244
Views
1
CrossRef citations to date
0
Altmetric
Review

Type 1 diabetes: key drug targets and how they could influence future therapeutics

, &
Pages 31-40 | Received 12 May 2022, Accepted 02 Feb 2023, Published online: 13 Feb 2023

References

  • Karalliedde J, Gnudi L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant. 2016 Feb;31(2):206–213.
  • Roder PV, Wu B, Liu Y, et al. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016 Mar;11(48):e219.
  • Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015 Oct;38(10):1964–1974.
  • Hirose M, Beverly EA, Weinger K. Quality of life and technology: impact on children and families with diabetes. Curr Diab Rep. 2012;Dec;12(6):711–720.
  • Benioudakis E, Karlafti E, Kalaitzaki A, et al. Technological developments and quality of life in type 1 diabetes mellitus patients: a review of the modern insulin analogues, continuous glucose monitoring and insulin pump therapy. Curr Diabetes Rev. 2021 Nov;318(7):40–48.
  • Ware J, Boughton CK, Allen JM, et al. Cambridge hybrid closed-loop algorithm in children and adolescents with type 1 diabetes: a multicentre 6-month randomised controlled trial. Lancet Digit Health. 2022 4;Apr(4):e245–e55.
  • Ryden A, Sorstadius E, Bergenheim K, et al. The humanistic burden of type 1 diabetes mellitus in europe: examining health outcomes and the role of complications. PLoS One. 2016;11(11):e0164977.
  • Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020 Sep 8;10(1):14790.
  • Rankin D, Cooke DD, Heller S, et al. Experiences of using blood glucose targets when following an intensive insulin regimen: a qualitative longitudinal investigation involving patients with Type 1 diabetes. Diabet Med. 2012 Aug;29(8):1079–1084.
  • Colom C, Rull A, Sanchez-Quesada JL, et al. Cardiovascular disease in type 1 diabetes mellitus: epidemiology and management of cardiovascular risk. J Clin Med. 2021;10(8):1798.
  • Munir KM, Davis SN. The treatment of type 1 diabetes mellitus with agents approved for type 2 diabetes mellitus. Expert Opin Pharmacother. 2015;16(15):2331–2341.
  • Roep BO, Tree TIM. Immune modulation in humans: implications for type 1 diabetes mellitus. Nat Rev Endocrinol. 2014 Apr;10(4):229–242.
  • Skyler JS, Ricordi C. Stopping type 1 diabetes: attempts to prevent or cure type 1 diabetes in man. Diabetes. 2011 Jan;60(1):1–8.
  • Pozzilli P, Guglielmi C, Maggi D, et al. Clinical update on the use of immuno modulators (antiCD3, GAD, Diapep277, anti-IL1) in type 1 diabetes. Curr Pharm Des. 2011;17(29):3224–3228.
  • Feldt-Rasmussen B, Jensen T, Dieperink H, et al. Nephrotoxicity of cyclosporin A in patients with newly diagnosed type 1 diabetes mellitus. Diabet Med. 1990 Jun;7(5):429–433.
  • Parving HH, Tarnow L, Nielsen FS, et al. Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care. 1999 Mar;22(3):478–483.
  • ClinicalTrials.gov. The Insulin Independence Trial (IIT) evaluating the safety and efficacy of oral cyclosporine and oral omeprazole for insulin independence among recent onset type 1 diabetes patients (IIT). ClinicalTrialsgov Identifier: NCT01762644 January 8, 2013 - April 18, 2016 [cited 2022]; Available from: https://clinicaltrials.gov/ct2/show/NCT01762644
  • Sobel DO, Henzke A, Abbassi V. Cyclosporin and methotrexate therapy induces remission in type 1 diabetes mellitus. Acta Diabetol. 2010 Sep;47(3):243–250.
  • Herold KC, Bundy BN, Long SA, et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med. 2019 Aug 15;381(7):603–613.
  • ClinicalTrials.gov. Teplizumab for prevention of type 1 diabetes in relatives “at-risk.” clinicaltrialsgov identifier: NCT01030861 December 14, 2009 - August 5. 2020 [cited 2022]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01030861
  • Teplizumab Improves AJ. Beta cell function, delays type 1 diabetes. JAMA. 2021 Apr 13;325(14):1385.
  • Rigby MR, Harris KM, Pinckney A, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015 Aug 3;125(8):3285–3296.
  • ClinicalTrials.gov. Inducing Remission in Type 1 Diabetes With Alefacept (T1DAL). ClinicalTrialsgov Identifier: NCT00965458 August 25, 2009 - July 6, 2017 [cited 2022]. Available from: https://clinicaltrials.gov/ct2/show/NCT00965458
  • Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015 Nov 25;7(315):315ra189.
  • Serr I, Drost F, Schubert B, et al. Antigen-specific treg therapy in type 1 diabetes - challenges and opportunities. Front Immunol. 2021;12:712870.
  • Serr I, Furst RW, Achenbach P, et al. Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice. Nat Commun. 2016 Mar 15;7:10991.
  • Biosciences C. Caladrius refuses to give up on Tregs for diabetes. In: Armstrong M, editor. Evaluate Vantage: evaluate. 2019 [cited 2022 Mar 15]. Available from: https://www.evaluate.com/vantage/articles/interviews/caladrius-refuses-give-tregs-diabetes
  • Tenspolde M, Zimmermann K, Weber LC, et al. Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun. 2019;103:102289.
  • Kobayashi S, Thelin MA, Parrish HL, et al. A biomimetic five-module chimeric antigen receptor ((5M)CAR) designed to target and eliminate antigen-specific T cells. Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28950–28959.
  • Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes. 2005 Feb;54(2):306–310.
  • Raz I, Ziegler AG, Linn T, et al. Treatment of recent-onset type 1 diabetic patients with DiaPep277: results of a double-blind, placebo-controlled, randomized phase 3 trial. Diabetes Care. 2014;37(5):1392–1400.
  • Zanin-Zhorov A, Nussbaum G, Franitza S, et al. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J. 2003 Aug;17(11):1567–1569.
  • Nussbaum G, Zanin-Zhorov A, Quintana F, et al. Peptide p277 of HSP60 signals T cells: inhibition of inflammatory chemotaxis. Int Immunol. 2006 Oct;18(10):1413–1419.
  • Haller MJ, Schatz DA, Skyler JS, et al. Low-dose Anti-Thymocyte Globulin (ATG) preserves beta-cell function and improves HbA1c in new-onset type 1 diabetes. Diabetes Care. 2018 Sep;41(9):1917–1925.
  • Haller MJ, Gitelman SE, Gottlieb PA, et al. Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes. J Clin Invest. 2015 Jan;125(1):448–455.
  • Gitelman SE, Gottlieb PA, Felner EI, et al. Antithymocyte globulin therapy for patients with recent-onset type 1 diabetes: 2 year results of a randomised trial. Diabetologia. 2016 Jun;59(6):1153–1161.
  • Ludvigsson J, Faresjo M, Hjorth M, et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med. 2008 Oct 30;359(18):1909–1920.
  • Tavira B, Barcenilla H, Wahlberg J, et al. Intralymphatic Glutamic Acid Decarboxylase-Alum Administration Induced Th2-Like-Specific Immunomodulation in Responder Patients: a Pilot Clinical Trial in Type 1 Diabetes. J Diabetes Res. 2018;2018:9391845.
  • Hjorth M, Axelsson S, Ryden A, et al. GAD-alum treatment induces GAD65-specific CD4+CD25highFOXP3+ cells in type 1 diabetic patients. Clin Immunol. 2011 Jan;138(1):117–126.
  • Wherrett DK, Bundy B, Becker DJ, et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet. 2011 Jul 23;378(9788):319–327.
  • Ludvigsson J, Krisky D, Casas R, et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med. 2012 Feb 2;366(5):433–442.
  • Mastrandrea L, Yu J, Behrens T, et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009 Jul;32(7):1244–1249.
  • Quattrin T, Haller MJ, Steck AK, et al. Golimumab and beta-cell function in youth with new-onset type 1 diabetes. N Engl J Med. 2020 Nov 19;383(21):2007–2017.
  • Simon C. A new therapy for treating Type 1 diabetes A stem-cell-derived replacement therapy shows unprecedented early results in treating Type 1 diabetes. 2021. [cited 2022]. Available from: https://hscrb.harvard.edu/news/a-new-therapy-for-treating-type-1-diabetes/
  • Wire B. Vertex announces positive day 90 data for the first patient in the phase 1/2 clinical trial dosed with VX-880, a novel investigational stem cell-derived therapy for the treatment of type 1 diabetes. 2021.
  • Vertex Pharmaceuticals I. A safety, tolerability, and efficacy study of VX-880 in participants with type 1 diabetes. 2024.
  • Collombat P, Mansouri A, Hecksher-Sorensen J, et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 2003 Oct 15;17(20):2591–2603.
  • Li J, Casteels T, Frogne T, et al. Artemisinins target GABAA receptor signaling and impair alpha cell identity. Cell. 2017 Jan 12;168(1–2):86–100 e15.
  • Zhong F, Jiang Y. Endogenous pancreatic beta cell regeneration: a potential strategy for the recovery of beta cell deficiency in diabetes. Front Endocrinol (Lausanne). 2019;10:101.
  • Djiotsa J, Verbruggen V, Giacomotto J, et al. Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. BMC Dev Biol. 2012 Dec 17;12:37.
  • Weir GC, Bonner-Weir S, Signaling GABA. Stimulates beta cell regeneration in diabetic mice. Cell. 2017 Jan 12;168(1–2):7–9.
  • Ben-Othman N, Vieira A, Courtney M, et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell. 2017 Jan 12;168(1–2):73–85 e11.
  • van der Meulen T, Lee S, Noordeloos E, et al. Artemether does not turn alpha cells into beta cells. Cell Metab. 2018 Jan 9;27(1):218–25 e4.
  • Ansarullah JC, Far FF, Homberg S, et al. Inceptor counteracts insulin signalling in beta-cells to control glycaemia. Nature. 2021 Feb;590(7845):326–331.
  • Unger RH, Eisentraut AM, Madison LL. The effects of total starvation upon the levels of circulating glucagon and insulin in man. J Clin Invest. 1963 Jul;42:1031–1039.
  • Unger RH, Eisentraut AM, Mc CM, et al. Glucagon antibodies and an immunoassay for glucagon. J Clin Invest. 1961 Jul;40:1280–1289.
  • Unger RH, Eisentraut AM, Mc CM, et al. Measurements of endogenous glucagon in plasma and the influence of blood glucose concentration upon its secretion. J Clin Invest. 1962 Apr;41:682–689.
  • Unger RH, Orci L. The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet. 1975 Jan 4;1(7897):14–16.
  • Baum J, Simons BE Jr., Unger RH, et al. Localization of glucagon in the alpha cells in the pancreatic islet by immunofluorescent technics. Diabetes. 1962 Sep-Oct;11:371–374.
  • Lee Y, Wang MY, Du XQ, et al. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 2011 Feb;60(2):391–397.
  • Dobbs R, Sakurai H, Sasaki H, et al. Glucagon: role in the hyperglycemia of diabetes mellitus. Science. 1975 Feb 14;187(4176):544–547.
  • Gerich JE, Lorenzi M, Bier DM, et al. Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N Engl J Med. 1975 May 8;292(19):985–989.
  • Lang S, Yang J, Yang K, et al. Glucagon receptor antagonist upregulates circulating GLP-1 level by promoting intestinal L-cell proliferation and GLP-1 production in type 2 diabetes. BMJ Open Diabetes Res Care. 2020 Mar;8(1):e001025.
  • Wang MY, Dean ED, Quittner-Strom E, et al. Glucagon blockade restores functional beta-cell mass in type 1 diabetic mice and enhances function of human islets. Proc Natl Acad Sci U S A. 2021;118(9):e2022142118.
  • Pettus J, Reeds D, Cavaiola TS, et al. Effect of a glucagon receptor antibody (REMD-477) in type 1 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2018 May;20(5):1302–1305.
  • Guzman CB, Zhang XM, Liu R, et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes Metab. 2017 Nov;19(11):1521–1528.
  • Toulis KA, Nirantharakumar K, Pourzitaki C, et al. Glucokinase Activators for Type 2 Diabetes: challenges and Future Developments. Drugs. 2020 Apr;80(5):467–475.
  • Iynedjian PB. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci. 2009 Jan;66(1):27–42.
  • Klein KR, Freeman JLR, Dunn I, et al. The SimpliciT1 study: a randomized, double-blind, placebo-controlled phase 1b/2 adaptive study of TTP399, a hepatoselective glucokinase activator, for adjunctive treatment of type 1 diabetes. Diabetes Care. 2021 Apr;44(4):960–968.
  • Zhu D, Gan S, Liu Y, et al. Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Diabetes Endocrinol. 2018 Aug;6(8):627–636.
  • Zhu XX, Zhu DL, Li XY, et al. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic beta-cell function in patients with type 2 diabetes: a 28-day treatment study using biomarker-guided patient selection. Diabetes Obes Metab. 2018 Sep;20(9):2113–2120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.