121
Views
0
CrossRef citations to date
0
Altmetric
Review

Seizure-suppressor genes: can they help spearhead the discovery of novel therapeutic targets for epilepsy?

& ORCID Icon
Pages 657-664 | Received 30 Apr 2023, Accepted 10 Aug 2023, Published online: 22 Aug 2023

References

  • Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020;54(2):185–191. doi: 10.1159/000503831
  • Devinsky O, Vezzani A, O’Brien TJ, et al. Epilepsy. Nat Rev Dis Primers. 2018;4(1):1–24. doi: 10.1038/nrdp.2018.24
  • Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58(4):512–521. doi: 10.1111/epi.13709
  • Löscher W, Potschka H, Sisodiya SM, et al. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72(3):606–638. doi: 10.1124/pr.120.019539
  • Fattorusso A, Matricardi S, Mencaroni E, et al. The pharmacoresistant epilepsy: an overview on existant and new emerging therapies. Front Neurol. 2021;12:674483. DOI:10.3389/fneur.2021.674483
  • Howard MA, Baraban SC. Catastrophic epilepsies of childhood. Annu Rev Neurosci. 2017;40(1):149–166. doi: 10.1146/annurev-neuro-072116-031250
  • Ottman R, Hirose S, Jain S, et al. Genetic testing in the epilepsies—report of the ILAE genetics Commission. Epilepsia. 2010;51(4):655–670. doi: 10.1111/j.1528-1167.2009.02429.x
  • Weber YG, Nies AT, Schwab M, et al. Genetic biomarkers in epilepsy. Neurotherapeutics. 2014;11(2):324–333. doi: 10.1007/s13311-014-0262-5
  • Ademuwagun IA, Rotimi SO, Syrbe S, et al. Voltage-gated sodium channel genes in epilepsy: mutations, functional studies, and treatment dimensions. Front Neurol. 2021;12. doi: 10.3389/fneur.2021.600050.
  • Catterall WA, Dib-Hajj S, Meisler MH, et al. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci. 2008;28(46):11768–11777. doi: 10.1523/JNEUROSCI.3901-08.2008
  • Menezes LFS, Sabiá Júnior EF, Tibery DV, et al. Epilepsy-related voltage-gated sodium channelopathies: a review. Front Pharmacol. 2020;11(11): doi: 10.3389/fphar.2020.01276
  • Miller IO, Sotero de Menezes MA. SCN1A seizure disorders. Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al, editors. Seattle (WA)Seattle: University of Washington; 1993. GeneReviews®.
  • Mullen SA, Scheffer IE. Translational research in epilepsy genetics: sodium channels in man to interneuronopathy in mouse. Arch Neurol. 2009;66(1):21–26. doi: 10.1001/archneurol.2008.559
  • Tan EH, Yusoff AAM, Abdullah JM, et al. Generalized epilepsy with febrile seizure plus (GEFS+) spectrum: novel de novo mutation of SCN1A detected in a Malaysian patient. J Pediatr Neurosci. 2012;7(2):123–125. doi: 10.4103/1817-1745.102575
  • Golden A. From phenologs to silent suppressors: identifying potential therapeutic targets for human disease. Mol Reprod Dev. 2017;84(11):1118–1132. doi: 10.1002/mrd.22880
  • Takai A, Yamaguchi M, Yoshida H, et al. Investigating developmental and epileptic encephalopathy using Drosophila melanogaster. Int J Mol Sci. 2020;21(17):6442. doi: 10.3390/ijms21176442
  • Fischer FP, Karge RA, Weber YG, et al. Drosophila melanogaster as a versatile model organism to study genetic epilepsies: an overview. Front Mol Neurosci. 2023;16. doi: 10.3389/fnmol.2023.1116000.
  • Cheng L, Baonza A, Grifoni D. Drosophila models of human disease. Biomed Res Int. 2018;2018:7214974. doi:10.1155/2018/7214974
  • McGurk L, Berson A, Bonini NM. Drosophila as an in vivo model for human neurodegenerative disease. Genetics. 2015;201(2):377–402. doi: 10.1534/genetics.115.179457
  • Adams MD, Sekelsky JJ. From sequence to phenotype: reverse genetics in drosophila melanogaster. Nat Rev Genet. 2002;3(3):189–198. doi: 10.1038/nrg752
  • Şentürk M, Bellen HJ. Genetic strategies to tackle neurological diseases in fruit flies. Curr Opin Neurobiol. 2018;50:24–32. doi:10.1016/j.conb.2017.10.017
  • Parker L, Howlett IC, Rusan ZM, et al. Seizure and epilepsy: studies of seizure disorders in Drosophila. Int Rev Neurobiol. 2011;99:1–21.
  • Sun L, Gilligan J, Staber C, et al. A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J Neurosci. 2012;32(41):14145–14155. doi: 10.1523/JNEUROSCI.2932-12.2012
  • Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2
  • Li H, Yang Y, Hong W, et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances, and prospects. Sig Transduct Target Ther. 2020;5(1):1–23. doi: 10.1038/s41392-019-0089-y
  • Kuebler D, Zhang H, Ren X, et al. Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol. 2001;86(3):1211–1225. doi: 10.1152/jn.2001.86.3.1211
  • Lo Piccolo L. Drosophila as a model to gain insight into the role of lncRNA in neurological disorders. In: Yamaguchi M, editor. Drosophila models for human diseases. Singapore: Springer; 2018. p. 119–146. doi: 10.1007/978-981-13-0529-0_8
  • Møller RS, Dahl HA, Helbig I. The contribution of next generation sequencing to epilepsy genetics. Expert Rev Mol Diag. 2015;15(12):1531–1538. doi: 10.1586/14737159.2015.1113132
  • Cunliffe VT, Baines RA, Giachello CNG, et al. Epilepsy research methods update: understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms. Seizure. 2015;24:44–51. DOI:10.1016/j.seizure.2014.09.018
  • Kuebler D, Tanouye MA. Modifications of seizure susceptibility in Drosophila. J Neurophysiol. 2000;83(2):998–1009. doi: 10.1152/jn.2000.83.2.998
  • Lee J, Iyengar A, Wu C-F. Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles. J Neurogenet. 2019;33(2):125–142. doi: 10.1080/01677063.2019.1581188
  • Oriel C, Lasko P. Recent developments in using Drosophila as a model for human genetic disease. Int J Mol Sci. 2018;19(7):2041. doi: 10.3390/ijms19072041
  • Mituzaite J, Petersen R, Claridge-Chang A, et al. Characterization of seizure induction methods in Drosophila. eNeuro. 2021;8(4):ENEURO.0079–21.2021. doi: 10.1523/ENEURO.0079-21.2021
  • Pavlidis P, Ramaswami M, Tanouye MA. The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell. 1994;79(1):23–33. doi: 10.1016/0092-8674(94)90397-2
  • Zhang H, Tan J, Reynolds E, et al. The Drosophila slamdance gene: a mutation in an aminopeptidase can cause seizure, paralysis and neuronal failure. Genetics. 2002;162(3):1283–1299. doi: 10.1093/genetics/162.3.1283
  • Pirrotta CS, Jan VL. The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell. 1987;51(2):165–173. doi: 10.1016/0092-8674(87)90144-9
  • Tao H, Manak JR, Sowers L, et al. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet. 2011;88(2):138–149. doi: 10.1016/j.ajhg.2010.12.012
  • Glasscock E, Tanouye MA. Drosophila couch potato mutants exhibit complex neurological abnormalities including epilepsy phenotypes. Genetics. 2005;169(4):2137–2149. doi: 10.1534/genetics.104.028357
  • Hekmat-Scafe DS, Dang KN, Tanouye MA. Seizure suppression by gain-of-function escargot mutations. Genetics. 2005;169(3):1477–1493. doi: 10.1534/genetics.104.036558
  • Papazian DM, Schwarz TL, Tempel BL, et al. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science. 1987;237(4816):749–753. doi: 10.1126/science.2441470
  • Schutte RJ, Schutte SS, Algara J, et al. Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current. J Neurophysiol. 2014;112(4):903–912. doi: 10.1152/jn.00135.2014
  • Kroll JR, Saras A, Tanouye MA. Drosophila sodium channel mutations: contributions to seizure-susceptibility. Exp Neurol. 2015;274:80–87. doi:10.1016/j.expneurol.2015.06.018
  • Marley R, Baines RA. Increased persistent Na+ current contributes to seizure in the slamdance bang-sensitive Drosophila mutant. J Neurophysiol. 2011;106(1):18–29. doi: 10.1152/jn.00808.2010
  • Song J, Parker L, Hormozi L, et al. DNA topoisomerase I inhibitors ameliorate seizure-like behaviors and paralysis in a Drosophila model of epilepsy. Neuroscience. 2008;156(3):722–728. doi: 10.1016/j.neuroscience.2008.07.024
  • Song J, Hu J, Tanouye M. Seizure suppression by top1 mutations in Drosophila. J Neurosci. 2007;27(11):2927–2937. doi: 10.1523/JNEUROSCI.3944-06.2007
  • Song J, Tanouye MA. Seizure suppression by shakB2, a gap junction mutation in Drosophila. J Neurophysiol. 2006;95(2):627–635. doi: 10.1152/jn.01059.2004
  • Yamagata T, Raveau M, Kobayashi K, et al. CRISPR/dcas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol Dis. 2020;141:104954. DOI:10.1016/j.nbd.2020.104954
  • Tanenhaus A, Stowe T, Young A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates. Hum Gene Ther. 2022;33(11–12):579–597. doi: 10.1089/hum.2022.037
  • Colasante G, Lignani G, Brusco S, et al. dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol Ther. 2020;28(1):235–253. doi: 10.1016/j.ymthe.2019.08.018
  • Han Z, Chen C, Christiansen A, et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci Transl Med. 2020;12(558):eaaz6100. doi: 10.1126/scitranslmed.aaz6100
  • Hsiao J, Yuan TY, Tsai MS, et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. EBioMedicine. 2016;9:57–277. DOI:10.1016/j.ebiom.2016.05.011
  • Wykes R, Heeroma J, Mantoan Ritter L, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012;4(161): doi: 10.1126/scitranslmed.3004190
  • Snowball A, Chabrol E, Wykes RC, et al. Epilepsy gene therapy using an engineered potassium channel. J Neurosci. 2019;39(16):3159–3169. doi: 10.1523/JNEUROSCI.1143-18.2019
  • Saras A, Tanouye MA, Petrou S. Mutations of the calcium channel gene cacophony suppress seizures in Drosophila. PLoS Genet. 2016;12(1):e1005784. doi: 10.1371/journal.pgen.1005784
  • Lin W-H, Giachello CNG, Baines RA. Seizure control through genetic and pharmacological manipulation of Pumilio in Drosophila: a key component of neuronal homeostasis. Dis Mod Mech. 2017;10:141–150. doi:10.1242/dmm.027045
  • Howlett IC, Rusan ZM, Parker L, et al. Drosophila as a model for intractable epilepsy: gilgamesh suppresses seizures in parabss1 heterozygote flies. G3: Genes | Genomes | Genetics. 2013;3(8):1399–1407. doi: 10.1534/g3.113.006130
  • Lones L, DiAntonio A, Perrimon N. SIK3 and wnk converge on fray to regulate glial K+ buffering and seizure susceptibility. PLoS Genet. 2023;19(1):e1010581. doi: 10.1371/journal.pgen.1010581
  • Chen Y, Liu T-T, Niu M, et al. Epilepsy gene prickle ensures neuropil glial ensheathment through regulating cell adhesion molecules. IScience. 2023;26(1):105731. doi: 10.1016/j.isci.2022.105731
  • Loughney K, Kreber R, Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 1989;58(6):1143–1154. doi: 10.1016/0092-8674(89)90512-6
  • Ramaswami M, Tanouye MA. Two sodium-channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci U S A. 1989;86(6):2079–2082. doi: 10.1073/pnas.86.6.2079
  • Reenan RA, Hanrahan CJ, Ganetzky B. The mle(napts) RNA helicase mutation in drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron. 2000;25(1):139–149. doi: 10.1016/S0896-6273(00)80878-8
  • Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70(1):369–413. doi: 10.1146/annurev.biochem.70.1.369
  • Driscoll HE, Muraro NI, He M, et al. Pumilio-2 regulates translation of NaV.6 to mediate homeostasis of membrane excitability. J Neurosci. 2013;33(23):9644–9654. doi: 10.1523/JNEUROSCI.0921-13.2013
  • Mee CJ, Pym ECG, Moffat KG, et al. Regulation of neuronal excitability through Pumilio-dependent control of a sodium channel gene. J Neurosci. 2004;24(40):8695–8703. doi: 10.1523/JNEUROSCI.2282-04.2004
  • Gennarino VA, Palmer EE, McDonell LM, et al. A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell. 2018;172(5):924–936.e11. doi: 10.1016/j.cell.2018.02.006
  • Phelan P, Nakagawa M, Wilkin M, et al. Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. J Neurosci. 1996;16(3):1101–1113. doi: 10.1523/JNEUROSCI.16-03-01101.1996
  • Li H, Lones L, DiAntonio A. Bidirectional regulation of glial potassium buffering - glioprotection versus neuroprotection. Elife. 2021;10:e62606. doi:10.7554/eLife.62606
  • Kawasaki F, Collins SC, Ordway RW. Synaptic calcium-channel function in Drosophila: analysis and transformation rescue of temperature-sensitive paralytic and lethal mutations of cacophony. J Neurosci. 2002;22(14):5856–5864. doi: 10.1523/JNEUROSCI.22-14-05856.2002
  • Kawasaki F, Felling R, Ordway RW. A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. J Neurosci. 2000;20(13):4885–4889. doi: 10.1523/JNEUROSCI.20-13-04885.2000
  • Gu H, Jiang SA, Campusano JM, et al. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain. J Neurophysiol. 2009;101(1):42–53. doi: 10.1152/jn.91103.2008
  • Ganetzky B, Wu CF. Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics. 1982;100(4):597–614. doi: 10.1093/genetics/100.4.597
  • Lin Y-Y, Gubb D. Molecular dissection of Drosophila prickle isoforms distinguishes their essential and overlapping roles in planar cell polarity. Dev Biol. 2009;325(2):386–399. doi: 10.1016/j.ydbio.2008.10.042
  • Ban Y, Yu T, Feng B, et al. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. Sci Adv. 2021;7(41):eabh2974. doi: 10.1126/sciadv.abh2974
  • Mulroe F, Lin W-H, Mackenzie-Gray Scott C, et al. Targeting firing rate neuronal homeostasis can prevent seizures. Dis Mod Mech. 2022;15(10):dmm049703. doi: 10.1242/dmm.049703
  • Ehaideb SN, Wignall EA, Kasuya J, et al. Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans. Ann Clin Transl Neurol. 2016;3(9):695–707. doi: 10.1002/acn3.334
  • Page SL, McKim KS, Deneen B, et al. Genetic studies of mei-P26 reveal a link between the processes that control germ cell proliferation in both sexes and those that control meiotic exchange in Drosophila. Genetics. 2000;155(4):1757–1772. doi: 10.1093/genetics/155.4.1757
  • Wang Y, Li Y, Qi X, et al. TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1. Biochem Biophys Res Commun. 2004;323(1):9–16. doi: 10.1016/j.bbrc.2004.08.048
  • Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments. EMBO J. 2001;20(9):2140–2151. doi: 10.1093/emboj/20.9.2140
  • Manzanares M, Locascio A, Nieto MA. The increasing complexity of the snail gene superfamily in metazoan evolution. Trends Genet. 2001;17(4):178–181. doi: 10.1016/S0168-9525(01)02232-6
  • Ashraf SI, Hu X, Roote J, et al. The mesoderm determinant snail collaborates with related zinc-finger proteins to control Drosophila neurogenesis. EMBO J. 1999;18(22):6426–6438. doi: 10.1093/emboj/18.22.6426
  • Zhai L, Graves PR, Robinson LC, et al. Casein kinase iγ subfamily.: molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces Cerevisiae Yck genes *. J Biol Chem. 1995;270(21):12717–12724. doi: 10.1074/jbc.270.21.12717
  • Roemmich AJ, Vu T, Lukacsovich T, et al. Seizure phenotype and underlying cellular defects in Drosophila knock-in models of DS (R1648C) and GEFS+(R1648H) SCN1A epilepsy. eNeuro. 2021;8(5):ENEURO.0002–21.2021. doi: 10.1523/ENEURO.0002-21.2021
  • Yap ZY, Efthymiou S, Seiffert S, et al. Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia. Am J Hum Genet. 2021;108(12):2368–2384. doi: 10.1016/j.ajhg.2021.11.003
  • Benzer S. Behavioral mutants of drosophila isolated by countercurrent distribution. Proc Natl Acad Sci U S A. 1967;58(3):1112–1119. doi: 10.1073/pnas.58.3.1112
  • Glasscock E, Qian J, Yoo JW, et al. Masking epilepsy by combining two epilepsy genes. Nat Neurosci. 2007;10(12):1554–1558. doi: 10.1038/nn1999
  • Imbrici P, Jaffe SL, Eunson LH, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain. 2004;127(12):2682–2692. doi: 10.1093/brain/awh301
  • Rajakulendran S, Hanna MG. The role of calcium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6(1):a022723. doi: 10.1101/cshperspect.a022723

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.