190
Views
0
CrossRef citations to date
0
Altmetric
Review

Kv1.3 in the spotlight for treating immune diseases

, , , , &
Pages 67-82 | Received 28 Sep 2023, Accepted 02 Feb 2024, Published online: 07 Feb 2024

References

  • Owen J, Punt J, Stranford S, et al. Kuby Immunology. New York: Macmillan Learning; 2018.
  • Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. Amsterdam: Elsevier; 2021.
  • Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33(1):291–353. doi: 10.1146/annurev-immunol-032414-112212
  • Grissmer S, Ghanshani S, Dethlefs B, et al. The Shaw-related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type l K+ channel in T cells. J Biol Chem. 1992 Oct 15;267(29):20971–20979. doi: 10.1016/S0021-9258(19)36784-5
  • Liu QH, Fleischmann BK, Hondowicz B, et al. Modulation of Kv channel expression and function by TCR and costimulatory signals during peripheral CD4(+) lymphocyte differentiation. J Exp Med. 2002 Oct 7;196(7):897–909. doi: 10.1084/jem.20020381
  • Vicente R, Escalada A, Villalonga N, et al. Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem. 2006 Dec 8;281(49):37675–37685. doi: 10.1074/jbc.M605617200
  • Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci. 2015 Oct;72(19):3677–3693. doi: 10.1007/s00018-015-1948-5
  • Beeton C, Wulff H, Standifer NE, et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17414–17419. doi: 10.1073/pnas.0605136103
  • Gocke AR, Lebson LA, Grishkan IV, et al. Kv1.3 deletion biases T cells toward an immunoregulatory phenotype and renders mice resistant to autoimmune encephalomyelitis. J Immunol. 2012 Jun 15;188(12):5877–5886. doi: 10.4049/jimmunol.1103095
  • Khodoun M, Chimote AA, Ilyas FZ, et al. Targeted knockdown of Kv1.3 channels in T lymphocytes corrects the disease manifestations associated with systemic lupus erythematosus. Sci Adv. 2020 Nov;6(47). doi: 10.1126/sciadv.abd1471
  • Kundu-Raychaudhuri S, Chen YJ, Wulff H, et al. Kv1.3 in psoriatic disease: PAP-1, a small molecule inhibitor of Kv1.3 is effective in the SCID mouse psoriasis–xenograft model. J Autoimmun. 2014 Dec;55:63–72.
  • Beeton C, Wulff H, Barbaria J, et al. Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13942–13947. doi: 10.1073/pnas.241497298
  • Gulbins E, Sassi N, Grassme H, et al. Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta. 2010 Jun;1797(6–7):1251–1259.
  • Szabo I, Trentin L, Trimarco V, et al. Biophysical characterization and expression analysis of Kv1.3 potassium channel in primary human leukemic B cells. Cell Physiol Biochem. 2015;37(3):965–978. doi: 10.1159/000430223
  • Azam P, Sankaranarayanan A, Homerick D, et al. Targeting effector memory T cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis. J Invest Dermatol. 2007 Jun;127(6):1419–1429.
  • Fan C, Long R, You Y, et al. A novel PADRE-Kv1.3 vaccine effectively induces therapeutic antibodies and ameliorates experimental autoimmune encephalomyelitis in rats. Clin Immunol. 2018 Aug;193:98–109.
  • Fomina AF, Nguyen HM, Wulff H. Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling. Channels (Austin). 2021 Dec;15(1):67–78. doi: 10.1080/19336950.2020.1853943
  • Chhabra S, Chang SC, Nguyen HM, et al. Kv1.3 channel-blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB J. 2014 Sep;28(9):3952–3964.
  • Han S, Yi H, Yin SJ, et al. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. J Biol Chem. 2008 Jul 4;283(27):19058–19065. doi: 10.1074/jbc.M802054200
  • Yang W, Feng J, Wang B, et al. BF9, the first functionally characterized snake toxin peptide with Kunitz-type protease and potassium channel inhibiting properties. J Biochem Mol Toxicol. 2014 Feb;28(2):76–83.
  • Aneiros A, García I, Martínez J, et al. A potassium channel toxin from the secretion of the sea anemone bunodosoma granulifera. isolation, amino acid sequence and biological activity. Biochim Biophys Acta Gen Subj. 1993 May 07;1157(1):86–92. doi: 10.1016/0304-4165(93)90082-J
  • Meng L, Xie Z, Zhang Q, et al. Scorpion potassium channel-blocking defensin highlights a functional link with neurotoxin. J Biol Chem. 2016 Mar 25;291(13):7097–106. doi: 10.1074/jbc.M115.680611
  • Renisio JG, Romi-Lebrun R, Blanc E, et al. Solution structure of BmKTX, a K+ blocker toxin from the Chinese scorpion Buthus Martensi. Proteins. 2000 Jan 1;38(1):70–78. doi: 10.1002/(SICI)1097-0134(20000101)38:1<70:AID-PROT8>3.0.CO;2-5
  • Zhu L, Gao B, Luo L, et al. Two dyad-free Shaker-type K+ channel blockers from scorpion venom. Toxicon. 2012 Mar 1;59(3):402–407. doi: 10.1016/j.toxicon.2011.11.016
  • Grissmer S, Nguyen AN, Aiyar J, et al. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994 Jun;45(6):1227–1234.
  • Aiyar J, Withka JM, Rizzi JP, et al. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron. 1995 Nov;15(5):1169–1181.
  • Garcia-Calvo M, Leonard RJ, Novick J, et al. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993 Sep 5;268(25):18866–18874. doi: 10.1016/S0021-9258(17)46707-X
  • Kharrat R, Mansuelle P, Sampieri F, et al. Maurotoxin, a four disulfide bridge toxin from scorpio maurus venom: purification, structure and action on potassium channels. FEBS Lett. 1997 Apr 14;406(3):284–290. doi: 10.1016/S0014-5793(97)00285-8
  • Mouhat S, Visan V, Ananthakrishnan S, et al. K+ channel types targeted by synthetic OSK1, a toxin from orthochirus scrobiculosus scorpion venom. Biochem J. 2005 Jan 1;385(Pt 1):95–104. doi: 10.1042/BJ20041379
  • Péter M Jr., Hajdu P, Varga Z, et al. Blockage of human T lymphocyte Kv1.3 channels by Pi1, a novel class of scorpion toxin. Biochem Biophys Res Commun. 2000 Nov 11;278(1):34–37. doi: 10.1006/bbrc.2000.3756
  • Kalman K, Pennington MW, Lanigan MD, et al. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem. 1998 Dec 4;273(49):32697–32707. doi: 10.1074/jbc.273.49.32697
  • Chi V, Pennington MW, Norton RS, et al. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012 Mar 15;59(4):529–546. doi: 10.1016/j.toxicon.2011.07.016
  • Varga Z, Gurrola-Briones G, Papp F, et al. Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells. Mol Pharmacol. 2012 Sep;82(3):372–382.
  • Bodendiek SB, Mahieux C, Hansel W, et al. 4-phenoxybutoxy-substituted heterocycles–a structure-activity relationship study of blockers of the lymphocyte potassium channel Kv1.3. Eur J Med Chem. 2009 May;44(5):1838–1852.
  • Schmitz A, Sankaranarayanan A, Azam P, et al. Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol. 2005 Nov;68(5):1254–1270.
  • Vennekamp J, Wulff H, Beeton C, et al. Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol. 2004 Jun;65(6):1364–1374.
  • Ren YR, Pan F, Parvez S, et al. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes. PLoS One. 2008;3(12):e4009. doi: 10.1371/journal.pone.0004009
  • Unterweger AL, Jensen MO, Giordanetto F, et al. Suppressing Kv1.3 ion channel activity with a novel small molecule inhibitor ameliorates inflammation in a humanised mouse model of ulcerative colitis. J Crohn's Colitis. 2021 Nov 8;15(11):1943–1958. doi: 10.1093/ecco-jcc/jjab078
  • Nguyen W, Howard BL, Jenkins DP, et al. Structure-activity relationship exploration of Kv1.3 blockers based on diphenoxylate. Bioorg Med Chem Lett. 2012 Dec 1;22(23):7106–7109. doi: 10.1016/j.bmcl.2012.09.080
  • Xie Z, Zhao Y, Yang W, et al. Methotrexate, a small molecular scaffold targeting Kv1.3 channel extracellular pore region. Biochem Biophys Res Commun. 2020 Nov 5;532(2):265–270. doi: 10.1016/j.bbrc.2020.08.050
  • Bednenko J, Harriman R, Marien L, et al. A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3 [research support, non-U.S. Gov’t] mAbs. 2018 May;10(4):636–650.
  • Hajdu P, Chimote AA, Thompson TH, et al. Functionalized liposomes loaded with siRnas targeting ion channels in effector memory T cells as a potential therapy for autoimmunity. Biomaterials. 2013 Dec;34(38):10249–10257.
  • Fischer HG, Eder C. Voltage-gated K+ currents of mouse dendritic cells. FEBS Lett. 1995 Oct 9;373(2):127–130. doi: 10.1016/0014-5793(95)01029-E
  • Mullen KM, Rozycka M, Rus H, et al. Potassium channels Kv1.3 and Kv1.5 are expressed on blood-derived dendritic cells in the central nervous system. Ann Neurol. 2006 Jul;60(1):118–127.
  • Shumilina E, Zahir N, Xuan NT, et al. Phosphoinositide 3-kinase dependent regulation of kv channels in dendritic cells. Cell Physiol Biochem. 2007;20(6):801–8. doi: 10.1159/000110440
  • Vallejo-Gracia A, Sastre D, Colomer-Molera M, et al. KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology. Sci Rep. 2021 Jul 16;11(1):14632. doi: 10.1038/s41598-021-94015-9
  • Dong X, Wei L, Guo X, et al. Dlg1 maintains dendritic cell function by securing voltage-gated K(+) channel integrity. J Immunol. 2019 Jun 1;202(11):3187–3197. doi: 10.4049/jimmunol.1900089
  • Zsiros E, Kis-Toth K, Hajdu P, et al. Developmental switch of the expression of ion channels in human dendritic cells. J Immunol. 2009 Oct 1;183(7):4483–92. doi: 10.4049/jimmunol.0803003
  • Hsu S, O’Connell PJ, Klyachko VA, et al. Fundamental Ca2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway. J Immunol. 2001 May 15;166(10):6126–33. doi: 10.4049/jimmunol.166.10.6126
  • Qi H, Denning TL, Soong L. Differential induction of interleukin-10 and interleukin-12 in dendritic cells by microbial toll-like receptor activators and skewing of T-cell cytokine profiles. Infect Immun. 2003 Jun;71(6):3337–42. doi: 10.1128/IAI.71.6.3337-3342.2003
  • Xuan NT, Shumilina E, Matzner N, et al. Ca2±dependent functions in peptidoglycan-stimulated mouse dendritic cells. Cell Physiol Biochem. 2009;24(3–4):167–176. doi: 10.1159/000233243
  • Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014 Mar 4;19(3):373–9. doi: 10.1016/j.cmet.2014.01.001
  • Tyan L, Sopjani M, Dermaku-Sopjani M, et al. Inhibition of voltage-gated K+ channels in dendritic cells by rapamycin. Am J Physiol Cell Physiol. 2010 Dec;299(6):C1379–85.
  • Vicente R, Escalada A, Coma M, et al. Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J Biol Chem. 2003 Nov 21;278(47):46307–20. doi: 10.1074/jbc.M304388200
  • Villalonga N, David M, Bielanska J, et al. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochem Pharmacol. 2010 Sep 15;80(6):858–66. doi: 10.1016/j.bcp.2010.05.012
  • Leanza L, Zoratti M, Gulbins E, et al. Induction of apoptosis in macrophages via Kv1.3 and Kv1.5 potassium channels. Curr Med Chem. 2012;19(31):5394–404. doi: 10.2174/092986712803833281
  • Mackenzie AB, Chirakkal H, North RA. Kv1.3 potassium channels in human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2003 Oct;285(4):L862–8. doi: 10.1152/ajplung.00095.2003
  • Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–488. doi: 10.1615/CritRevImmunol.v32.i6.10
  • Chen YJ, Nguyen HM, Maezawa I, et al. Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke. Ann Clin Transl Neurol. 2018 Feb;5(2):147–161.
  • Wu BM, Liu JD, Li YH, et al. Margatoxin mitigates CCl4‑induced hepatic fibrosis in mice via macrophage polarization, cytokine secretion and STAT signaling. Int J Mol Med. 2020 Jan;45(1):103–114.
  • Huff MW, Daugherty A, Lu H. Chapter 18 - atherosclerosis. In: Ridgway N McLeod R, editors Biochemistry of lipids, lipoproteins and membranes. Sixth ed. Boston: Elsevier; 2016. p. 519–548.
  • Lei XJ, Ma AQ, Xi YT, et al. Inhibitory effects of blocking voltage-dependent potassium channel 1.3 on human monocyte-derived macrophage differentiation into foam cells. Beijing Da Xue Xue Bao Yi Xue Ban Journal of Peking University (Health Sciences) . 2006 Jun 18;38(3):257–261.
  • Yang Y, Wang YF, Yang XF, et al. Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J Lipid Res. 2013 Jan;54(1):34–43.
  • Kan XH, Gao HQ, Ma ZY, et al. Kv1.3 potassium channel mediates macrophage migration in atherosclerosis by regulating ERK activity. Arch Biochem Biophys. 2016 Feb 1;591:150–6. doi: 10.1016/j.abb.2015.12.013
  • Zhang Q, Liu L, Hu Y, et al. Kv1.3 channel is involved in ox-LDL-induced macrophage inflammation via ERK/NF-κB signaling pathway. Arch Biochem Biophys. 2022 Nov 15;730:109394.
  • Gao T, Raza SA, Ramesha S, et al. Temporal profiling of Kv1.3 channel expression in brain mononuclear phagocytes following ischemic stroke. J Neuroinflammation. 2019 Jun 1;16(1):116. doi: 10.1186/s12974-019-1510-8
  • Wu B, Liu JD, Bian E, et al. Blockage of Kv1.3 regulates macrophage migration in acute liver injury by targeting δ-catenin through RhoA signaling. Int J Biol Sci. 2020;16(4):671–681. doi: 10.7150/ijbs.38950
  • Khemili D, Valenzuela C, Laraba-Djebari F, et al. Differential effect of androctonus australis hector venom components on macrophage K(V) channels: electrophysiological characterization. Eur Biophys J. 2019 Jan;48(1):1–13.
  • Deng Z, Zeng Q, Tang J, et al. Anti-inflammatory effects of FS48, the first potassium channel inhibitor from the salivary glands of the flea xenopsylla cheopis. J Biol Chem. 2021 Jan;296:100670.
  • Wang Z, Sang M, Zhang Y, et al. BmKK2, a thermostable Kv1.3 blocker from buthus martensii Karsch (BmK) scorpion, inhibits the activation of macrophages via Kv1.3-NF-kappaB- NLRP3 axis. J Ethnopharmacol. 2023 Oct 5;314:116624. doi: 10.1016/j.jep.2023.116624
  • Gomez-Budia M, Konttinen H, Saveleva L, et al. Glial smog: interplay between air pollution and astrocyte-microglia interactions. Neurochem Int. 2020 Jun;136:104715.
  • Cayabyab FS, Khanna R, Jones OT, et al. Suppression of the rat microglia Kv1.3 current by src-family tyrosine kinases and oxygen/glucose deprivation. Eur J Neurosci. 2000 Jun;12(6):1949–60.
  • Pannasch U, Farber K, Nolte C, et al. The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. Mol Cell Neurosci. 2006 Dec;33(4):401–11.
  • Kotecha SA, Schlichter LC. A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci. 1999 Dec 15;19(24):10680–93. doi: 10.1523/JNEUROSCI.19-24-10680.1999
  • Anton R, Ghenghea M, Ristoiu V, et al. Potassium channels Kv1.3 and Kir2.1 but not Kv1.5 contribute to BV2 cell line and primary microglial migration. Int J Mol Sci. 2021 Feb 19;22(4):2081. doi: 10.3390/ijms22042081
  • Grimaldi A, D’Alessandro G, Di Castro MA, et al. Kv1.3 activity perturbs the homeostatic properties of astrocytes in glioma. Sci Rep. 2018 May 16;8(1):7654. doi: 10.1038/s41598-018-25940-5
  • Nguyen HM, di Lucente J, Chen YJ, et al. Biophysical basis for Kv1.3 regulation of membrane potential changes induced by P2X4-mediated calcium entry in microglia. Glia. 2020 Nov;68(11):2377–2394.
  • Rangaraju S, Raza SA, Pennati A, et al. A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. J Neuroinflammation. 2017 Jun 26;14(1):128. doi: 10.1186/s12974-017-0906-6
  • Fordyce CB, Jagasia R, Zhu X, et al. Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci. 2005 Aug 3;25(31):7139–49. doi: 10.1523/JNEUROSCI.1251-05.2005
  • Schilling T, Eder C. Effects of kinase inhibitors on TGF-beta induced upregulation of Kv1.3 K+ channels in brain macrophages. Pflugers Arch. 2003 Dec;447(3):312–315. doi: 10.1007/s00424-003-1155-3
  • Schilling T, Quandt FN, Cherny VV, et al. Upregulation of Kv1.3 K(+) channels in microglia deactivated by TGF-beta. Am J Physiol Cell Physiol. 2000 Oct;279(4):C1123–34.
  • Lively S, Lam D, Wong R, et al. Comparing effects of transforming growth factor β1 on microglia from rat and mouse: transcriptional profiles and potassium channels. Front Cell Neurosci. 2018;12:115. doi: 10.3389/fncel.2018.00115
  • Siddiqui TA, Lively S, Schlichter LC. Complex molecular and functional outcomes of single versus sequential cytokine stimulation of rat microglia. J Neuroinflammation. 2016 Mar 24;13(1):66. doi: 10.1186/s12974-016-0531-9
  • Nguyen HM, Grossinger EM, Horiuchi M, et al. Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. Glia. 2017 Jan;65(1):106–121.
  • Charolidi N, Schilling T, Eder C, et al. Microglial Kv1.3 channels and P2Y12 receptors differentially regulate cytokine and chemokine release from brain slices of young adult and aged mice. PLoS One. 2015;10(5):e0128463. doi: 10.1371/journal.pone.0128463
  • Di Lucente J, Nguyen HM, Wulff H, et al. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia. 2018 Sep;66(9):1881–1895.
  • Ma DC, Zhang NN, Zhang YN, et al. Kv1.3 channel blockade alleviates cerebral ischemia/reperfusion injury by reshaping M1/M2 phenotypes and compromising the activation of NLRP3 inflammasome in microglia. Exp Neurol. 2020 Oct;332:113399.
  • Yuan X, Han S, Manyande A, et al. Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain. 2023 Feb;27(2):289–302.
  • Gao S, Zou X, Wang Z, et al. Bergapten attenuates microglia-mediated neuroinflammation and ischemic brain injury by targeting Kv1.3 and carbonyl reductase 1. Eur J Pharmacol. 2022 Oct 15;933:175242. doi: 10.1016/j.ejphar.2022.175242
  • Menteyne A, Levavasseur F, Audinat E, et al. Predominant functional expression of Kv1.3 by activated microglia of the hippocampus after status epilepticus. PLoS One. 2009 Aug 26;4(8):e6770. doi: 10.1371/journal.pone.0006770
  • Khanna R, Roy L, Zhu X, et al. K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol. 2001 Apr;280(4):C796–806.
  • Nicolazzo JA, Pan Y, Di Stefano I, et al. Blockade of microglial Kv1.3 potassium channels by the peptide HsTX1[R14A] attenuates lipopolysaccharide-mediated neuroinflammation. J Pharm Sci. 2022 Mar;111(3):638–647.
  • Rangaraju S, Gearing M, Jin LW, et al. Potassium channel Kv1.3 is highly expressed by microglia in human Alzheimer’s disease. J Alzheimers Dis. 2015;44(3):797–808. doi: 10.3233/JAD-141704
  • Chen YJ, Cui Y, Singh L, et al. The potassium channel Kv1.3 as a therapeutic target for immunocytoprotection after reperfusion. Ann Clin Transl Neurol. 2021 Oct;8(10):2070–2082.
  • Lee RD, Chen YJ, Singh L, et al. Immunocytoprotection after reperfusion with Kv1.3 inhibitors has an extended treatment window for ischemic stroke. Front Pharmacol. 2023;14:1190476. doi: 10.3389/fphar.2023.1190476
  • Chung S, Lee J, Joe EH, et al. Beta-amyloid peptide induces the expression of voltage dependent outward rectifying K+ channels in rat microglia. Neurosci Lett. 2001 Mar 9;300(2):67–70. doi: 10.1016/S0304-3940(01)01516-6
  • Maezawa I, Nguyen HM, Di Lucente J, et al. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer’s disease: preclinical proof of concept. Brain. 2018 Feb 1;141(2):596–612. doi: 10.1093/brain/awx346
  • Schilling T, Eder C. Amyloid-beta-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia. J Cell Physiol. 2011 Dec;226(12):3295–3302. doi: 10.1002/jcp.22675
  • Ramesha S, Rayaprolu S, Bowen CA, et al. Unique molecular characteristics and microglial origin of Kv1.3 channel-positive brain myeloid cells in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2013545118
  • Rangaraju S, Dammer EB, Raza SA, et al. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener. 2018 May 21;13(1):24. doi: 10.1186/s13024-018-0254-8
  • Pan Y, Kagawa Y, Sun J, et al. Peripheral administration of the Kv1.3-blocking peptide HsTX1[R14A] improves cognitive performance in senescence accelerated SAMP8 mice. Neurotherapeutics. 2023 May 24;20(4):1198–1214. doi: 10.1007/s13311-023-01387-z
  • Sarkar S, Nguyen HM, Malovic E, et al. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease. J Clin Invest. 2020 Aug 3;130(8):4195–4212. doi: 10.1172/JCI136174
  • Liu J, Xu C, Chen L, et al. Involvement of Kv1.3 and p38 MAPK signaling in HIV-1 glycoprotein 120-induced microglia neurotoxicity. Cell Death Dis. 2012 Jan 19;3(1):e254. doi: 10.1038/cddis.2011.140
  • Liu J, Xu P, Collins C, et al. HIV-1 Tat protein increases microglial outward K(+) current and resultant neurotoxic activity. PLoS One. 2013;8(5):e64904. doi: 10.1371/journal.pone.0064904
  • Elson A, Anuj A, Barnea-Zohar M, et al. The origins and formation of bone-resorbing osteoclasts. Bone. 2022 Nov;164:116538.
  • Komarova SV, Dixon SJ, Sims SM. Osteoclast ion channels: potential targets for antiresorptive drugs. Curr Pharm Des. 2001 May;7(8):637–654. doi: 10.2174/1381612013397799
  • Arkett SA, Dixon J, Yang JN, et al. Mammalian osteoclasts express a transient potassium channel with properties of Kv1.3. Recept Channels. 1994;2(4):281–293.
  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013 Mar;13(3):159–75. doi: 10.1038/nri3399
  • Immler R, Nadolni W, Bertsch A, et al. The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. Cardiovasc Res. 2022 Mar 25;118(5):1289–1302. doi: 10.1093/cvr/cvab133
  • Burn GL, Foti A, Marsman G, et al. The Neutrophil. Immunity. 2021 Jul 13;54(7):1377–1391. doi: 10.1016/j.immuni.2021.06.006
  • Immler R, Simon SI, Sperandio M. Calcium signalling and related ion channels in neutrophil recruitment and function. Eur J Clin Invest. 2018 Nov;48(Suppl 2):e12964. doi: 10.1111/eci.12964
  • Xu D, Lu W. Defensins: a double-edged sword in Host immunity. Front Immunol. 2020;11:764. doi: 10.3389/fimmu.2020.00764
  • Xie Z, Feng J, Yang W, et al. Human alpha-defensins are immune-related Kv1.3 channel inhibitors: new support for their roles in adaptive immunity. FASEB J. 2015 Oct;29(10):4324–4333.
  • Grimes D, Johnson R, Pashos M, et al. ORAI1 and ORAI2 modulate murine neutrophil calcium signaling, cellular activation, and host defense. Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24403–24414. doi: 10.1073/pnas.2008032117
  • Schlichter L, Sidell N, Hagiwara S. Potassium channels mediate killing by human natural killer cells. Proc Natl Acad Sci, USA. 1986 Jan 01;83(2):451–455.
  • Sidell N, Schlichter LC, Wright SC, et al. Potassium channels in human NK cells are involved in discrete stages of the killing process. J Immunol. 1986 Sep 1;137(5):1650–8. doi: 10.4049/jimmunol.137.5.1650
  • Koshy S, Wu D, Hu X, et al. Blocking KCa3.1 channels increases tumor cell killing by a subpopulation of human natural killer lymphocytes. PLoS One. 2013;8(10):e76740. doi: 10.1371/journal.pone.0076740
  • Schulte-Mecklenbeck A, Bittner S, Ehling P, et al. The two-pore domain K2 P channel TASK2 drives human NK-cell proliferation and cytolytic function. Eur J Immunol. 2015 Sep;45(9):2602–14.
  • Geng J, Wang Y, Zhang L, et al. The cajanine derivative LJ101019C regulates the proliferation and enhances the activity of NK cells via Kv1.3 channel-driven activation of the AKT/mTOR pathway. Phytomedicine. 2020 Jan;66:153113.
  • Chandy KG, Williams CB, Spencer RH, et al. A family of three mouse potassium channel genes with intronless coding regions. Science. 1990 Feb 23;247(4945):973–5. doi: 10.1126/science.2305265
  • Panyi G, Vamosi G, Bacso Z, et al. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1285–90. doi: 10.1073/pnas.0307421100
  • Wulff H, Calabresi PA, Allie R, et al. The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest. 2003 Jun;111(11):1703–1713.
  • Pang B, Zheng H, Shin DH, et al. TNF-alpha inhibits the CD3-mediated upregulation of voltage-gated K+ channel (Kv1.3) in human T cells. Biochem Biophys Res Commun. 2010 Jan 1;391(1):909–914. doi: 10.1016/j.bbrc.2009.11.162
  • Kang JA, Park SH, Jeong SP, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8771–6. doi: 10.1073/pnas.1502166113
  • Navarro-Perez M, Estadella I, Benavente-Garcia A, et al. The phosphorylation of Kv1.3: a modulatory mechanism for a multifunctional ion channel. Cancers (Basel). 2023 May 11;15(10):2716. doi: 10.3390/cancers15102716
  • Roig SR, Cassinelli S, Navarro-Perez M, et al. S-acylation-dependent membrane microdomain localization of the regulatory Kvbeta2.1 subunit. Cell Mol Life Sci. 2022 Apr 9;79(5):230. doi: 10.1007/s00018-022-04269-3
  • Capera J, Perez-Verdaguer M, Navarro-Perez M, et al. Kv1.3 controls mitochondrial dynamics during cell cycle progression. Cancers (Basel). 2021 Sep 4;13(17):4457. doi: 10.3390/cancers13174457
  • Capera J, Perez-Verdaguer M, Peruzzo R, et al. A novel mitochondrial Kv1.3-caveolin axis controls cell survival and apoptosis. Elife. 2021 Jul 1;10. doi: 10.7554/eLife.69099
  • Markakis I, Charitakis I, Beeton C, et al. Kv1.3 channel up-regulation in peripheral blood T lymphocytes of patients with multiple sclerosis. Front Pharmacol. 2021;12:714841. doi: 10.3389/fphar.2021.714841
  • Conforti L, Petrovic M, Mohammad D, et al. Hypoxia regulates expression and activity of Kv1.3 channels in T lymphocytes: a possible role in T cell proliferation. J Immunol. 2003 Jan 15;170(2):695–702. doi: 10.4049/jimmunol.170.2.695
  • Koni PA, Khanna R, Chang MC, et al. Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J Biol Chem. 2003 Oct 10;278(41):39443–51. doi: 10.1074/jbc.M304879200
  • Hajdu P, Martin GV, Chimote AA, et al. The C-terminus SH3-binding domain of Kv1.3 is required for the actin-mediated immobilization of the channel via cortactin. Mol Biol Cell. 2015 May 1;26(9):1640–51. doi: 10.1091/mbc.E14-07-1195
  • Szilagyi O, Boratko A, Panyi G, et al. The role of PSD-95 in the rearrangement of Kv1.3 channels to the immunological synapse. Pflugers Arch - Eur J Physiol. 2013 Sep;465(9):1341–53.
  • Panyi G, Varga Z, Gaspar R. Ion channels and lymphocyte activation. Immunol Lett. 2004 Mar 29;92(1–2):55–66. doi: 10.1016/j.imlet.2003.11.020
  • Levite M, Cahalon L, Peretz A, et al. Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and β1 integrins. J Exp Med. 2000 Apr 3;191(7):1167–1176. doi: 10.1084/jem.191.7.1167
  • Nicolaou SA, Neumeier L, Steckly A, et al. Localization of Kv1.3 channels in the immunological synapse modulates the calcium response to antigen stimulation in T lymphocytes. J Immunol. 2009 Nov 15;183(10):6296–302. doi: 10.4049/jimmunol.0900613
  • Nicolaou SA, Szigligeti P, Neumeier L, et al. Altered dynamics of Kv1.3 channel compartmentalization in the immunological synapse in systemic lupus erythematosus. J Immunol. 2007 Jul 1;179(1):346–56. doi: 10.4049/jimmunol.179.1.346
  • Toth A, Szilagyi O, Krasznai Z, et al. Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse. Immunol Lett. 2009 Jun 30;125(1):15–21. doi: 10.1016/j.imlet.2009.05.004
  • Capera J, Jainarayanan A, Navarro-Perez M, et al. Dynamics and spatial organization of Kv1.3 at the immunological synapse of human CD4+ T cells. Biophys J. 2023 Aug 18; doi: 10.1016/j.bpj.2023.08.011
  • Szabo I, Bock J, Jekle A, et al. A novel potassium channel in lymphocyte mitochondria. J Biol Chem. 2005 Apr 1;280(13):12790–8. doi: 10.1074/jbc.M413548200
  • Leanza L, Venturini E, Kadow S, et al. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium. 2015 Jul;58(1):131–8.
  • Leanza L, Romio M, Becker KA, et al. Direct pharmacological targeting of a mitochondrial ion channel selectively kills tumor cells in vivo. Cancer Cell. 2017 Apr 10;31(4):516–531 e10. doi: 10.1016/j.ccell.2017.03.003
  • Felzen B, Lavy R, Garcia M, et al. Interaction of cytotoxic T lymphocytes and guinea pig ventricular myocytes. Pharmacological modulation by blocking K+ currents in cytotoxic T lymphocytes. Circ Res. 1996 Feb;78(2):253–61.
  • Sharma B. Inhibition of the generation of cytotoxic lymphocytes by potassium ion channel blockers. Immunology. 1988 Sep;65(1):101–5.
  • Cahalan MD, Wulff H, Chandy KG. Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol. 2001 Jul;21(4):235–52. doi: 10.1023/A:1010958907271
  • Fung-Leung WP, Edwards W, Liu Y, et al. T cell subset and stimulation strength-dependent modulation of T cell activation by Kv1.3 blockers. PLoS One. 2017;12(1):e0170102. doi: 10.1371/journal.pone.0170102
  • Benoist C, Mathis D. Treg cells, life history, and diversity. Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a007021. doi: 10.1101/cshperspect.a007021
  • Orban C, Bajnok A, Vasarhelyi B, et al. Different calcium influx characteristics upon Kv1.3 and IKCa1 potassium channel inhibition in T helper subsets. Cytometry Pt A. 2014 Jul;85(7):636–41.
  • Vinnenberg L, Bock S, Hundehege P, et al. ImpacT of diverse ion channels on regulatory T cell functions. Cell Physiol Biochem. 2021 May 28;55(S3):145–156.
  • Varga Z, Csepany T, Papp F, et al. Potassium channel expression in human CD4+ regulatory and naive T cells from healthy subjects and multiple sclerosis patients. Immunol Lett. 2009 Jun 4;124(2):95–101. doi: 10.1016/j.imlet.2009.04.008
  • Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004 Apr 5;199(7):971–9. doi: 10.1084/jem.20031579
  • Wei L. Immunological aspect of cardiac remodeling: T lymphocyte subsets in inflammation-mediated cardiac fibrosis. Exp Mol Pathol. 2011 Feb;90(1):74–8. doi: 10.1016/j.yexmp.2010.10.004
  • Shao PP, Liu CJ, Xu Q, et al. Eplerenone reverses cardiac fibrosis via the suppression of tregs by inhibition of Kv1.3 channel. Front Physiol. 2018;9:899. doi: 10.3389/fphys.2018.00899
  • Salam AM. Selective aldosterone blockade with eplerenone in patients with congestive heart failure. Expert Opin Investig Drugs. 2003 Aug;12(8):1423–7. doi: 10.1517/13543784.12.8.1423
  • Zhang S, Wang X, Ju C, et al. Blockage of K(Ca)3.1 and Kv1.3 channels of the B lymphocyte decreases the inflammatory monocyte chemotaxis [research support, non-U.S. Gov’t]. Int Immunopharmacol. 2016 Feb;31:266–271.
  • Wulff H, Knaus HG, Pennington M, et al. K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol. 2004 Jul 15;173(2):776–86. doi: 10.4049/jimmunol.173.2.776
  • Vallejo-Gracia A, Bielanska J, Hernandez-Losa J, et al. Emerging role for the voltage-dependent K+ channel Kv1.5 in B-lymphocyte physiology: expression associated with human lymphoma malignancy. J Leukocyte Biol. 2013 Oct;94(4):779–89.
  • Wang LH, Wang N, Lu XY, et al. Rituximab inhibits Kv1.3 channels in human B lymphoma cells via activation of FcgammaRIIB receptors. Biochim Biophys Acta. 2012 Feb;1823(2):505–513.
  • Land J, Lintermans LL, Stegeman CA, et al. Kv1.3 channel blockade modulates the effector function of B cells in granulomatosis with polyangiitis. Front Immunol. 2017;8:1205. doi: 10.3389/fimmu.2017.01205
  • Moritoki Y, Lian ZX, Wulff H, et al. AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology. 2007 Feb;45(2):314–22.
  • de la Cruz A, Vera-Zambrano A, Peraza DA, et al. Fludarabine inhibits K(V)1.3 currents in human B lymphocytes. Front Pharmacol. 2017;8:177. doi: 10.3389/fphar.2017.00177
  • Severin F, Urbani A, Varanita T, et al. Pharmacological modulation of Kv1.3 potassium channel selectively triggers pathological B lymphocyte apoptosis in vivo in a genetic CLL model. J Exp Clin Cancer Res. 2022 Feb 16;41(1):64. doi: 10.1186/s13046-022-02249-w
  • Pennington MW, Beeton C, Galea CA, et al. Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes. Mol Pharmacol. 2009 Apr;75(4):762–73. doi: 10.1124/mol.108.052704.
  • Toldi G, Munoz L, Herrmann M, et al. The effects of Kv1.3 and IKCa1 channel inhibition on cytokine production and calcium influx of T lymphocytes in rheumatoid arthritis and ankylosing spondylitis. Immunol Res. 2016 Apr;64(2):627–31. doi: 10.1007/s12026-015-8683-8.
  • Tarcha EJ, Olsen CM, Probst P, et al. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: a randomized phase 1b trial. PLoS One. 2017;12(7):e0180762. doi: 10.1371/journal.pone.0180762.
  • Lioudyno V, Abdurasulova I, Negoreeva I, et al. A common genetic variant rs2821557 in KCNA3 is linked to the severity of multiple sclerosis. J Neurosci Res. 2021 Jan;99(1):200–208.
  • Zhao Y, Qiu W, Liu J, et al. Blockade of Kv1.3 potassium channel inhibits CD8(+) T cell-mediated neuroinflammation via PD-1/Blimp-1 signaling. FASEB J. 2020 Nov;34(11):15492–15503.
  • Beeton C, Pennington MW, Wulff H, et al. Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol. 2005 Apr;67(4):1369–81.
  • Nicolaou SA, Neumeier L, Takimoto K, et al. Differential calcium signaling and Kv1.3 trafficking to the immunological synapse in systemic lupus erythematosus. Cell Calcium. 2010 Jan;47(1):19–28.
  • Poulopoulou C, Papadopoulou-Daifoti Z, Hatzimanolis A, et al. Glutamate levels and activity of the T cell voltage-gated potassium Kv1.3 channel in patients with systemic lupus erythematosus. Arthritis Rheum. 2008 May;58(5):1445–50.
  • Stevens A, Yuasa M, Peckham D, et al. THU0285 Dalazatide, an inhibitor of the Kv1.3 channel on activated effector memory T cells, has immunotherapy potential in systemic lupus erythematosus. Ann Rheumatic Dis. 2016;3(Suppl 1):A3–A4. doi: 10.1136/annrheumdis-2016-eular.5866
  • Bajnok A, Kaposi A, Kovacs L, et al. Analysis by flow cytometry of calcium influx kinetics in peripheral lymphocytes of patients with rheumatoid arthritis. Cytometry A. 2013 Mar;83(3):287–293.
  • Lian YT, Yang XF, Wang ZH, et al. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother Res. 2013 Sep;27(9):1321–7.
  • Zou Y, Zhao Q, Zhang X, et al. The immunosuppressive effects and mechanisms of loureirin B on collagen-induced arthritis in rats. Front Immunol. 2023;14:1094649. doi: 10.3389/fimmu.2023.1094649
  • Tanner MR, Tajhya RB, Huq R, et al. Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog. Clin Immunol. 2017 Jul;180:45–57.
  • Toldi G, Bajnok A, Dobi D, et al. The effects of Kv1.3 and IKCa1 potassium channel inhibition on calcium influx of human peripheral T lymphocytes in rheumatoid arthritis. Immunobiology. 2013 Mar;218(3):311–6.
  • Wang Y, Zhu D, Ortiz-Velez LC, et al. A bioengineered probiotic for the oral delivery of a peptide Kv1.3 channel blocker to treat rheumatoid arthritis. Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2211977120. doi: 10.1073/pnas.2211977120
  • Kang D, Li B, Luo L, et al. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016 Apr;123:73–80.
  • Ueyama A, Imura K, Kasai-Yamamoto E, et al. Kv1.3 blockers ameliorate allergic contact dermatitis by preferentially suppressing effector memory T cells in a rat model. Clin Exp Dermatol. 2013 Dec;38(8):897–903.
  • Toldi G, Vasarhelyi B, Kaposi A, et al. Lymphocyte activation in type 1 diabetes mellitus: the increased significance of Kv1.3 potassium channels. Immunol Lett. 2010 Sep 6;133(1):35–41. doi: 10.1016/j.imlet.2010.06.009
  • Orban C, Szabo D, Bajnok A, et al. Altered activation of peripheral CD8+ T cells in pediatric Crohn’s disease. Immunol Lett. 2017 May;185:48–51.
  • Valverde P, Kawai T, Taubman MA. Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res. 2004 Jan;19(1):155–64. doi: 10.1359/jbmr.0301213
  • Gazzerro P, Proto MC, Gangemi G, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012 Jan;64(1):102–46.
  • Chimote AA, Hajdu P, Sfyris AM, et al. Kv1.3 channels mark functionally competent CD8+ tumor-infiltrating lymphocytes in head and neck cancer. Cancer Res. 2017 Jan 1;77(1):53–61. doi: 10.1158/0008-5472.CAN-16-2372
  • Moogk D, da Silva IP, Ma MW, et al. Melanoma expression of matrix metalloproteinase-23 is associated with blunted tumor immunity and poor responses to immunotherapy. J Transl Med. 2014 Dec 10;12(1):342. doi: 10.1186/s12967-014-0342-7
  • Goggi JL, Khanapur S, Ramasamy B, et al. Imaging Kv1.3 expressing memory T cells as a marker of immunotherapy response. Cancers (Basel). 2022 Feb 26;14(5):1217. doi: 10.3390/cancers14051217
  • Newton HS, Gawali VS, Chimote AA, et al. PD1 blockade enhances K + channel activity, Ca 2+ signaling, and migratory ability in cytotoxic T lymphocytes of patients with head and neck cancer. J Immunother Cancer. 2020 Oct;8(2):e000844.
  • Ehring GR, Kerschbaum HH, Eder C, et al. A nongenomic mechanism for progesterone-mediated immunosuppression: inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes. J Exp Med. 1998 Nov 2;188(9):1593–602. doi: 10.1084/jem.188.9.1593
  • Triantafilou K, Ward CJK, Czubala M, et al. Differential recognition of HIV-stimulated IL-1beta and IL-18 secretion through NLR and NAIP signalling in monocyte-derived macrophages. PLoS Pathog. 2021 Apr;17(4):e1009417.
  • Dellis O, Bouteau F, Guenounou M, et al. HIV-1 gp160 decreases the K+ voltage-gated current from Jurkat E6.1 T cells by up-phosphorylation. FEBS Lett. 1999 Jan 25;443(2):187–91. doi: 10.1016/S0014-5793(98)01691-3
  • Grgic I, Wulff H, Eichler I, et al. Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Transplant Proc. 2009 Jul;41(6):2601–6.
  • Freidin MB, Bragina E, Saltykova IV, et al. Effect of additional disease (comorbidity) on association of allergic rhinitis with KCNE4 gene rs12621643 variant. Russ J Genet. 2013 Apr;49(4):541–544.
  • Trevino LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009 Sep;41(9):1001–5.
  • Selvakumar P, Fernandez-Marino AI, Khanra N, et al. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat Commun. 2022 Jul 4;13(1):3854. doi: 10.1038/s41467-022-31285-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.