, Zhang C, Matile J, et al. PARP inhibition in treatment of pancreatic cancer. Expert Rev Anticancer Ther. 2020;20(11):939–945.
  • Nizialek E, Antonarakis ES. PARP inhibitors in metastatic prostate cancer: evidence to date. Cancer Manag Res. 2020;12:8105–8114.
  • Pilié PG, Gay CM, Byers LA, et al. PARP inhibitors: extending benefit beyond BRCA -mutant cancers. Clin Cancer Res. 2019;25(13):3759–3771.
  • Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst). 2016;38:94–101.
  • Friedberg EC. DNA damage and repair. Nature. 2003;421(6921):436–440.
  • Pećina-Šlaus N, Kafka A, Salamon I, et al. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7:122.
  • de la Chapelle A. Microsatellite instability. N Engl J Med. 2003;349(3):209–210.
  • MSS and MSI profiles using the pentaplex panel. (A) MSS profile of the … Download Scientific Diagram. [cited Apr 15, 2022]. Available from: https://www.researchgate.net/figure/MSS-and-MSI-profiles-using-the-pentaplex-panel-A-MSS-profile-of-the-five-consensus_fig2_336583432
  • Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: part I. The utility of immunohistochemistry. The Journal of Molecular Diagnostics. 2008;10(4):293–300.
  • Baudrin LG, Deleuze JF, How-Kit A. Molecular and computational methods for the detection of microsatellite instability in cancer. Front Oncol. 2018;8:621.
  • Bonneville R, Krook MA, Kautto EA, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;2017(1):1–15.
  • Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem. 2018;293(27):10524–10535.
  • Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. Seattle: University of Washington; 1993.
  • Johnson ML, Cho BC, Luft A, et al. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non–small-cell lung cancer: the Phase III POSEIDON Study. J clin oncol. 2022. DOI:10.1200/jco.22.00975.
  • Homologous recombination deficiency | target ovarian cancer. [cited Apr 15, 2022]. Available from: https://targetovariancancer.org.uk/about-ovarian-cancer/hereditary-ovarian-cancer/homologous-recombination-deficiency
  • Javle M, Curtin NJ. The role of PARP in DNA repair and its therapeutic exploitation. Br J Cancer. 2011;105(8):1114–1122.
  • Rose M, Burgess JT, O’Byrne K, et al. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:879.
  • Keung M, Wu Y, Vadgama J. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J Clin Med. 2019;8(435):435.
  • Yi T, Feng Y, Sundaram R, et al. Antitumor efficacy of PARP inhibitors in homologous recombination deficient carcinomas. Int J Cancer. 2019;145(5):1209–1220.
  • Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23(5):687–696.
  • Min A, Im S-A. PARP inhibitors as therapeutics: beyond modulation of parylation. Cancers (Basel). 2020;12(394):394.
  • Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA -mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–327.
  • McCabe N, Turner NC, Lord CJ, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to Poly(ADP-Ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109–8115.
  • Murai J, Huang SYN, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–5599.
  • Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110–120.
  • Revythis A, Limbu A, Mikropoulos C, et al. Recent insights into PARP and immuno-checkpoint inhibitors in epithelial ovarian cancer. Int J Environ Res Public Health. 2022 Jul;19(14):8577.
  • Peyraud F, Italiano A. Combined parp inhibition and immune checkpoint therapy in solid tumors. Cancers (Basel). 2020;12(6):1–28.
  • Brown JS, Sundar R, Lopez J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br J Cancer. 2018;118(3):312–324.
  • Hsiehchen D, Hsieh A, Samstein RM, et al. DNA repair gene mutations as predictors of immune checkpoint inhibitor response beyond tumor mutation burden. Cell Reports Medicine. 2020;1. DOI:10.1016/j.xcrm.2020.100034
  • Budczies J, Kluck K, Beck S, et al. Homologous recombination deficiency is inversely correlated with microsatellite instability and identifies immunologically cold tumors in most cancer types. J Pathology: Clin Res. 2022;8. doi:10.1002/cjp2.271
  • Teo MY, Seier K, Ostrovnaya I, et al. Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J clin oncol. 2018;36(17):1685–1694.
  • Willis JA, Reyes-Uribe L, Chang K, et al. Immune activation in mismatch repair–deficient carcinogenesis: more than just mutational rate. Clin Cancer Res. 2020;26(1):11–17.
  • Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073.
  • Zhao P, Li L, Jiang X, et al. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019;12(1):12.
  • Sun W, Zhang Q, Wang R, et al. Targeting DNA damage Repair for immune checkpoint inhibition: mechanisms and potential clinical applications. Front Oncol. 2021;11:648687.
  • Hamanishi J, Mandai M, Ikeda T, et al. Safety and antitumor activity of Anti–PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J clin oncol. 2015;33(34):4015–4022.
  • Hugo W, Zaretsky JM, Sun L, et al. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.
  • Rayner E, Van Gool IC, Palles C, et al. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer. 2016;16(2):71–81.
  • Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128.
  • Bouffet E, Larouche V, Campbell BB, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J clin oncol. 2016;34(19):2206–2211.
  • Boussios S, Rassy E, Shah S, et al. Aberrations of DNA repair pathways in prostate cancer: a cornerstone of precision oncology. Expert Opin Ther Targets. 2021;25(5):329–333.
  • Basit A, Cho MG, Kim EY, et al. The cGAS/STING/TBK1/IRF3 innate immunity pathway maintains chromosomal stability through regulation of p21 levels. Exp Mol Med. 2020;52(4):643–657.
  • Ma Z, Damania B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe. 2016;19(2):150–158.
  • Corrales L, McWhirter SM, Dubensky TW, et al. The host STING pathway at the interface of cancer and immunity. J Clin Investig. 2016;126(7):2404–2411.
  • Zitvogel L, Galluzzi L, Kepp O, et al. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15(7):405–414.
  • Olabisi OA, Soto-Nieves N, Nieves E, et al. Regulation of transcription factor NFAT by ADP-ribosylation. Mol Cell Biol. 2008;28(9):2860–2871.
  • Mulligan AM, Raitman I, Feeley L, et al. Tumoral lymphocytic infiltration and expression of the chemokine CXCL10 in breast cancers from the Ontario familial breast cancer registry. Clin Cancer Res. 2013;19(2):336–346.
  • Rosado MM, Bennici E, Novelli F, et al. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology. 2013;139(4):428–437.
  • Strickland KC, Howitt BE, Shukla SA, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):13587–13598.
  • Nolan E, Savas P, Policheni AN, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1 -mutated breast cancer. Sci Transl Med. 2017;9(393):11.
  • Connor AA, Denroche RE, Jang GH, et al. Association of distinct mutational signatures with correlates of increased immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol. 2017;3(6):774–783.
  • Green AR, Aleskandarany MA, Ali R, et al. Clinical impact of tumor DNA repair expression and T-cell infiltration in breast cancers. Cancer Immunol Res. 2017;5(4):292–299.
  • Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway. J Cancer. 2021;12(9):2735–2746.
  • Yarchoan M, Albacker LA, Hopkins AC, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4. DOI:10.1172/jci.insight.126908.
  • Sato H, Niimi A, Yasuhara T, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 2017;8(1):8.
  • Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–211.
  • Anagnostou V, Smith KN, Forde PM, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264–276.
  • Boussios S, Rassy E, Samartzis E, et al. Melanoma of unknown primary: new perspectives for an old story. Crit Rev Oncol Hematol. 2021 Feb;158:103208.
  • Goel S, Decristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–475.
  • Dean JL, McClendon AK, Knudsen ES. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J Biol Chem. 2012;287(34):29075–29087.
  • McAlpine JN, Porter H, Köbel M, et al. BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma. Mod Pathol. 2012;25(5):740–750.
  • Liu H, Wang S, Xin J, et al. Role of NKG2D and its ligands in cancer immunotherapy. Am J Cancer Res. 2019;9(10):2064–2078.
  • Fenerty KE, Padget M, Wolfson B, et al. Immunotherapy utilizing the combination of natural killer- and antibody dependent cellular cytotoxicity (ADCC)-mediating agents with poly (ADP-ribose) polymerase (PARP) inhibition 11. Medical and Health Sciences 1112 Oncology and Carcinogenesis 11 Medical and Health Sciences 1107 Immunology. Journal for ImmunoTherapy of Cancer. 2018; 6. DOI:10.1186/s40425-018-0445-4.
  • Fenerty KE, Padget M, Wolfson B, et al. Immunotherapy utilizing the combination of natural killer- and antibody dependent cellular cytotoxicity (ADCC)-mediating agents with poly (ADP-ribose) polymerase (PARP) inhibition 11. Medical and Health Sciences 1112 Oncology and Carcinogenesis 11 Medical and Health Sciences 1107 Immunology. J ImmunoTher Cancer. 2018;6:1–14. 10.1186/s40425-018-0445-4.
  • Martí JM, Garcia-Diaz A, Delgado-Bellido D, et al. Selective modulation by PARP-1 of HIF-1α-recruitment to chromatin during hypoxia is required for tumor adaptation to hypoxic conditions. Redox Biol. 2021;41:101885.
  • Fridman WH, Zitvogel L, Sautès-Fridman C, et al. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–734.
  • Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12(10):584–596.
  • Stewart RA, Pilie PG, Yap TA. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 2018;78(24):6717–6725.
  • Wu Z, Cui P, Tao H, et al. The Synergistic Effect of PARP Inhibitors and Immune Checkpoint Inhibitors. Clin Med Insights Oncol. 2021;15:1179554921996288.
  • Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711–3720.
  • Wang Z, Sun K, Xiao Y, et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci Rep. 2019;9(1):1–12.
  • Shen J, Zhao W, Ju Z, et al. PARPI triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCANEss. Cancer Res. 2019;79(2):311–319.
  • Robillard L, Nguyen M, Loehr A, et al. Abstract 3650: preclinical evaluation of the PARP inhibitor rucaparib in combination with PD-1 and PD-L1 inhibition in a syngeneic BRCA1 mutant ovarian cancer model. American Association for Cancer Research (AACR) Annual Meeting 2017, Washington, D.C., USA; 2017. p. 3650.
  • Higuchi T, Flies DB, Marjon NA, et al. CTLA-4 blockade synergizes therapeutically with PARP Inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol Res. 2015;3(11):1257–1268.
  • Konstantinopoulos PA, Waggoner SE, Vidal GA, et al. TOPACIO/Keynote-162 (NCT02657889): a phase 1/2 study of niraparib + pembrolizumab in patients (pts) with advanced triple-negative breast cancer or recurrent ovarian cancer (ROC)—Results from ROC cohort. J clin oncol. 2018;36:106.
  • Yap TA, Konstantinopoulos P, Telli ML, et al. Abstract P1-19-03: JAVELIN PARP Medley, a phase 1b/2 study of avelumab plus talazoparib: results from advanced breast cancer cohorts. Cancer Res. 2020;80(4_Supplement): 1–19-03-P1-19–03.
  • Rodriguez-Moreno JF, de Velasco G, Bravo Fernandez I, et al. Impact of the combination of durvalumab (MEDI4736) plus olaparib (AZD2281) administered prior to surgery in the molecular profile of resectable urothelial bladder cancer: NEODURVARIB Trial. J clin oncol. 2020;38(6_suppl):542.
  • Ramalingam SS, Thara E, Awad MM, et al. JASPER: phase 2 trial of first-line niraparib plus pembrolizumab in patients with advanced non–small cell lung cancer. Cancer. 2022;128(1):65–74.
  • Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020;21(9):1155–1164.
  • Färkkilä A, Gulhan DC, Casado J, et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat Commun. 2020;11(1):1–13.
  • Bang Y-J, Kaufman B, Geva R, et al. An open-label, phase II basket study of olaparib and durvalumab (MEDIOLA): results in patients with relapsed gastric cancer. J clin oncol. 2019;37(4_suppl):140.
  • Kamel D, Gray C, Walia JS, et al. PARP inhibitor drugs in the treatment of breast, ovarian, prostate and pancreatic cancers: an update of clinical trials. Curr Drug Targets. 2018;19(1). DOI:10.2174/1389450118666170711151518
  • Konstantinopoulos PA, Waggoner S, Vidal GA, et al. Single-Arm Phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 2019;5(8):1141–1149.
  • Vinayak S, Tolaney SM, Schwartzberg LS, et al. TOPACIO/Keynote-162: niraparib + pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. J clin oncol. 2018;36(15_suppl):1011.
  • Yu EY, Massard C, Retz M, et al. Keynote-365 cohort a: pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J clin oncol. 2019;37(7_suppl):145.
  • Thomas A, Vilimas R, Trindade C, et al. Durvalumab in combination with olaparib in patients with relapsed SCLC: results from a Phase II study. J Thorac Oncol. 2019;14(8):1447–1457.
  • A Phase I/II Study of MEDI4736 in Combination With Olaparib in Patients With Advanced Solid Tumors. - Full Text View - CLINICALTRIALS.gov. [cited Apr 15, 2022]. Available from: https://clinicaltrials.gov/ct2/show/NCT02734004
  • Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020;21(9):1155–1164.
  • Drew Y, Kaufman B, Banerjee S, et al. Phase II study of olaparib + durvalumab (MEDIOLA): updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC). Ann Oncol. 2019;30:v485–v486.
  • Krebs M, Ross K, Kim S, et al. P1.15-004 an open-label, multitumor phase II basket study of olaparib and durvalumab (MEDIOLA): results in patients with relapsed SCLC. J Thorac Oncol. 2017;12(11):S2044–S2045.
  • An open-label, phase II basket study of olaparib and durvalumab (MEDIOLA): results in patients with relapsed gastric cancer. Journal of Clinical Oncology. [cited Apr 15, 2022]. Available from: https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.4_suppl.140
  • Lee J-M, Annunziata CM, Houston N, et al. A phase II study of durvalumab, a PD-L1 inhibitor and olaparib in recurrent ovarian cancer (OvCa). Ann Oncol. 2018;29(viii334):viii334.
  • Karzai F, Vanderweele D, Madan RA, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations 11 medical and health sciences 1112 oncology and carcinogenesis. J Immunother Cancer. 2018;6(1):6.
  • Friedlander M, Meniawy T, Markman B, et al. A phase 1b study of the anti-PD-1 monoclonal antibody BGB-A317 (A317) in combination with the PARP inhibitor BGB-290 (290) in advanced solid tumors. J clin oncol. 2018;36(5_suppl):48.
  • Friedlander M, Meniawy T, Markman B, et al. Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-escalation stage of a multicentre, open-label, phase 1a/b trial. Lancet Oncol. 2019;20(9):1306–1315.
  • Yap TA, Konstantinopoulos P, Telli ML, et al. Abstract P1-19-03: JAVELIN PARP Medley, a phase 1b/2 study of avelumab plus talazoparib: results from advanced breast cancer cohorts. Cancer Res. 2020;80: 1–19-03-P1-19–03.
  • Eskander RN, Ledermann JA, Birrer MJ, et al. JAVELIN ovarian PARP 100 study design: phase III trial of avelumab + chemotherapy followed by avelumab + talazoparib maintenance in previously untreated epithelial ovarian cancer. J clin oncol. 2019;37(8_suppl): TPS9–TPS9.
  • Rodriguez-Moreno JF, Ruiz-Llorente S, De Velasco G, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer (MIBC) treated with durvalumab plus olaparib in the neoadjuvant setting: neodurvarib trial. J clin oncol. 2022;40(6_suppl):546.
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–2544.
  • Schuster SJ, Svoboda J, Chong EA, et al. Chimeric Antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–2554.
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448.
  • Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–398.
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69.
  • Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437.
  • Yin Y, Boesteanu AC, Binder ZA, et al. Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-Based CAR T cells to treat murine and canine gliomas. Molecular Therapy - Oncolytics. 2018; 11: 20–38. 10.1016/j.omto.2018.08.002
  • Sun R, Luo H, Su J, et al. Olaparib suppresses MDSC recruitment via SDF1α/CXCR4 axis to improve the Anti-tumor Efficacy of CAR-T Cells on breast cancer in mice. Mol Ther. 2021;29(1):60–74.
  • Ji F, Zhang F, Zhang M, et al. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway. J Hematol Oncol. 2021;14(1):152.
  • D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 2018;71:172–176.
  • Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118(1):9–16.
  • Prolonged long-term survival with immunotherapy vs chemo in advanced NSCLC - The ASCO post. [cited Apr 17, 2022]. Available from: https://ascopost.com/issues/october-10-2019/prolonged-long-term-survival-with-immunotherapy-vs-chemo-in-advanced-nsclc
  • McDermott D, Lebbé C, Hodi FS, et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat Rev. 2014;40(9):1056–1064.
  • Wanderley CWS, Correa TS, Scaranti M, et al. Targeting PARP1 to enhance anticancer checkpoint immunotherapy response: rationale and clinical implications. Front Immunol. 2022 Apr 27;13:816642.
  • Lau AY, Yates J, Wilson Z, et al. Abstract 2494: ATR inhibitor AZD6738 as monotherapy and in combination with olaparib or chemotherapy: defining pre-clinical dose-schedules and efficacy modelling. Cancer Res. 2017;77(13_Supplement):2494.
  • Taniguchi H, Caeser R, Chavan SS, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39(7):110814.
  • Dinavahi SS, Chen Y-C, Punnath K, et al. Targeting WEE1/AKT Restores p53-dependent natural killer–cell activation to induce immune checkpoint blockade responses in “cold” melanoma. Cancer Immunol Res. 2022;10(6):757–769.
  • Medina López RA, Rivero Belenchon I, Mazuecos-Quirós J, et al. Update on the treatment of metastatic renal cell carcinoma. World J Clin Oncol. 2022;13(1):1–8.
  • Haslam A, Prasad V. Estimation of the percentage of us patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Network Open. 2019 May 3;2(5):e192535.
  • Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–1158.
  • Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol. 2011;5(4):387–393.
  • Rosado MM, Bennici E, Novelli F, et al. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology. 2013;139(4):428–437.
  • Sisay M, Edessa D. PARP inhibitors as potential therapeutic agents for various cancers: focus on niraparib and its first global approval for maintenance therapy of gynecologic cancers. Gynecol Oncol Res Pract. 2017;4(1):18.
  • Wu Z, Cui P, Tao H, et al. The synergistic effect of PARP Inhibitors and immune checkpoint inhibitors. Clic Medc Insights: Onc. 2021 Feb 25;15:1179554921996288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.