95
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of non-receptor tyrosine kinases in epilepsy: significance and potential as therapeutic targets

, , ORCID Icon, , & ORCID Icon
Pages 283-294 | Received 05 Nov 2023, Accepted 12 Apr 2024, Published online: 21 Apr 2024

References

  • Shanker OR, Kumar S, Dixit AB, et al. Epigenetics of neurological diseases. Prog Mol Biol Transl Sci. 2023;198:165–184. doi: 10.1016/bs.pmbts.2023.01.006
  • Dixit AB, Tripathi M, Chandra PS, et al. Molecular biomarkers in drug-resistant epilepsy: facts & possibilities. Int J Surg. 2016 Dec;36:483–491. doi: 10.1016/j.ijsu.2015.08.029
  • Henshall DC, Kobow K. Epigenetics and epilepsy. Cold Spring Harb Perspect Med. 2015 Oct;5(12):a022731. doi: 10.1101/cshperspect.a022731
  • Kumar S, Shanker OR, Banerjee J, et al. Epigenetics in epilepsy. Prog Mol Biol Transl Sci. 2023;198:249–269. doi: 10.1016/bs.pmbts.2023.01.005
  • Chandra PS, Tripathi M. Epilepsy surgery: recommendations for India. Ann Indian Acad Neurol. 2010;13(2):87–93. doi:10.4103/0972-2327.64625
  • Drug-Resistant Epilepsy | NEJM. [cited 2023 Mar 5]. Available from: https://www.nejm.org/doi/full/10.1056/nejmra1004418
  • López González FJ, Rodríguez Osorio X, Gil-Nagel Rein A, et al. Epilepsia resistente a fármacos. Concepto y alternativas terapéuticas. Neurología. 2015 Sep;30(7):439–446.
  • Rakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol. 2009 Jul;5(7):380–391. doi: 10.1038/nrneurol.2009.80
  • Mechanisms of epileptogenesis and potential treatment targets - PubMed. [cited 2023 Mar 7]. Available from: https://pubmed.ncbi.nlm.nih.gov/21256455/
  • Temkin NR. Preventing and treating posttraumatic seizures: the human experience. Epilepsia. 2009 Feb;50(Suppl 2):10–13. doi: 10.1111/j.1528-1167.2008.02005.x
  • Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007 Jan;4(1):18–61. doi: 10.1016/j.nurt.2006.11.010
  • Lasoń W, Dudra-Jastrzębska M, Rejdak K, et al. Basic mechanisms of antiepileptic drugs and their pharmacokinetic/pharmacodynamic interactions: an update. Pharmacol Rep. 2011;63(2):271–292. doi: 10.1016/s1734-1140(11)70497-2
  • Synaptic roles of cyclin-dependent kinase 5 & its implications in epilepsy - PMC. [ Online]. [cited 2023 Feb 6]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501049/
  • Hanks SK, Hunter T. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification1. Faseb J. 1995;9(8):576–596. doi: 10.1096/fasebj.9.8.7768349
  • Siveen KS, Prabhu KS, Achkar IW, et al. Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products. Mol cancer. 2018 Feb;17(1):31.
  • Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells: critical reviews in clinical laboratory sciences. 2023 Feb 6; 51(3). Available from: https://www.tandfonline.com/doi/abs/10.3109/10408363.2013.874403
  • Sharma S, Carlson S, Gregory-Flores A, et al. Mechanisms of disease-modifying effect of saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor, in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis. 2021 Aug;156:105410. doi: 10.1016/j.nbd.2021.105410
  • A role for Src kinase in spontaneous epileptiform activity in the CA3 region of the hippocampus | PNAS. 2023 Feb 06. [Online]. doi: 10.1073/pnas.140219097
  • Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol. 2009 Apr;21(2):140–146. doi: 10.1016/j.ceb.2009.01.028
  • Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron. 1992 Sep;9(3):383–391. doi: 10.1016/0896-6273(92)90177-f
  • Wiggs CL, Martin A. Properties and mechanisms of perceptual priming. Curr Opin Neurobiol. 1998 Apr;8(2):227–233. doi: 10.1016/s0959-4388(98)80144-x
  • Flanagan JG, Vanderhaeghen P. The ephrins and Eph receptors in neural development. Annu Rev Neurosci. 1998;21(1):309–345. doi: 10.1146/annurev.neuro.21.1.309
  • Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu revi biochem. 2000;69(1):373–398. doi: 10.1146/annurev.biochem.69.1.373
  • Neet K, Hunter T. Vertebrate non-receptor protein-tyrosine kinase families. Genes Cells. 1996 Feb;1(2):147–169. doi: 10.1046/j.1365-2443.1996.d01-234.x
  • Kuriyan J, Cowburn D. Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct. 1997;26(1):259–288. doi: 10.1146/annurev.biophys.26.1.259
  • Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol. 2001 Jun;11(3):336–342. doi: 10.1016/s0959-4388(00)00216-6
  • Zhang F, Guo A, Liu C, et al. Phosphorylation and assembly of glutamate receptors after brain ischemia. Stroke. 2013 Jan;44(1):170–176. doi: 10.1161/STROKEAHA.112.667253
  • Kalia LV, Pitcher GM, Pelkey KA, et al. PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. Embo J. 2006 Oct;25(20):4971–4982. doi: 10.1038/sj.emboj.7601342
  • Moretti A. [Metabolic and neurochemical effects of nicergoline on the central nervous system. A review of the experimental studies (author’s transl)]. Arzneimittelforschung. 1979 Jan;29(8a):1213–1223.
  • Salter MW, Pitcher GM. Dysregulated Src upregulation of NMDA receptor activity: a common link in chronic pain and schizophrenia. FEBS J. 2012 Jan;279(1):2–11. doi: 10.1111/j.1742-4658.2011.08390.x
  • Zhu J-M, Li K-X, Cao S-X, et al. Increased NRG1-ErbB4 signaling in human symptomatic epilepsy. Sci Rep. 2017 Mar;7(1, Art. no. 1). doi: 10.1038/s41598-017-00207-7
  • Barki-Harrington L, Elkobi A, Tzabary T, et al. Tyrosine phosphorylation of the 2B subunit of the NMDA receptor is necessary for taste memory formation. J Neurosci. 2009 Jul;29(29):9219–9226. doi: 10.1523/JNEUROSCI.5667-08.2009
  • Jurd R, Tretter V, Walker J, et al. Fyn kinase contributes to tyrosine phosphorylation of the GABAA receptor γ2 subunit. Mol Cell Neurosci. 2010 Jun;44(2):129–134. doi: 10.1016/j.mcn.2010.03.002
  • Full article: Fyn gene silencing reduces oligodendrocytes apoptosis through inhibiting ERK1/2 phosphorylation in epilepsy. 2023 Feb 06. [Online]. doi: 10.1080/21691401.2019.1671428
  • Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy - PMC. [ Online]. [cited 2023 Feb 6]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753797/
  • A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle - PubMed. [ Online]. [cited 2023 Feb 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/8242749/
  • Focal adhesion kinase in the brain: novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice - PubMed. [ Online]. [cited 2023 Feb 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/7544314/
  • Focal adhesion molecules regulate astrocyte morphology and glutamate transporters to suppress seizure-like behavior - PMC. [ Online]. [cited 2023 Feb 6]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217442/
  • Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model. [ Online]. [cited 2023 Feb 6]. Available from: https://doi.org/10.3892/mmr.2014.2993.
  • Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells - PubMed. [ Online]. [cited 2023 Feb 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/18851712/
  • c-Abl in neurodegenerative disease - PubMed. [ Online]. [cited 2023 Feb 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/21728062/
  • Altered expression of c-Abl in patients with epilepsy and in a rat model - PubMed. [ Online]. [cited 2023 Feb 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/24623669/
  • Abl deregulates Cdk5 kinase activity and subcellular localization in Drosophila neurodegeneration | Cell Death & Differentiation. [ Online]. [cited 2023 Feb 6]. Available from: https://www.nature.com/articles/4402033
  • Differential regulation of excitatory synaptic transmission in the hippocampus and anterior temporal lobe by cyclin dependent kinase 5 (Cdk5) in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) - PubMed. [ Online]. [cited 2023 Feb 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/34217817/
  • Perez de Arce K, Varela-Nallar L, Farias O, et al. Synaptic clustering of PSD-95 is regulated by c-Abl through tyrosine phosphorylation. J Neurosci. 2010 Mar;30(10):3728–3738.
  • Singh S, Singh TG. Imatinib attenuates pentylenetetrazole kindled and pilocarpine induced recurrent spontaneous seizures in mice. Neurochem Res. 2023 Feb;48(2):418–434. doi: 10.1007/s11064-022-03758-y
  • Systems biology of JAK-STAT signalling in human malignancies - PubMed. [ Online]. [cited 2023 Feb 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/21762720/
  • Starr R, Hilton DJ. SOCS: suppressors of cytokine signalling. Int J Biochem Cell Biol. 1998 Oct;30(10):1081–1085. doi: 10.1016/s1357-2725(98)00067-3
  • Nicolas CS, Amici M, Bortolotto ZA, et al. The role of JAKSTAT signaling within the CNS. JAKSTAT. 2013 Jan;2(1):e22925.
  • Sun H, Ma D, Cheng Y, et al. The JAK-STAT signaling pathway in epilepsy. Curr Neuropharmacol. 2022 Dec. doi: 10.2174/1570159X21666221214170234
  • Raible DJ, Frey LC, Brooks-Kayal AR. Effects of JAK2-STAT3 signaling after cerebral insults. JAKSTAT. 2014 Jun;3(2):e29510. doi: 10.4161/jkst.29510
  • The effect of STAT3 Inhibition on status epilepticus and subsequent spontaneous seizures in the Pilocarpine Model of Acquired Epilepsy - PMC. [Online]. [cited 2023 Feb 6]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908775/
  • Li Y-Z, Zhang L, Liu Q, et al. The effect of single nucleotide polymorphisms of STAT3 on epilepsy in children. Eur Rev Med Pharmacol Sci. 2020 Jan;24(2):837–842. doi: 10.26355/eurrev_202001_20067
  • Hixson KM, Cogswell M, Brooks-Kayal AR, et al. Evidence for a non-canonical JAK/STAT signaling pathway in the synthesis of the brain’s major ion channels and neurotransmitter receptors. BMC Genomics. 2019 Aug;20(1):677. doi: 10.1186/s12864-019-6033-2
  • Prieto-Echagüe V, Miller WT. Regulation of ack-family nonreceptor tyrosine kinases. J Signal Transduct. 2011;2011:1–9. doi: 10.1155/2011/742372
  • Manser E, Leung T, Salihuddin H, et al. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature. 1993 May;363(6427):364–367. doi: 10.1038/363364a0
  • Mahajan K, Mahajan NP. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene. 2015 Aug;34(32):4162–4167. doi: 10.1038/onc.2014.350
  • Mutations in TNK2 in severe autosomal recessive infantile-onset epilepsy - PMC. [ Online]. [cited 2023 Feb 7]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527160/
  • The role of seizure-related SEZ6 as a susceptibility gene in febrile seizures - PMC. [ Online]. [cited 2023 Feb 7]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139179/
  • Shin G, Kang T-W, Yang S, et al. GENT: gene expression database of normal and tumor tissues. Cancer Inform. 2011;10:149–157. doi:10.4137/CIN.S7226
  • Fütterer K, Wong J, Grucza RA, et al. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. J Mol Biol. 1998 Aug;281(3):523–537. doi: 10.1006/jmbi.1998.1964
  • Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010 Jun;10(6):387–402. doi: 10.1038/nri2765
  • Taniguchi T, Kobayashi T, Kondo J, et al. Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem. 1991 Aug;266(24):15790–15796.
  • Wu C, Orozco C, Boyer J, et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009;10(11):R130. doi: 10.1186/gb-2009-10-11-r130
  • Trivedi A, Tercovich KG, Casbon AJ, et al. Neutrophil-specific deletion of Syk results in recruitment-independent stabilization of the barrier and a long-term improvement in cognitive function after traumatic injury to the developing brain. Neurobiol Dis. 2021 Sep;157:105430. doi: 10.1016/j.nbd.2021.105430
  • Kitaura J, Kawakami Y, Maeda-Yamamoto M, et al. Dysregulation of src family kinases in mast cells from epilepsy-resistant ASK versus epilepsy-prone EL Mice1. J Immunol. 2007 Jan;178(1):455–462. doi: 10.4049/jimmunol.178.1.455
  • Strittmatter SM. A Phase Ib multiple ascending dose study of the safety, tolerability, and CNS availability of AZD0530 in Alzheimer’s Disease, clinicaltrials.Gov, Clinical trial registration NCT01864655, Apr 2021. [ Online]. [cited 2023 May 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT01864655
  • Cancers | free full-text | FAK inhibition induces glioblastoma cell senescence-like state through p62 and p27. [ Online]. [cited 2023 May 5]. Available from: https://www.mdpi.com/2072-6694/12/5/1086
  • Grabenstatter HL, Del Angel YC, Carlsen J, et al. The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol Dis. 2014 Feb;62:73–85. doi: 10.1016/j.nbd.2013.09.003
  • Schweig JE, Yao H, Coppola K, et al. Spleen tyrosine kinase (SYK) blocks autophagic Tau degradation in vitro and in vivo. J Biol Chem. 2019 Sep;294(36):13378–13395.
  • Imam SZ, Trickler W, Kimura S, et al. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLOS ONE. 2013;8(5):e65129. doi: 10.1371/journal.pone.0065129
  • Werner MH, Olanow CW. Parkinson’s disease modification through abl kinase inhibition: an opportunity. Mov Disord. 2022 Jan;37(1):6–15. doi: 10.1002/mds.28858
  • Epilepsy-on-a-chip system for antiepileptic drug discovery - PMC. [ Online]. [cited 2023 Feb 7]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585967/
  • Sanna PP, Berton F, Cammalleri M, et al. A role for Src kinase in spontaneous epileptiform activity in the CA3 region of the hippocampus. Proc Natl Acad Sci USA. 2000 Jul;97(15):8653–8657. doi: 10.1073/pnas.140219097.
  • Solouki S, August A, Huang W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacol Ther. 2019 Sep;201:39–50. doi: 10.1016/j.pharmthera.2019.05.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.