136
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic determinants in soft tissue sarcomas: molecular mechanisms and therapeutic targets

, , , , , , , , & show all
Pages 17-28 | Received 24 Jul 2023, Accepted 12 Jan 2024, Published online: 26 Jan 2024

References

  • Trama A, Badalamenti G, Baldi GG, et al. Soft tissue sarcoma in Italy: from epidemiological data to clinical networking to improve patient care and outcomes. Cancer Epidemiol. 2019 04;59:258–264. doi: 10.1016/j.canep.2019.02.012
  • Gronchi A, Miah AB, Dei Tos AP, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021 11;32(11):1348–1365. doi: 10.1016/j.annonc.2021.07.006
  • Gatta G, Capocaccia R, Botta L, et al. Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study. Lancet Oncol. 2017 Aug;18(8):1022–1039. doi: 10.1016/S1470-2045(17)30445-X
  • Judson I, Verweij J, Gelderblom H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014 Apr;15(4):415–23. doi: 10.1016/S1470-2045(14)70063-4
  • D’Ambrosio L, Touati N, Blay JY, et al. Doxorubicin plus dacarbazine, doxorubicin plus ifosfamide, or doxorubicin alone as a first-line treatment for advanced leiomyosarcoma: a propensity score matching analysis from the EurOpean organization for research and treatment of cancer soft tissue and bone sarcoma group. Cancer. 2020 06;126(11):2637–2647. doi: 10.1002/cncr.32795
  • Demetri GD, Chawla SP, von Mehren M, et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol. 2009 Sep 1;27(25):4188–96. doi: 10.1200/JCO.2008.21.0088
  • Demetri GD, von Mehren M, Jones RL, et al. Efficacy and safety of Trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J Clin Oncol. 2016 Mar 10;34(8):786–93. doi: 10.1200/JCO.2015.62.4734
  • van der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012 May;379(9829):1879–1886. doi: 10.1016/S0140-6736(12)60651-5
  • Schöffski P, Chawla S, Maki RG, et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet. 2016 Apr 16;387(10028):1629–37. doi: 10.1016/S0140-6736(15)01283-0
  • García-Del-Muro X, López-Pousa A, Maurel J, et al. Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma: a Spanish group for research on sarcomas study. J Clin Oncol. 2011 Jun 20;29(18):2528–33. doi: 10.1200/JCO.2010.33.6107
  • Hensley ML, Maki R, Venkatraman E, et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol. 2002 Jun 15;20(12):2824–31. doi: 10.1200/JCO.2002.11.050
  • Maki RG, Wathen JK, Patel SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J Clin Oncol. 2007 Jul 1;25(19):2755–63. doi: 10.1200/JCO.2006.10.4117
  • Seddon B, Strauss SJ, Whelan J, et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDdiS): a randomised controlled phase 3 trial. Lancet Oncol. 2017 10;18(10):1397–1410. doi: 10.1016/S1470-2045(17)30622-8
  • Penel N, Bui BN, Bay JO, et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: the ANGIOTAX Study. J Clin Oncol. 2008 Nov 10;26(32):5269–74. doi: 10.1200/JCO.2008.17.3146
  • Italiano A, Cioffi A, Penel N, et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. Cancer. 2012 Jul 1;118(13):3330–6. doi: 10.1002/cncr.26599
  • Ray-Coquard I, Thomas D. Targeted therapies: pazopanib for soft-tissue sarcoma: a PALETTE of data emerges. Nat Rev Clin Oncol. 2012 Jul 3;9(8):431–2. doi: 10.1038/nrclinonc.2012.113
  • Schöffski P. Pazopanib in the treatment of soft tissue sarcoma. Expert Rev Anticancer Ther. 2012 Jun;12(6):711–23. doi: 10.1586/era.12.41
  • Thein KZ, Lemery SJ, Kummar S. TissuE-agnostic drug development: a new path to drug approval. Cancer Discov. 2021 09;11(9):2139–2144. doi: 10.1158/2159-8290.CD-21-0554
  • Dieckmann N, Schildhaus HU, Bauer S. Tropomyosin receptor kinases in sarcomas - of joy and despair. Curr Opin Oncol. 2021 Jul 01;33(4):336–344 doi:10.1097/CCO.0000000000000752.
  • Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001 Apr 5;344(14):1052–6. doi: 10.1056/NEJM200104053441404
  • Nacev BA, Feng L, Bagert JD, et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature. 2019 03;567(7749):473–478. doi: 10.1038/s41586-019-1038-1
  • Nacev BA, Jones KB, Intlekofer AM, et al. The epigenomics of sarcoma. Nat Rev Cancer. 2020 10;20(10):608–623. doi: 10.1038/s41568-020-0288-4
  • Wang J, Elkrief A, Guo W, et al. Prospects for epigenetic targeted therapies of bone and soft-tissue sarcomas. Sarcoma. 2021;2021:5575444. doi: 10.1155/2021/5575444
  • Waddington, Conrad, Hal. The evolution of an evolutionist. Ithaca, New York: Cornell University Press; 1975.
  • Worcel A, Benyajati C. Higher order coiling of DNA in chromatin. Cell. 1977 Sep;12(1):83–100. doi: 10.1016/0092-8674(77)90187-8
  • Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444
  • Vardabasso C, Hasson D, Ratnakumar K, et al. Histone variants: emerging players in cancer biology. Cell Mol Life Sci. 2014 Feb;71(3):379–404 doi: 10.1007/s00018-013-1343-z
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb 23;128(4):693–705. doi: 10.1016/j.cell.2007.02.005
  • Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011 May 5;473(7345):43–9. doi: 10.1038/nature09906
  • Cui K, Zang C, Roh TY, et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell. 2009 Jan 9;4(1):80–93. doi: 10.1016/j.stem.2008.11.011
  • Lewis P, Mislove R. New mutants report. Drosoph Inf Serv. 1947;21:69.
  • Ingham PW. Trithorax: A new homoeotic mutation ofDrosophila melanogaster : II. The role oftrx+ after embryogenesis. Wilhelm Roux Arch Dev Biol. 1981 Nov;190(6):365–369. doi: 10.1007/BF00863275
  • Cenik BK, Shilatifard A. COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet. 2021 Jan;22(1):38–58. doi: 10.1038/s41576-020-0278-0
  • Kadoch C, Hargreaves DC, Hodges C, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013 Jun;45(6):592–601. doi: 10.1038/ng.2628
  • Poynter ST, Kadoch C. Polycomb and trithorax opposition in development and disease. Wiley Interdiscip Rev Dev Biol. 2016 11;5(6):659–688. doi: 10.1002/wdev.244
  • Dillon SC, Zhang X, Trievel RC, et al. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227. doi: 10.1186/gb-2005-6-8-227
  • Margueron R, Li G, Sarma K, et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008 Nov 21;32(4):503–18. doi: 10.1016/j.molcel.2008.11.004
  • Margueron R, Justin N, Ohno K, et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 2009 Oct 8;461(7265):762–7. doi: 10.1038/nature08398
  • Murzina NV, Pei XY, Zhang W, et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure. 2008 Jul;16(7):1077–85 doi: 10.1016/j.str.2008.05.006
  • Wassef M, Luscan A, Aflaki S, et al. EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6075–6080. doi: 10.1073/pnas.1814634116
  • Kim H, Kang K, Kim J. AEBP2 as a potential targeting protein for Polycomb repression complex PRC2. Nucleic Acids Res. 2009 May;37(9):2940–50. doi: 10.1093/nar/gkp149
  • Kim H, Ekram MB, Bakshi A, et al. AEBP2 as a transcriptional activator and its role in cell migration. Genomics. 2015 Feb;105(2):108–15 doi: 10.1016/j.ygeno.2014.11.007
  • Schmitges FW, Prusty AB, Faty M, et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 2011 May 6;42(3):330–41. doi: 10.1016/j.molcel.2011.03.025
  • Pasini D, Cloos PA, Walfridsson J, et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature. 2010 Mar 11;464(7286):306–310. doi: 10.1038/nature08788
  • Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011 Jan 20;469(7330):343–9. doi: 10.1038/nature09784
  • Cao R, Tsukada Y, Zhang Y. Role of bmi-1 and Ring1A in H2A ubiquitylation and hox gene silencing. Mol Cell. 2005 Dec 22;20(6):845–54. doi: 10.1016/j.molcel.2005.12.002
  • Geng Z, Gao Z. Mammalian PRC1 complexes: compositional complexity and diverse molecular mechanisms. Int J Mol Sci. 2020 Nov 14;21(22):8594. doi: 10.3390/ijms21228594
  • Toro JR, Travis LB, Wu HJ, et al. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978-2001: an analysis of 26,758 cases. Int J Cancer. 2006 Dec 15;119(12):2922–2930. doi: 10.1002/ijc.22239
  • LaFemina J, Qin LX, Moraco NH, et al. Oncologic outcomes of sporadic, neurofibromatosis-associated, and radiation-induced malignant peripheral nerve sheath tumors. Ann Surg Oncol. 2013 Jan;20(1):66–72. doi: 10.1245/s10434-012-2573-2
  • Zou C, Smith KD, Liu J, et al. Clinical, pathological, and molecular variables predictive of malignant peripheral nerve sheath tumor outcome. Ann Surg. 2009 Jun;249(6):1014–22. doi: 10.1097/SLA.0b013e3181a77e9a
  • Xu Y, Xu G, Liu Z, et al. Incidence and prognosis of distant metastasis in malignant peripheral nerve sheath tumors. Acta Neurochir (Wien). 2021 02;163(2):521–529. doi: 10.1007/s00701-020-04647-5
  • Bos JL, Rehmann H, Wittinghofer A. Gefs and GAPs: critical elements in the control of small G proteins. Cell. 2007 Jun 1;129(5):865–77. doi: 10.1016/j.cell.2007.05.018
  • Gutmann DH, Ferner RE, Listernick RH, et al. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017 Feb 23;3(1):17004. doi: 10.1038/nrdp.2017.4
  • Miettinen MM, Antonescu CR, Fletcher CDM, et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1-a consensus overview. Hum Pathol. 2017 09;67:1–10. doi: 10.1016/j.humpath.2017.05.010
  • Beert E, Brems H, Daniëls B, et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chromosomes Cancer. 2011 Dec;50(12):1021–32. doi: 10.1002/gcc.20921
  • Lemberg KM, Wang J, Pratilas CA. From genes to -omics: the evolving molecular landscape of malignant peripheral nerve sheath tumor. Genes (Basel). 2020 Jun 24;11(6):691. doi: 10.3390/genes11060691
  • Bradtmöller M, Hartmann C, Zietsch J, et al. Impaired PTEN expression in human malignant peripheral nerve sheath tumours. PloS One. 2012;7(11):e47595. doi: 10.1371/journal.pone.0047595
  • Longo JF, Brosius SN, Znoyko I, et al. Establishment and genomic characterization of a sporadic malignant peripheral nerve sheath tumor cell line. Sci Rep. 2021 Mar 11;11(1):5690. doi: 10.1038/s41598-021-85055-2
  • Lee W, Teckie S, Wiesner T, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014 Nov;46(11):1227–32. doi: 10.1038/ng.3095
  • Hirbe AC, Pekmezci M, Dahiya S, et al. BRAFV600E mutation in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors. Neuro Oncol. 2014 Mar;16(3):466–7. doi: 10.1093/neuonc/not248
  • De Raedt T, Beert E, Pasmant E, et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014 Oct 9;514(7521):247–51. doi: 10.1038/nature13561
  • Zhang M, Wang Y, Jones S, et al. Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat Genet. 2014 Nov;46(11):1170–2 doi: 10.1038/ng.3116
  • Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013 Nov 7;155(4):934–47. doi: 10.1016/j.cell.2013.09.053
  • Schaefer IM, Dong F, Garcia EP, et al. Recurrent SMARCB1 inactivation in epithelioid malignant peripheral nerve sheath tumors. Am J Surg Pathol. 2019 06;43(6):835–843. doi: 10.1097/PAS.0000000000001242
  • Schaefer IM, Fletcher CD, Hornick JL. Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol. 2016 Jan;29(1):4–13. doi: 10.1038/modpathol.2015.134
  • Pekmezci M, Cuevas-Ocampo AK, Perry A, et al. Significance of H3K27me3 loss in the diagnosis of malignant peripheral nerve sheath tumors. Mod Pathol. 2017 12;30(12):1710–1719. doi: 10.1038/modpathol.2017.97
  • Prieto-Granada CN, Wiesner T, Messina JL, et al. Loss of H3K27me3 expression is a highly sensitive marker for sporadic and radiation-induced MPNST. Am J Surg Pathol. 2016 Apr;40(4):479–89. doi: 10.1097/PAS.0000000000000564
  • Mills AA. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer. 2010 Oct;10(10):669–82. doi: 10.1038/nrc2931
  • Cairns BR, Kim YJ, Sayre MH, et al. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1950–4. doi: 10.1073/pnas.91.5.1950
  • Dingwall AK, Beek SJ, McCallum CM, et al. The drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell. 1995 Jul;6(7):777–91. doi: 10.1091/mbc.6.7.777
  • Lessard J, Wu JI, Ranish JA, et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007 Jul 19;55(2):201–15. doi: 10.1016/j.neuron.2007.06.019
  • Mashtalir N, D’Avino AR, Michel BC, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018 Nov 15;175(5):1272–1288.e20. doi: 10.1016/j.cell.2018.09.032
  • Wanior M, Krämer A, Knapp S, et al. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene. 2021 05;40(21):3637–3654. doi: 10.1038/s41388-021-01781-x
  • Vázquez M, Moore L, Kennison JA. The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Development. 1999 Feb;126(4):733–42. doi: 10.1242/dev.126.4.733
  • Michel BC, D’Avino AR, Cassel SH, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018 12;20(12):1410–1420. doi: 10.1038/s41556-018-0221-1
  • Frezza AM, Botta L, Pasquali S, et al. An epidemiological insight into epithelioid sarcoma (ES): the open issue of distal-type (DES) versus proximal-type (PES). Ann Oncol. 2017;28(11):v525. doi: 10.1093/annonc/mdw551
  • Jawad MU, Extein J, Min ES, et al. Prognostic factors for survival in patients with epithelioid sarcoma: 441 cases from the SEER database. Clin Orthop Relat Res. 2009 Nov;467(11):2939–48. doi: 10.1007/s11999-009-0749-2
  • Enzinger FM. Epithelioid sarcoma. A sarcoma simulating a granuloma or a carcinoma. Cancer. 1970 Nov;26(5):1029–1041. doi: 10.1002/1097-0142(197011)26:5<1029:AID-CNCR2820260510>3.0.CO;2-R
  • WHO Classification of tumours Editorial Board. Sot tissue and bone tumours. 5th ed. Vol. 3, Lyon (France): International Agency or Research on Cancer; 2020.
  • Rasmussen SV, Jin JX, Bickford LR, et al. Functional genomic analysis of epithelioid sarcoma reveals distinct proximal and distal subtype biology. Clin Transl Med. 2022 Jul;12(7):e961. doi: 10.1002/ctm2.961
  • Touati N, Schöffski P, Litière S, et al. European organisation for research and treatment of cancer soft tissue and bone sarcoma group experience with advanced/metastatic epithelioid sarcoma patients treated in prospective trials: clinical profile and response to systemic therapy. Clin Oncol. 2018 07;30(7):448–454. doi:10.1016/j.clon.2018.02.065
  • Frezza AM, Jones RL, Lo Vullo S, et al. Anthracycline, Gemcitabine, and pazopanib in epithelioid sarcoma: a multi-institutional case series. JAMA Oncol. 2018 Sep 01;4(9):e180219. doi: 10.1001/jamaoncol.2018.0219
  • Frezza AM, Sbaraglia M, Lo Vullo S, et al. The natural history of epithelioid sarcoma. A retrospective multicentre case-series within the Italian sarcoma Group. Eur J Surg Oncol. 2020 07;46(7):1320–1326. doi: 10.1016/j.ejso.2020.03.215
  • Laskin WB, Miettinen M. Epithelioid sarcoma: new insights based on an extended immunohistochemical analysis. Arch Pathol Lab Med. 2003 Sep;127(9):1161–8. doi: 10.5858/2003-127-1161-ESNIBO
  • Miettinen M, Fanburg-Smith JC, Virolainen M, et al. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Hum Pathol. 1999 Aug;30(8):934–42. doi: 10.1016/s0046-8177(99)90247-2
  • Miettinen M, Wang Z, Sarlomo-Rikala M, et al. ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am J Surg Pathol. 2013 Oct;37(10):1580–5. doi: 10.1097/PAS.0b013e31828de23a
  • Vlaeminck-Guillem V, Carrere S, Dewitte F, et al. The ets family member erg gene is expressed in mesodermal tissues and neural crests at fundamental steps during mouse embryogenesis. Mech Dev. 2000 Mar 1;91(1–2):331–5. doi: 10.1016/S0925-4773(99)00272-5
  • Chbani L, Guillou L, Terrier P, et al. Epithelioid sarcoma: a clinicopathologic and immunohistochemical analysis of 106 cases from the French sarcoma group. Am J Clin Pathol. 2009 Feb;131(2):222–7. doi: 10.1309/AJCPU98ABIPVJAIV
  • Hoot AC, Russo P, Judkins AR, et al. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol. 2004 Nov;28(11):1485–91. doi: 10.1097/01.pas.0000141390.14548.34
  • Sigauke E, Rakheja D, Maddox DL, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol. 2006 May;19(5):717–25. doi: 10.1038/modpathol.3800581
  • Modena P, Lualdi E, Facchinetti F, et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 2005 May 15;65(10):4012–9. doi: 10.1158/0008-5472.CAN-04-3050
  • Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009 Apr;33(4):542–550. doi: 10.1097/PAS.0b013e3181882c54
  • Biegel JA, Burk CD, Parmiter AH, et al. Molecular analysis of a partial deletion of 22q in a central nervous system rhabdoid tumor. Genes Chromosomes Cancer. 1992 Sep;5(2):104–8. doi: 10.1002/gcc.2870050203
  • Versteege I, Sévenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998 Jul 9;394(6689):203–6. doi: 10.1038/28212
  • Wang X, Lee RS, Alver BH, et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet. 2017 Feb;49(2):289–295 doi: 10.1038/ng.3746
  • Wei D, Goldfarb D, Song S, et al. SNF5/INI1 deficiency redefines chromatin remodeling complex composition during tumor development. Mol Cancer Res. 2014 Nov;12(11):1574–85. doi: 10.1158/1541-7786.MCR-14-0005
  • Nakayama RT, Pulice JL, Valencia AM, et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet. 2017 Nov;49(11):1613–1623. doi: 10.1038/ng.3958
  • Kadoch C, Williams RT, Calarco JP, et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet. 2017 Feb;49(2):213–222. doi: 10.1038/ng.3734
  • Doan DN, Veal TM, Yan Z, et al. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene. 2004 Apr 22;23(19):3462–73. doi: 10.1038/sj.onc.1207472
  • Wang X, Sansam CG, Thom CS, et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res. 2009 Oct 15;69(20):8094–101. doi: 10.1158/0008-5472.CAN-09-0733
  • Gasparini P, Facchinetti F, Boeri M, et al. Prognostic determinants in epithelioid sarcoma. Eur J Cancer. 2011 Jan;47(2):287–95. doi: 10.1016/j.ejca.2010.09.003
  • Papp G, Changchien YC, Péterfia B, et al. SMARCB1 protein and mRNA loss is not caused by promoter and histone hypermethylation in epithelioid sarcoma. Mod Pathol. 2013 Mar;26(3):393–403. doi: 10.1038/modpathol.2012.190
  • Papp G, Krausz T, Stricker TP, et al. SMARCB1 expression in epithelioid sarcoma is regulated by miR-206, miR-381, and miR-671-5p on both mRNA and protein levels. Genes Chromosomes Cancer. 2014 Feb;53(2):168–76. doi: 10.1002/gcc.22128
  • Sápi Z, Papp G, Szendrői M, et al. Epigenetic regulation of SMARCB1 by miR-206, -381 and -671-5p is evident in a variety of SMARCB1 immunonegative soft tissue sarcomas, while miR-765 appears specific for epithelioid sarcoma. A miRNA study of 223 soft tissue sarcomas. Genes Chromosomes Cancer. 2016 10;55(10):786–802. doi: 10.1002/gcc.22379
  • Kohashi K, Izumi T, Oda Y, et al. Infrequent SMARCB1/INI1 gene alteration in epithelioid sarcoma: a useful tool in distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2009 Mar;40(3):349–55. doi: 10.1016/j.humpath.2008.08.007
  • Wilson BG, Wang X, Shen X, et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010 Oct 19;18(4):316–28. doi: 10.1016/j.ccr.2010.09.006
  • Gounder M, Schöffski P, Jones RL, et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 2020 11;21(11):1423–1432. doi: 10.1016/S1470-2045(20)30451-4
  • Chawla SP, Falchook GS, Burgess MA, et al. Results of the phase 1b soft-tissue sarcoma (STS) portion of the global randomized, double-blind, placebo-controlled study of tazemetostat (TAZ) plus doxorubicin (DOX) as frontline therapy for advanced epithelioid sarcoma (ES). J Clin Oncol. 2021;39(15_suppl):11563–11563. doi: 10.1200/JCO.2021.39.15_suppl.11563
  • Ribrag V, Wainberg ZA, Docampo LI, et al. Pharmacokinetic and pharmacodynamic activity evaluation of MAK683, a selective oral embryonic ectoderm development (EED) inhibitor, in adults with advanced malignancies in a first-in-human study. J Clin Oncol. 2022;40(16_suppl):3083–3083. doi: 10.1200/JCO.2022.40.16_suppl.3083
  • Brenca M, Rossi S, Lorenzetto E, et al. SMARCB1/INI1 genetic inactivation is responsible for tumorigenic properties of epithelioid sarcoma cell line VAESBJ. Mol Cancer Ther. 2013 Jun;12(6):1060–72. doi: 10.1158/1535-7163.MCT-13-0005
  • Jagani Z, Mora-Blanco EL, Sansam CG, et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med. 2010 Dec;16(12):1429–33. doi: 10.1038/nm.2251
  • Gounder MM, Rosenbaum E, Wu N, et al. A phase Ib/II randomized study of RO4929097, a gamma-secretase or notch inhibitor with or without vismodegib, a hedgehog inhibitor, in advanced sarcoma. Clin Cancer Res. 2022 Apr 14;28(8):1586–1594. doi: 10.1158/1078-0432.CCR-21-3874
  • Sultan I, Rodriguez-Galindo C, Saab R, et al. Comparing children and adults with synovial sarcoma in the surveillance, epidemiology, and end results program, 1983 to 2005: an analysis of 1268 patients. Cancer. 2009 Aug 1;115(15):3537–47. doi: 10.1002/cncr.24424
  • Thway K, Fisher C. Synovial sarcoma: defining features and diagnostic evolution. Ann Diagn Pathol. 2014 Dec;18(6):369–380. doi: 10.1016/j.anndiagpath.2014.09.002
  • Bergh P, Meis-Kindblom JM, Gherlinzoni F, et al. Synovial sarcoma: identification of low and high risk groups. Cancer. 1999 Jun 15;85(12):2596–607. doi: 10.1002/(SICI)1097-0142(19990615)85:12<2596:AID-CNCR16>3.0.CO;2-K
  • Clark J, Rocques PJ, Crew AJ, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994 Aug;7(4):502–508. doi: 10.1038/ng0894-502
  • de Leeuw B, Balemans M, Olde Weghuis D, et al. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet. 1995 Jun;4(6):1097–1099. doi: 10.1093/hmg/4.6.1097
  • Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002 Jan 1;62(1):135–40.
  • Güre AO, Wei IJ, Old LJ, et al. The SSX gene family: characterization of 9 complete genes. Int J Cancer. 2002 Oct 10;101(5):448–53. doi: 10.1002/ijc.10634
  • Wang J, Wang H, Hou W, et al. Subnuclear distribution of SSX regulates its function. Mol Cell Biochem. 2013 Sep;381(1–2):17–29. doi: 10.1007/s11010-013-1684-9
  • Middeljans E, Wan X, Jansen PW, et al. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PloS One. 2012;7(3):e33834. doi: 10.1371/journal.pone.0033834
  • Skytting B, Nilsson G, Brodin B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 1999 Jun 2;91(11):974–5. doi: 10.1093/jnci/91.11.974
  • Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013 Mar 28;153(1):71–85. doi: 10.1016/j.cell.2013.02.036
  • McBride MJ, Pulice JL, Beird HC, et al. The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell. 2018 Jun 11;33(6):1128–1141.e7. doi: 10.1016/j.ccell.2018.05.002
  • Baluapuri A, Wolf E, Eilers M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol. 2020 May;21(5):255–267. doi: 10.1038/s41580-020-0215-2
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663–76. doi: 10.1016/j.cell.2006.07.024
  • McBride MJ, Kadoch C. Disruption of mammalian SWI/SNF and polycomb complexes in human sarcomas: mechanisms and therapeutic opportunities. J Pathol. 2018 04;244(5):638–649. doi: 10.1002/path.5042
  • Kawasaki H, Schiltz L, Chiu R, et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature. 2000 May 11;405(6783):195–200. doi: 10.1038/35012097
  • Ali Z, Haroon Khan A, Rehman U, et al. Is TLE1 expression limited to synovial sarcoma? Our experience at shifa international hospital, Pakistan. Cureus. 2019 Nov 29;11(11):e6259. doi: 10.7759/cureus.6259
  • Su L, Sampaio AV, Jones KB, et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell. 2012 Mar 20;21(3):333–47. doi: 10.1016/j.ccr.2012.01.010
  • Schmitt T, Mayer-Steinacker R, Mayer F, et al. Vorinostat in refractory soft tissue sarcomas - results of a multi-centre phase II trial of the German soft tissue sarcoma and bone tumour working group (AIO). Eur J Cancer. 2016 Sep;64:74–82. doi: 10.1016/j.ejca.2016.05.018
  • Jones KB, Su L, Jin H, et al. SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene. 2013 May 2;32(18):2365-71, 2375.e1–5. doi: 10.1038/onc.2012.247
  • Pretto D, Barco R, Rivera J, et al. The synovial sarcoma translocation protein SYT-SSX2 recruits beta-catenin to the nucleus and associates with it in an active complex. Oncogene. 2006 Jun 22;25(26):3661–3669. doi: 10.1038/sj.onc.1209413
  • Le Guellec S, Decouvelaere AV, Filleron T, et al. Malignant Peripheral nerve sheath tumor is a challenging diagnosis: a systematic pathology review, immunohistochemistry, and molecular analysis in 160 patients from the French sarcoma group database. Am J Surg Pathol. 2016 Jul;40(7):896–908. doi: 10.1097/PAS.0000000000000655

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.