63
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Tumor cells-derived extracellular vesicles carry circ_0064516 competitively inhibit microRNA-6805-3p and promote cervical cancer angiogenesis and tumor growth

, , , , &
Pages 97-112 | Received 19 Mar 2023, Accepted 12 Jan 2024, Published online: 11 Mar 2024

References

  • Sharma S, Deep A, Sharma AK. Current treatment for cervical cancer: an update. Anticancer Agents Med Chem. 2020;20(15):1768–1779. doi: 10.2174/1871520620666200224093301
  • Ojesina AI, Lichtenstein L, Freeman SS, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506(7488):371–375. doi: 10.1038/nature12881
  • Tsikouras P, Zervoudis S, Manav B, et al. Cervical cancer: screening, diagnosis and staging. J Buon. 2016;21(2):320–325.
  • Giannini A, Di Donato V, Sopracordevole F, et al. Outcomes of high-grade cervical dysplasia with positive margins and HPV persistence after cervical conization. Vaccines (Basel). 2023 Mar 18;11(3):698. doi: 10.3390/vaccines11030698
  • Di Donato V, Bogani G, Casarin J, et al. Ten-year outcomes following laparoscopic and open abdominal radical hysterectomy for “low-risk” early-stage cervical cancer: a propensity-score based analysis. Gynecol Oncol. 2023;174:49–54. doi: 10.1016/j.ygyno.2023.04.030
  • Minion LE, Tewari KS. Cervical cancer - state of the science: from angiogenesis blockade to checkpoint inhibition. Gynecol Oncol. 2018;148(3):609–621. doi: 10.1016/j.ygyno.2018.01.009
  • Yadav N, Parveen S, Banerjee M. Potential of nano-phytochemicals in cervical cancer therapy. Clin Chim Acta. 2020;505:60–72. doi: 10.1016/j.cca.2020.01.035
  • Edgar JR. Q&A: what are exosomes, exactly? BMC Biol. 2016 Jun 13;14(1):46.
  • Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103–141. doi: 10.1016/bs.acc.2015.12.005
  • Lucido CT, Wynja E, Madeo M, et al. Innervation of cervical carcinoma is mediated by cancer-derived exosomes. Gynecol Oncol. 2019;154(1):228–235. doi: 10.1016/j.ygyno.2019.04.651
  • Hatibaruah A, Rahman M, Agarwala S, et al. Circular RNAs in cancer and diabetes. J Genet. 2021;100(2):21. doi: 10.1007/s12041-021-01268-4
  • Chaichian S, Shafabakhsh R, Mirhashemi SM, et al. Circular RNAs: a novel biomarker for cervical cancer. J Cell Physiol. 2020;235(2):718–724. doi: 10.1002/jcp.29009
  • Miao J, Regenstein JM, Xu D, et al. The roles of microRNA in human cervical cancer. Arch Biochem Biophys. 2020;690:108480. doi: 10.1016/j.abb.2020.108480
  • Yi Y, Liu Y, Wu W, et al. Reconstruction and analysis of circRNA‑miRNA‑mRNA network in the pathology of cervical cancer. Oncol Rep. 2019;41(4):2209–2225. doi: 10.3892/or.2019.7028
  • Jiang H, Liang M, Jiang Y, et al. The lncRNA TDRG1 promotes cell proliferation, migration and invasion by targeting miR-326 to regulate MAPK1 expression in cervical cancer. Cancer Cell Int. 2019 May 31;19(1):152. doi: 10.1186/s12935-019-0872-4
  • Li W, Liang J, Zhang Z, et al. MicroRNA-329-3p targets MAPK1 to suppress cell proliferation, migration and invasion in cervical cancer. Oncol Rep. 2017;37(5):2743–2750. doi: 10.3892/or.2017.5555
  • Li S, Li Y, Chen B, et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(D1):D106–D112. doi: 10.1093/nar/gkx891
  • Guo Z, Wang X, Yang Y, et al. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Mol Ther Nucleic Acids. 2020 Aug 25;22:179–195.
  • Gao Z, Wang Q, Ji M, et al. Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. J Transl Med. 2021 May 30;19(1):229. doi: 10.1186/s12967-021-02872-9
  • Wu XG, Zhou CF, Zhang YM, et al. Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma [retracted in. Angiogenesis. 2023 Feb;26(1):201–201.
  • Andrzejewska A, Grzela R, Stankiewicz-Drogon A, et al. Mesenchymal stem cell engineering by ARCA analog-capped mRNA. Mol Ther Nucleic Acids. 2023 Jul 17;33:454–468. doi: 10.1016/j.omtn.2023.07.006
  • Zheng W, Shi C, Meng Y, et al. Integrated network analysis and metabolomics reveal the molecular mechanism of Yinchen Sini decoction in CCl4-induced acute liver injury. Front Pharmacol. 2023 Sep 25;14:1221046.
  • Yu L, Xu H, Zhang S, et al. SDC1 promotes cisplatin resistance in hepatic carcinoma cells via PI3K-AKT pathway. Hum Cell. 2020;33(3):721–729. doi: 10.1007/s13577-020-00362-6
  • Dai M, Peng W, Lin L, et al. Celastrol as an intestinal FXR inhibitor triggers tripolide-induced intestinal bleeding: underlying mechanism of gastrointestinal injury induced by tripterygium wilfordii. Phytomedicine. 2023;121:155054. doi: 10.1016/j.phymed.2023.155054
  • Wu S, Tang T, Zhou H, et al. Hsa_circ_0119412 is a tumor promoter in hepatocellular carcinoma by inhibiting miR-526b-5p to upregulate STMN1. Cancer Biol Ther. 2023;24(1):2256951. doi: 10.1080/15384047.2023.2256951
  • Chrzanowska NM, Kowalewski J, Lewandowska MA. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules. 2020 Apr 17;25(8):1864. doi: 10.3390/molecules25081864
  • Song P, Han X, Li X, et al. Bacteria engineered with intracellular and extracellular nanomaterials for hierarchical modulation of antitumor immune responses. Mater Horiz. 2023 Jul 31;10(8):2927–2935. doi: 10.1039/d3mh00249g
  • Lee HY, Chen CK, Ho CM, et al. EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget. 2018 Jan 11;9(17):13193–13205. doi: 10.18632/oncotarget.24149
  • Huang Y, Liu R, Han X, et al. Rab31 promotes the invasion and metastasis of cervical cancer cells by inhibiting MAPK6 degradation. Int J Biol Sci. 2022 Jan 1;18(1):112–123.
  • Han B, Wang T, Xue Z, et al. Elemene nanoemulsion inhibits metastasis of breast cancer by ROS scavenging. Int J Nanomed. 2021 Aug 31;16:6035–6048.
  • Sugimura N, Kubota E, Sasaki M, et al. A case of asymptomatic gastric plexiform fibromyxoma followed up for 3 years. DEN Open. 2023 Sep 19;4(1):e291. doi: 10.1002/deo2.291
  • Ye M, Wang J, Pan S, et al. Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers [published correction appears in Mol Ther Oncolytics 2022 May 23:307]. Mol Ther Oncolytics. 2021 Dec 9;25(24):101–113. doi: 10.1016/j.omto.2021.12.005.
  • Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression [published correction appears in PLoS Genet. PLoS Genet. 2013 Dec;9(12):e1003777. doi: 10.1371/journal.pgen.1003777
  • Song S, Shi Y, Zeng D, et al. circANKRD28 inhibits cisplatin resistance in non-small-cell lung cancer through the miR-221-3p/SOCS3 axis. J Gene Med. 2023;25(4):e3478. doi: 10.1002/jgm.3478
  • Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–433. doi: 10.1038/nrg3965
  • Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–1441. doi: 10.1126/science.1102513
  • Chakrabarti O, Veeraraghavalu K, Tergaonkar V, et al. Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J Virol. 2004;78(11):5934–5945. doi: 10.1128/JVI.78.11.5934-5945.2004
  • Kaku T, Kamura T, Kinukawa N, et al. Angiogenesis in endometrial carcinoma. Cancer. 1997;80(4):741–747.
  • Sass FA, Schmidt-Bleek K, Ellinghaus A, et al. CD31+ cells from peripheral blood facilitate bone regeneration in biologically impaired conditions through combined effects on immunomodulation and angiogenesis. J Bone Miner Res. 2017;32(5):902–912. doi: 10.1002/jbmr.3062
  • Tornesello ML, Faraonio R, Buonaguro L, et al. The Role of microRnas, long non-coding RNAs, and circular RNAs in cervical cancer. Front Oncol. 2020 Feb 20;10:150.
  • Chen RX, Liu HL, Yang LL, et al. Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci. 2019;23(20):8771–8778. doi: 10.26355/eurrev_201910_19271
  • Zhang W, Zhang S. Downregulation of circRNA_0000285 suppresses cervical cancer development by regulating miR197-3p-ELK1 axis. Cancer Manag Res. 2020 Sep 18;12: 8663–8674. doi: 10.2147/CMAR.S253174
  • Xiao D, Li X, Rouchka EC, et al. Comparative gene expression analysis in melanocytes driven by tumor cell-derived exosomes. Exp Cell Res. 2020;386(1):111690. doi: 10.1016/j.yexcr.2019.111690
  • Seimiya T, Otsuka M, Iwata T, et al. Emerging roles of exosomal circular RNAs in cancer. Front Cell Dev Biol. 2020 Oct 8;8:568366.
  • Wang H, Wei M, Kang Y, et al. Circular RNA circ_PVT1 induces epithelial-mesenchymal transition to promote metastasis of cervical cancer. Aging. 2020;12(20):20139–20151. doi: 10.18632/aging.103679
  • Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020 Aug 5;5(1):145. doi: 10.1038/s41392-020-00261-0
  • Huang XY, Huang ZL, Huang J, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020 Jan 23;39(1):20. doi: 10.1186/s13046-020-1529-9
  • Li S, Li J, Zhang H, et al. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 2021;560:37–44. doi: 10.1016/j.bbrc.2021.04.099
  • Zhang Y, Chen D, Tian R, et al. Resveratrol alleviates amyloid β-induced neuronal apoptosis, inflammation, and oxidative and endoplasmic reticulum stress by circ_0050263/miR-361-3p/PDE4A axis during Alzheimer’s disease. Chem Biol Drug Des. 2023;102(5):1121–1132. doi: 10.1111/cbdd.14313
  • Kristensen LS, Hansen TB, Venø MT, et al. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2018;37(5):555–565. doi: 10.1038/onc.2017.361
  • Thomas LF, Sætrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics. 2014;30(16):2243–2246. doi: 10.1093/bioinformatics/btu257
  • Ji F, Du R, Chen T, et al. Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 axis. Mol Ther Nucleic Acids. 2020;19:413–420. doi: 10.1016/j.omtn.2019.11.032
  • Hong H, Zhu H, Zhao S, et al. The novel circClk3/miR-320a/FoxM1 axis promotes cervical cancer progression. Cell Death Dis. 2019 Dec 12;10(12):950. doi: 10.1038/s41419-019-2183-z
  • Song T, Xu A, Zhang Z, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075. J Cell Physiol. 2019;234(8):14296–14305. doi: 10.1002/jcp.28128
  • Li XW, Tuergan M, Abulizi G. Expression of MAPK1 in cervical cancer and effect of MAPK1 gene silencing on epithelial-mesenchymal transition, invasion and metastasis. Asian Pac J Trop Med. 2015;8(11):937–943. doi: 10.1016/j.apjtm.2015.10.004
  • Romero-Masters JC, Lambert PF, Munger K. Molecular mechanisms of MmuPV1 E6 and E7 and implications for human disease. Viruses. 2022 Sep 28;14(10):2138. doi: 10.3390/v14102138
  • Liu H, Liu J, Zhao G. Retracted: long non-coding RNA HOTAIR regulates proliferation, migration and invasion of human cervical cancer cells by modulating expression of MAPK1. Arch Med Sci. 2023 Mar 16;19(2):1158–1165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.