127
Views
0
CrossRef citations to date
0
Altmetric
Review

Shedding light on emerging therapeutic targets for chordoma

ORCID Icon, , , ORCID Icon &
Pages 705-713 | Received 13 Mar 2023, Accepted 10 Aug 2023, Published online: 30 Aug 2023

References

  • Kasperts N, Slotman B, Leemans CR, et al. A review on re-irradiation for recurrent and second primary head and neck cancer. Oral Oncol. 2005;41(3):225–243. doi: 10.1016/j.oraloncology.2004.07.006
  • Jensen AD, Nikoghosyan A, Ellerbrock M, et al. Re-irradiation with scanned charged particle beams in recurrent tumours of the head and neck: acute toxicity and feasibility. Radiother Oncol. 2011;101(3):383–387. doi: 10.1016/j.radonc.2011.05.017
  • Xu AJ, Luo L, Leeman JE, et al. Beyond reirradiation: Efficacy and safety of three or more courses of radiation for head and neck malignancies. Clin Transl Radiat Oncol. 2020;23:30–34. doi: 10.1016/j.ctro.2020.04.009
  • Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol. 2022;12:1009193. doi: 10.3389/fonc.2022.1009193
  • de Castro MSc CV, Guimaraes G, Aguiar Jr JS, et al. Tyrosine kinase receptor expression in chordomas: phosphorylated AKT correlates inversely with outcome. Hum Pathol. 2013;44(9):1747–1755. doi: 10.1016/j.humpath.2012.11.024
  • Zenonos GA, Fernandez-Miranda JC, Mukherjee D, et al. Prospective validation of a molecular prognostication panel for clival chordoma. J Neurosurg. 2018;1–10.
  • Barry JJ, Jian BJ, Sughrue ME, et al. The next step: innovative molecular targeted therapies for treatment of intracranial chordoma patients. Neurosurgery. 2011;68(1):231–241. discussion 240-241. doi: 10.1227/NEU.0b013e3181fd2ac5
  • Negri T, Casieri P, Miselli F, et al. Evidence for PDGFRA, PDGFRB and KIT deregulation in an NSCLC patient. Br J Cancer. 2007;96(1):180–181. doi: 10.1038/sj.bjc.6603542
  • Stacchiotti S, Marrari A, Tamborini E, et al. Response to imatinib plus sirolimus in advanced chordoma. Ann Oncol. 2009;20(11):1886–1894. doi: 10.1093/annonc/mdp210
  • Stacchiotti S, Longhi A, Ferraresi V, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol. 2012;30(9):914–920. doi: 10.1200/JCO.2011.35.3656
  • Tamborini E, Virdis E, Negri T, et al. Analysis of receptor tyrosine kinases (RTKs) and downstream pathways in chordomas. Neuro Oncol. 2010;12(8):776–789. doi: 10.1093/neuonc/noq003
  • Mir O, Briand S, Lazure T, et al. Activity of erlotinib in patients (pts) with advanced chordoma: a retrospective study. JCO. 2021;39(15_suppl):11528–11528. doi: 10.1200/JCO.2021.39.15_suppl.11528
  • Lipplaa A, Dijkstra S, Gelderblom H. Efficacy of pazopanib and sunitinib in advanced axial chordoma: a single reference centre case series. Clin Sarcoma Res. 2016;6(1):19. doi: 10.1186/s13569-016-0059-x
  • Scheil-Bertram S, Kappler R, von Baer A, et al. Molecular profiling of chordoma. Int J Oncol. 2014;44(4):1041–1055. doi: 10.3892/ijo.2014.2268
  • Scheipl S, Barnard M, Cottone L, et al. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol. 2016;239(3):320–334. doi: 10.1002/path.4729
  • Barber SM, Sadrameli SS, Lee JJ, et al. Chordoma—current understanding and modern treatment paradigms. J Clin Med. 2021;10(5):10. doi: 10.3390/jcm10051054
  • Zhai Y, Bai J, Wang S, et al. Analysis of clinical factors and PDGFR-β in predicting prognosis of patients with clival chordoma. J Neurosurg. 2018;129(6):1429–1437. doi: 10.3171/2017.6.JNS17562
  • Lee D-H, Zhang Y, Kassam AB, et al. Combined PDGFR and HDAC inhibition overcomes PTEN disruption in chordoma. PLoS One. 2015;10(8):e0134426. doi: 10.1371/journal.pone.0134426
  • Yang C, Hornicek FJ, Wood KB, et al. Blockage of Stat3 with CDDO-Me inhibits tumor cell growth in chordoma. Spine (Phila Pa 1976). Spine. 2010;35(18):1668–1675. doi: 10.1097/BRS.0b013e3181c2d2b4
  • Wang AC, Owen JH, Abuzeid WM, et al. STAT3 inhibition as a therapeutic strategy for chordoma. J Neurol Surg B Skull Base. 2016;77(6):510–520. doi: 10.1055/s-0036-1584198
  • Jahanafrooz Z, Stallinger A, Anders I, et al. Influence of silibinin and β-β-dimethylacrylshikonin on chordoma cells. Phytomedicine. 2018;49:32–40. doi: 10.1016/j.phymed.2018.06.005
  • Walcott BP, Nahed BV, Mohyeldin A, et al. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012;13(2):e69–76. doi: 10.1016/S1470-2045(11)70337-0
  • Singhal N, Kotasek D, Parnis FX. Response to erlotinib in a patient with treatment refractory chordoma. Anticancer Drugs. 2009;20(10):953–955. doi: 10.1097/CAD.0b013e328330c7f0
  • Akinduro OO, Suarez-Meade P, Garcia D, et al. Targeted therapy for chordoma: Key molecular signaling pathways and the role of multimodal therapy. Target Oncol. 2021;16(3):325–337. doi: 10.1007/s11523-021-00814-5
  • Meng T, Jin J, Jiang C, et al. Molecular targeted therapy in the treatment of chordoma: A Systematic review. Front Oncol. 2019;9:30. doi: 10.3389/fonc.2019.00030
  • Magnaghi P, Salom B, Cozzi L, et al. Afatinib is a new therapeutic approach in chordoma with a Unique Ability to target EGFR and brachyury. Mol Cancer Ther. 2018;17(3):603–613. doi: 10.1158/1535-7163.MCT-17-0324
  • Hindi N, Casali PG, Morosi C, et al. Imatinib in advanced chordoma: a retrospective case series analysis. Eur J Cancer. 2015;51(17):2609–2614. doi: 10.1016/j.ejca.2015.07.038
  • Stacchiotti S, Tamborini E, Lo Vullo S, et al. Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol. 2013;24(7):1931–1936. doi: 10.1093/annonc/mdt117
  • von Witzleben A, Goerttler LT, Marienfeld R, et al. Preclinical characterization of novel chordoma cell systems and their targeting by pharmocological inhibitors of the CDK4/6 cell-cycle pathway. Cancer Res. 2015;75(18):3823–3831. doi: 10.1158/0008-5472.CAN-14-3270
  • Liu T, Shen JK, Choy E, et al. CDK4 expression in chordoma: a potential therapeutic target. J Orthop Res. 2018;36(6):1581–1589. doi: 10.1002/jor.23819
  • Passeri T, Dahmani A, Masliah-Planchon J, et al. In vivo efficacy assessment of the CDK4/6 inhibitor palbociclib and the PLK1 inhibitor volasertib in human chordoma xenografts. Front Oncol. 2022;12:960720. doi: 10.3389/fonc.2022.960720
  • Sharifnia T, Wawer MJ, Chen T, et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med. 2019;25(2):292–300. doi: 10.1038/s41591-018-0312-3
  • Gjertsen BT, Schöffski P. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia. 2015;29(1):11–19. doi: 10.1038/leu.2014.222
  • Montaudon E, Nikitorowicz-Buniak J, Sourd L, et al. PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance. Nat Commun. 2020;11(1):4053. doi: 10.1038/s41467-020-17697-1
  • Zou M-X, Lv G-H, Wang X-B, et al. Clinical Impact of the immune microenvironment in spinal chordoma: Immunoscore as an Independent favorable prognostic factor. Neurosurg. 2019;84(6):E318–E333. doi: 10.1093/neuros/nyy274
  • Feng Y, Shen J, Gao Y, et al. Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget. 2015;6(13):11139–11149. doi: 10.18632/oncotarget.3576
  • Zou M-X, Peng A-B, Lv G-H, et al. Expression of programmed death-1 ligand (PD-L1) in tumor-infiltrating lymphocytes is associated with favorable spinal chordoma prognosis. Am J Transl Res. 2016;8(7):3274–3287.
  • Dridi M, Krebs-Drouot L, Meyronet D, et al. The immune microenvironment of chordomas: an immunohistochemical analysis. Cancers (Basel). 2021;13(13):3335. doi: 10.3390/cancers13133335
  • Blay J-Y, Penel N, Ray-Coquard IL, et al. High clinical activity of pembrolizumab in chordoma, alveolar soft part sarcoma (ASPS) and other rare sarcoma histotypes: The French AcSé pembrolizumab study from Unicancer. JCO. 2021;39(15_suppl):11520–11520. doi: 10.1200/JCO.2021.39.15_suppl.11520
  • Williamson LM, Rive CM, Di Francesco D, et al. Clinical response to nivolumab in an INI1-deficient pediatric chordoma correlates with immunogenic recognition of brachyury. NPJ Precision Oncology. 2021;5(1):1–12. doi: 10.1038/s41698-021-00238-4
  • Wang X, Chen Z, Li B, et al. Immunotherapy as a promising option for the treatment of advanced chordoma: a systemic review. Cancers (Basel). 2022;15(1):264. doi: 10.3390/cancers15010264
  • He G, Liu X, Pan X, et al. Cytotoxic T lymphocyte antigen-4 (CTLA-4) expression in chordoma and tumor-infiltrating lymphocytes (TILs) predicts prognosis of spinal chordoma. Clin Transl Oncol. 2020;22(12):2324–2332. doi: 10.1007/s12094-020-02387-7
  • Traylor JI, Pernik MN, Plitt AR, et al. Immunotherapy for chordoma and chondrosarcoma: current evidence. Cancers. 2021;13(10):2408. doi: 10.3390/cancers13102408
  • Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94. doi: 10.1038/nrclinonc.2017.166
  • Duan W, Zhang B, Li X, et al. Single-cell transcriptome profiling reveals intra-tumoral heterogeneity in human chordomas. Cancer Immunol Immunother. 2022;71(9):2185–2195. doi: 10.1007/s00262-022-03152-1
  • Vujovic S, Henderson S, Presneau N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209(2):157–165. doi: 10.1002/path.1969
  • Tarpey PS, Behjati S, Young MD, et al. The driver landscape of sporadic chordoma. Nat Commun. 2017;8(1):890. doi: 10.1038/s41467-017-01026-0
  • Yang XR, Ng D, Alcorta DA, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009;41(11):1176–1178. doi: 10.1038/ng.454
  • DeMaria PJ, Bilusic M, Park DM, et al. Randomized, Double-blind, placebo-controlled Phase II study of Yeast-brachyury vaccine (GI-6301) in combination with standard-of-care radiotherapy in locally advanced, unresectable chordoma. Oncology. 2021;26(5):e847–e858. doi: 10.1002/onco.13720
  • Heery CR, Palena C, McMahon S, et al. Phase I study of a poxviral TRICOM-Based vaccine directed against the transcription factor brachyury. Clin Cancer Res. 2017;23(22):6833–6845. doi: 10.1158/1078-0432.CCR-17-1087
  • Dotti G, Gottschalk S, Savoldo B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–126. doi: 10.1111/imr.12131
  • Long C, Li G, Zhang C, et al. B7-H3 as a target for CAR-T cell therapy in skull base chordoma. Front Oncol. 2021;11:659662. doi: 10.3389/fonc.2021.659662
  • Thanindratarn P, Dean DC, Nelson SD, et al. Advances in immune checkpoint inhibitors for bone sarcoma therapy. J Bone Oncol. 2019;15:100221. doi: 10.1016/j.jbo.2019.100221
  • Bilusic M, Heery CR, Collins JM, et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immunother Cancer. 2019;7(1):240. doi: 10.1186/s40425-019-0706-x
  • Davar D, Simonelli M, Gutierrez M, et al. 394 Interleukin-8–neutralizing monoclonal antibody BMS-986253 plus nivolumab (NIVO) in biomarker-enriched, primarily anti–PD-(L)1–experienced patients with advanced cancer: initial phase 1 results. J Immunother Cancer. 2020 [[cited 2023 Jan 17]];8. InternetAvailable from: https://jitc.bmj.com/content/8/Suppl_3/A239.2
  • Fujii R, Schlom J, Hodge JW. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity (ADCC) employing NK or high affinity NK (haNK) cells in combination with cetuximab. J Neurosurg. 2018;128(5):1419–1427. doi: 10.3171/2017.1.JNS162610
  • Zhao C, Tan T, Zhang E, et al. A chronicle review of new techniques that facilitate the understanding and development of optimal individualized therapeutic strategies for chordoma. Front Oncol. 2022;12:1029670. doi: 10.3389/fonc.2022.1029670
  • Passeri T, Dahmani A, Masliah-Planchon J, et al. Dramatic in vivo efficacy of the EZH2-inhibitor tazemetostat in PBRM1-mutated human chordoma Xenograft. Cancers. 2022;14(6):1486. doi: 10.3390/cancers14061486
  • Meng T, Huang R, Jin J, et al. A comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma. Neuro Oncol. 2021;23(10):1709–1722. doi: 10.1093/neuonc/noab156
  • Rinner B, Weinhaeusel A, Lohberger B, et al. Chordoma characterization of significant changes of the DNA methylation pattern. PLoS One. 2013;8(3):e56609. doi: 10.1371/journal.pone.0056609
  • Alholle A, Brini AT, Bauer J, et al. Genome-wide DNA methylation profiling of recurrent and non-recurrent chordomas. Epigenetics. 2015;10(3):213–220. doi: 10.1080/15592294.2015.1006497
  • Marucci G, Morandi L, Mazzatenta D, et al. MGMT promoter methylation status in clival chordoma. J Neurooncol. 2014;118(2):271–276. doi: 10.1007/s11060-014-1445-y
  • Zuccato JA, Patil V, Mansouri S, et al. DNA methylation-based prognostic subtypes of chordoma tumors in tissue and plasma. Neuro Oncol. 2022;24(3):442–454. doi: 10.1093/neuonc/noab235
  • Yu X, Li Z. Epigenetic deregulations in chordoma. Cell Prolif. 2015;48(5):497–502. doi: 10.1111/cpr.12204
  • Scheipl S, Lohberger B, Rinner B, et al. Histone deacetylase inhibitors as potential therapeutic approaches for chordoma: an immunohistochemical and functional analysis. J Orthop Res. 2013;31(12):1999–2005. doi: 10.1002/jor.22447
  • Wei J, Wu J, Yin Z, et al. Low expression of H3K27me3 is associated with poor prognosis in conventional chordoma. Front Oncol. 2022;12:1048482. doi: 10.3389/fonc.2022.1048482
  • Zheng J, Xiao X, Wu C, et al. The role of long non-coding RNA HOTAIR in the progression and development of laryngeal squamous cell carcinoma interacting with EZH2. Acta Otolaryngol. 2017;137(1):90–98. doi: 10.1080/00016489.2016.1214982
  • Hoffman SE, Al Abdulmohsen SA, Gupta S, et al. Translational windows in chordoma: a target appraisal. Front Neurol. 2020[cited 2023 Feb 12]; 11. InternetAvailable from: doi: 10.3389/fneur.2020.00657
  • Italiano A. Targeting epigenetics in sarcomas through EZH2 inhibition. J Hematol Oncol. 2020;13(1):33. doi: 10.1186/s13045-020-00868-4
  • Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13(1):104. doi: 10.1186/s13045-020-00937-8
  • Gan L, Yang Y, Li Q, et al. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark Res. 2018;6(1):10. doi: 10.1186/s40364-018-0122-2
  • Chi SN, Bourdeaut F, Laetsch TW, et al. Phase I study of tazemetostat, an enhancer of zeste homolog-2 inhibitor, in pediatric pts with relapsed/refractory integrase interactor 1-negative tumors. JCO. 2020;38(15_suppl):10525–10525. doi: 10.1200/JCO.2020.38.15_suppl.10525
  • Antonelli M, Raso A, Mascelli S, et al. SMARCB1/INI1 Involvement in pediatric chordoma: a mutational and immunohistochemical analysis. Am J Surg Pathol. 2017;41(1):56–61. doi: 10.1097/PAS.0000000000000741
  • Kim E, Kim M, Woo D-H, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 2013;23(6):839–852. doi: 10.1016/j.ccr.2013.04.008
  • Christofides A, Karantanos T, Bardhan K, et al. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2. Oncotarget. 2016;7(51):85624–85640. doi: 10.18632/oncotarget.12928
  • Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med. 2016;22(2):128–134. doi: 10.1038/nm.4036
  • Shimada A, Kurozumi K, Kanamitsu K, et al. RARE-32. PEDIATRIC METASTATIC SKULL BASE CHORDOMA with TP53 MUTATION – a CASE REPORT and REVIEW of the LITERATURE. Neuro Oncol. 2020;22(Supplement_3):iii449. doi: 10.1093/neuonc/noaa222.742
  • Murzabdillaeva A, Elzamly S, Brown R, et al. Prometastatic CXCR4 and histone methyltransferase EZH2 are upregulated in SMARCB1/INI1-deficient and TP53-mutated metastatic poorly differentiated chordoma to the liver. Am J Clin Pathol. 2020;154(Supplement_1):S151. doi: 10.1093/ajcp/aqaa161.330
  • Ma X, Qi S, Duan Z, et al. Long non-coding RNA LOC554202 modulates chordoma cell proliferation and invasion by recruiting EZH2 and regulating miR-31 expression. Cell Prolif. 2017;50(6):e12388. doi: 10.1111/cpr.12388
  • Jäger D, Barth TFE, Brüderlein S, et al. HOXA7, HOXA9, and HOXA10 are differentially expressed in clival and sacral chordomas. Sci Rep. 2017;7(1):2032. doi: 10.1038/s41598-017-02174-5
  • Seeling C, Lechel A, Svinarenko M, et al. Molecular features and vulnerabilities of recurrent chordomas. J Exp Clin Cancer Res. 2021;40(1):244. doi: 10.1186/s13046-021-02037-y
  • Grillone K, Riillo C, Scionti F, et al. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res. 2020;39(1):117. doi: 10.1186/s13046-020-01622-x
  • Chen H, Zhang K, Lu J, et al. Comprehensive analysis of mRNA-lncRNA co-expression profile revealing crucial role of imprinted gene cluster DLK1-MEG3 in chordoma. Oncotarget. 2017;8(68):112623–112635. doi: 10.18632/oncotarget.22616
  • Zhang Y, Schiff D, Park D, et al. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One. 2014;9(3):e91546. doi: 10.1371/journal.pone.0091546
  • Sun X, Hornicek F, Schwab JH. Chordoma: an update on the pathophysiology and molecular mechanisms. Curr Rev Musculoskelet Med. 2015;8(4):344–352. doi: 10.1007/s12178-015-9311-x
  • Xu G, Liu J, He J, et al. LOC554202 contributes to chordoma progression by sponging miR-377-3p and up-regulating SMAD3. Anti-Cancer Drugs. 2022;34(1):15–28. doi: 10.1097/CAD.0000000000001327
  • Tang P-K, Zhou S, Meng X-M, et al. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat Commun. 2017;8(1):14677. doi: 10.1038/ncomms14677
  • Yao J, Wu X. Upregulation of miR-149-3p suppresses spinal chordoma malignancy by targeting Smad3. Onco Targets Ther. 2019;12: 9987–9997. doi: 10.2147/OTT.S222380.
  • Zhang H, Yang K, Ren T, et al. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis. 2018;9(6):680. doi: 10.1038/s41419-018-0738-z
  • Zou M-X, Guo K-M, Lv G-H, et al. Clinicopathologic implications of CD8+/Foxp3+ ratio and miR-574-3p/PD-L1 axis in spinal chordoma patients. Cancer Immunol Immunother. 2018;67(2):209–224. doi: 10.1007/s00262-017-2080-1
  • Osaka E, Kelly AD, Spentzos D, et al. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget. 2015;6(11):9125–9139. doi: 10.18632/oncotarget.3273
  • Martinez-Moreno M, O’Shea TM, Zepecki JP, et al. Regulation of Peripheral myelination through transcriptional buffering of Egr2 by an antisense Long non-coding RNA. Cell Rep. 2017;20(8):1950–1963. doi: 10.1016/j.celrep.2017.07.068

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.