93
Views
0
CrossRef citations to date
0
Altmetric
Review

Cardiac conduction diseases: understanding the molecular mechanisms to uncover targets for future treatments

, , , &
Pages 385-400 | Received 18 Nov 2023, Accepted 01 May 2024, Published online: 13 May 2024

References

  • Mesquita T, Zhang R, Cho JH, et al. Mechanisms of sinoatrial node dysfunction in heart failure with preserved ejection fraction. Circulation. 2022;145(1):45–60. doi: 10.1161/CIRCULATIONAHA.121.054976
  • Aránega A, De La Rosa AJ, Franco D. Cardiac conduction system anomalies and sudden cardiac death: insights from murine models. Front physiol. 2012;3:211. doi: 10.3389/fphys.2012.00211
  • Yokokawa T, Ichimura S, Hijioka N, et al. Case reports of a c.475G>T, p.E159* lamin A/C mutation with a family history of conduction disorder, dilated cardiomyopathy and sudden cardiac death. BMC Cardiovasc Disord. 2019;19(1):298. doi: 10.1186/s12872-019-01282-6
  • Keith A, Flack MW. The auriculo-ventricular bundle of the human heart. Annals noninvasive electrocardiol. 2004;9(4):400–409. doi:10.1111/j.1542-474X.2004.94003.x
  • Tawara S. Das Reizleitungssystem Des Säugetierherzens. Eine Anatomisch- Histologische Studie Über das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena: Gustav Fischer; 1906. (English translation–sponsored by Dr. Robert H. Anderson and translated by Dr. Kozo Suma and Dr. Munehiro Shimada. Imperial College press; 2000).
  • Stephenson RS, Atkinson A, Kottas P, et al. High resolution 3-dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci Rep. 2017;7(1):7188. doi: 10.1038/s41598-017-07694-8
  • Manoj P, Kim JA, Kim S, et al. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol. 2023;324(3):H259–h278. doi: 10.1152/ajpheart.00618.2022
  • Kurian T, Ambrosi C, Hucker W, et al. Anatomy and electrophysiology of the human AV node. Pacing clin electrophysiol. 2010;33(6):754–762. doi: 10.1111/j.1540-8159.2010.02699.x
  • Vigmond EJ, Stuyvers BD. Modeling our understanding of the his-purkinje system. Prog Biophys Mol Biol. 2016;120(1–3):179–188. doi: 10.1016/j.pbiomolbio.2015.12.013
  • Goodyer WR, Beyersdorf BM, Paik DT, et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution circulation research. Circ Res. 2019;125(4):379–397. doi: 10.1161/CIRCRESAHA.118.314578
  • Goodyer WR, Beyersdorf BM, Duan L, et al. In vivo visualization and molecular targeting of the cardiac conduction system. J Clin Investig. 2022;132(20). doi: 10.1172/JCI156955
  • Yaniv Y, Lakatta EG, Maltsev VA. From two competing oscillators to one coupled-clock pacemaker cell system. Front Physiol. 2015;6:28. doi: 10.3389/fphys.2015.00028
  • Maltsev VA, Lakatta EG. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res. 2008;77(2):274–284. doi: 10.1093/cvr/cvm058
  • Bychkov R, Juhaszova M, Tsutsui K, et al. Synchronized cardiac impulses emerge from heterogeneous local calcium signals within and among cells of pacemaker tissue. JACC Clin Electrophysiol. 2020;6(8):907–931. doi: 10.1016/j.jacep.2020.06.022
  • Maltsev AV, Stern MD, Lakatta EG, et al. A novel conceptual model of heart rate autonomic modulation based on a small-world modular structure of the sinoatrial node. Front Physiol. 2023;14:1276023. doi: 10.3389/fphys.2023.1276023
  • Fenske S, Hennis K, Rotzer RD, et al. cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells. Nat Commun. 2020;11(1):5555. doi: 10.1038/s41467-020-19304-9
  • Hanna P, LA J, ShivkumarKalyanam K. Cardiac neuroanatomy for the cardiac electrophysiologist. J Atr Fibrillation. 2020;13(1):2407. doi: 10.4022/jafib.2407
  • Hou Y, Scherlag BJ, Lin J, et al. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol. 2007;50(1):61–68. doi: 10.1016/j.jacc.2007.02.066
  • Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004–1021. doi: 10.1161/CIRCRESAHA.113.302549
  • Hennis K, Biel M, Wahl-Schott C, et al. Beyond pacemaking: HCN channels in sinoatrial node function. Prog Biophys Mol Biol. 2021;166:51–60. doi: 10.1016/j.pbiomolbio.2021.03.004
  • Jensen PN, Gronroos NN, Chen LY, et al. Incidence of and risk factors for sick sinus syndrome in the general population. J Am Coll Cardiol. 2014;64(6):531–538. doi: 10.1016/j.jacc.2014.03.056
  • Ahmed A, Pothineni Naga Venkata K, Charate R, et al. Inappropriate sinus tachycardia: etiology, pathophysiology, and management. J Am Coll Cardiol. 2022;79(24):2450–2462. doi: 10.1016/j.jacc.2022.04.019
  • van Eif VWW, Stefanovic S, van Duijvenboden K, et al. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development. 2019;146(8). doi: 10.1242/dev.173161
  • Torrente AG, Zhang R, Wang H, et al. Contribution of small conductance K(+) channels to sinoatrial node pacemaker activity: insights from atrial-specific Na(+)/Ca(2+) exchange knockout mice. J Physiol. 2017;595(12):3847–3865. doi: 10.1113/JP274249
  • Lai MH, Wu Y, Gao Z, et al. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Am J Physiol Heart Circ Physiol. 2014;307(9):H1327–38. doi: 10.1152/ajpheart.00354.2014
  • Pineda S, Nikolova-Krstevski V, Leimena C, et al. Conserved role of the large conductance calcium-activated potassium channeL, K(Ca)1.1, in sinus node function and arrhythmia risk. Circ Genom Precis Med. 2021;14(2):e003144. doi: 10.1161/CIRCGEN.120.003144
  • Petkova M, Atkinson AJ, Yanni J, et al. Identification of key small non-coding MicroRNAs controlling pacemaker mechanisms in the human sinus node. J Am Heart Assoc. 2020;9(20):e016590. doi: 10.1161/JAHA.120.016590
  • Li N, Artiga E, Kalyanasundaram A, et al. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node. Sci Rep. 2021;11(1):19328. doi: 10.1038/s41598-021-98580-x
  • D’Souza A, Pearman CM, Wang Y, et al. Targeting miR-423-5p reverses exercise training–induced HCN4 channel remodeling and sinus bradycardia. Circ Res. 2017;121(9):1058–1068. doi: 10.1161/CIRCRESAHA.117.311607
  • Zhang J, Wei F, Ding L, et al. MicroRNA-1976 regulates degeneration of the sinoatrial node by targeting Ca(v)1.2 and Ca(v)1.3 ion channels. J Mol Cell Cardiol. 2019;134:74–85. doi: 10.1016/j.yjmcc.2019.06.018
  • Yang B, Huang Y, Zhang H, et al. Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome. J Mol Cell Cardiol. 2020;138:291–303. doi: 10.1016/j.yjmcc.2019.10.009
  • Pereira CH, Bare DJ, Rosas PC, et al. The role of P21-activated kinase (Pak1) in sinus node function. J Mol Cell Cardiol. 2023;179:90–101. doi: 10.1016/j.yjmcc.2023.04.004
  • van Ouwerkerk AF, Hall AW, Kadow ZA, et al. Epigenetic and transcriptional networks underlying atrial fibrillation. Circ Res. 2020;127(1):34–50. doi: 10.1161/CIRCRESAHA.120.316574
  • Egom EE, Vella K, Hua R, et al. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol. 2015;593(5):1127–1146. doi: 10.1113/jphysiol.2014.283135
  • Lazzerini PE, Capecchi PL, Laghi-Pasini F, et al. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol. 2017;14(9):521–535. doi: 10.1038/nrcardio.2017.61
  • Brucato A, Cimaz R, Catelli L, et al. Anti-Ro–Associated sinus bradycardia in newborns. Circulation. 2000;102(11):e88–e89. doi: 10.1161/01.CIR.102.11.e88
  • Qu Y, Baroudi G, Yue Y, et al. Novel molecular mechanism involving α1D (Cav1.3) L-Type calcium channel in autoimmune-associated sinus bradycardia. Circulation. 2005;111(23):3034–3041. doi: 10.1161/CIRCULATIONAHA.104.517326
  • Lazzerini PE, Murthy Ginjupalli VK, Srivastava U, et al. Anti-Ro/SSA Antibodies Blocking Calcium Channels as a potentially reversible cause of atrioventricular block in adults. JACC Clin Electrophysiol. 2023;9(8):1631–1648. doi: 10.1016/j.jacep.2023.03.007
  • Chiale PA, Ferrari I, Mahler E, et al. Differential profile and biochemical effects of antiautonomic membrane receptor antibodies in ventricular arrhythmias and sinus node dysfunction. Circulation. 2001;103(13):1765–1771. doi: 10.1161/01.CIR.103.13.1765
  • Lee HC, Huang KT, Wang XL, et al. Autoantibodies and cardiac arrhythmias. Heart Rhythm. 2011;8(11):1788–1795. doi: 10.1016/j.hrthm.2011.06.032
  • Glukhov AV, Hage LT, Hansen BJ, et al. Sinoatrial node reentry in a canine chronic left ventricular infarct model: role of intranodal fibrosis and heterogeneity of refractoriness. Circ Arrhythm Electrophysiol. 2013;6(5):984–994. doi: 10.1161/CIRCEP.113.000404
  • Fedorowski A, Fanciulli A, Raj SR, et al. Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden. Nat Rev Cardiol. 2024. doi: 10.1038/s41569-023-00962-3
  • Aranyó J, Bazan V, Lladós G, et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci Rep. 2022;12(1):298. doi: 10.1038/s41598-021-03831-6
  • de Asmundis C, Pannone L, Lakkireddy D, et al. Targeted treatment of inappropriate sinoatrial node tachycardia based on electrophysiological and structural mechanisms. Am J Cardiol. 2022;183:24–32. doi: 10.1016/j.amjcard.2022.07.041
  • Kusumoto FM, Schoenfeld MH, Barrett C, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart rhythm society. Circulation. 2019;140(8):e382–e482. doi: 10.1161/CIR.0000000000000628
  • Alboni P, Ratto B, Cappato R, et al. Clinical effects of oral theophylline in sick sinus syndrome. Am Heart J. 1991;122(5):1361–1367. doi: 10.1016/0002-8703(91)90578-6
  • MacDonald EA, Rose RA, Quinn TA. Neurohumoral control of sinoatrial node activity and heart rate: insight from experimental models and findings from humans frontiers in physiology. Front Physiol. 2020;11:170. doi: 10.3389/fphys.2020.00170
  • Sonoura T, Kodera S, Shakya S, et al. Efficacy of cilostazol for sick sinus syndrome to avoid permanent pacemaker implantation: a retrospective case-control study. J Cardiol. 2019;74(4):328–332. doi: 10.1016/j.jjcc.2019.03.007
  • Choudhury M, Boyett MR, Morris GM. Biology of the Sinus Node and its disease arrhythm. Electrophysiol Rev. 2015;4(1):28–34. doi: 10.15420/aer.2015.4.1.28
  • Cappato R, Castelvecchio S, Ricci C, et al. Clinical efficacy of Ivabradine in patients with inappropriate sinus tachycardia: a prospective, randomized, placebo-controlled, Double-Blind Crossover Evaluation. J Am Colle Cardiol. 2012;60(15):1323–1329. doi: 10.1016/j.jacc.2012.06.031
  • Ptaszynski P, Kaczmarek K, Ruta J, et al. Metoprolol succinate vs. ivabradine in the treatment of inappropriate sinus tachycardia in patients unresponsive to previous pharmacological therapy. EP Europace. 2012;15(1):116–121. doi: 10.1093/europace/eus204
  • Robinson RB, Brink PR, Cohen IS, et al. If and the biological pacemaker. Pharmacol Res. 2006;53(5):407–415. doi: 10.1016/j.phrs.2006.03.007
  • Cingolani E, Goldhaber JI, Marbán E. Next-generation pacemakers: from small devices to biological pacemakers. Nat Rev Cardiol. 2018;15(3):139–150. doi: 10.1038/nrcardio.2017.165
  • Clark BA, Prystowsky EN. Electrocardiography of atrioventricular block. Cardiol Clin. 2023;41(3):307–313. doi: 10.1016/j.ccl.2023.03.007
  • Katritsis DG, Camm AJ. Atrioventricular nodal reentrant tachycardia. Circulation. 2010;122(8):831–840. doi: 10.1161/CIRCULATIONAHA.110.936591
  • Rudbeck-Resdal J, Christiansen MK, Johansen JB, et al. Aetiologies and temporal trends of atrioventricular block in young patients: a 20-year nationwide study europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. Europace. 2019;21(11):1710–1716. doi: 10.1093/europace/euz206
  • Asatryan B, Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. Europace. 2019;21(8):1145–1158. doi: 10.1093/europace/euz109
  • Rivaud MR, Marchal GA, Wolswinkel R, et al. Functional modulation of atrio-ventricular conduction by enhanced late sodium current and calcium-dependent mechanisms in Scn5a1798insD/+ mice. Europace. 2020;22(10):1579–1589. doi: 10.1093/europace/euaa127
  • Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31. doi: 10.1016/j.cell.2004.09.011
  • Ye D, Tester DJ, Zhou W, et al. A pore-localizing CACNA1C-E1115K missense mutation, identified in a patient with idiopathic QT prolongation, bradycardia, and autism spectrum disorder, converts the L-type calcium channel into a hybrid nonselective monovalent cation channel. Heart Rhythm. 2019;16(2):270–278. doi: 10.1016/j.hrthm.2018.08.030
  • Mangoni ME, Traboulsie A, Leoni AL, et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res. 2006;98(11):1422–1430. doi: 10.1161/01.RES.0000225862.14314.49
  • Suetterlin K, Männikkö R, Flossmann E, et al. Andersen-tawil syndrome presenting with complete heart block. J Neuromuscul Dis. 2021;8(1):151–154. doi: 10.3233/JND-200572
  • Zhou J, Ding WG, Makiyama T, et al. A novel HCN4 mutation, G1097W, is associated with atrioventricular block. Circ J. 2014;78(4):938–942. doi: 10.1253/circj.CJ-13-0996
  • Song MY, Yuan JX. Introduction to TRP channels: structure, function, and regulation. Adv Exp Med Biol. 2010;661:99–108.
  • Bianchi B, Ozhathil LC, Medeiros-Domingo A, et al. Four TRPM4 cation channel mutations found in cardiac conduction diseases lead to altered protein stability. Front Physiol. 2018;9:177. doi: 10.3389/fphys.2018.00177
  • Kruse M, Schulze-Bahr E, Corfield V, et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Investig. 2009;119(9):2737–2744. doi: 10.1172/JCI38292
  • Kim D, Shinohara T, Joung B, et al. Calcium dynamics and the mechanisms of atrioventricular junctional rhythm. J Am Coll Cardiol. 2010;56(10):805–812. doi: 10.1016/j.jacc.2010.03.070
  • Cheng H, Smith GL, Hancox JC, et al. Inhibition of spontaneous activity of rabbit atrioventricular node cells by KB-R7943 and inhibitors of sarcoplasmic reticulum Ca(2+ATPase). Cell Calcium. 2011;49(1):56–65. doi: 10.1016/j.ceca.2010.11.008
  • Hata Y, Ichimata S, Hirono K, et al. Pathological and comprehensive genetic investigation of autopsy cases of idiopathic bradyarrhythmia. Circ J. 2022;87(1):111–119. doi: 10.1253/circj.CJ-22-0397
  • Pipilas DC, Johnson CN, Webster G, et al. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes heart. Heart Rhythm. 2016;13(10):2012–2019. doi: 10.1016/j.hrthm.2016.06.038
  • Musa H, Murphy NP, Curran J, et al. Common human ANK2 variant confers in vivo arrhythmia phenotypes. Heart Rhythm. 2016;13(9):1932–1940. doi: 10.1016/j.hrthm.2016.06.012
  • Temple IP, Inada S, Dobrzynski H, et al. Connexins and the atrioventricular node heart. Heart Rhythm. 2013;10(2):297–304. doi: 10.1016/j.hrthm.2012.10.020
  • Tan NY, Witt CM, Oh JK, et al. Left bundle branch block current and future perspectives. Circ Arrhythm Electrophysiol. 2020;13(4):e008239. doi: 10.1161/CIRCEP.119.008239
  • Delmar M, Makita N. Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol. 2012;27(3):236–241. doi: 10.1097/HCO.0b013e328352220e
  • Seki A, Ishikawa T, Daumy X, et al. Progressive atrial conduction defects associated with bone malformation caused by a connexin-45 mutation. J Am Coll Cardiol. 2017;70(3):358–370. doi: 10.1016/j.jacc.2017.05.039
  • Zhang J, Vincent KP, Peter AK, et al. Cardiomyocyte expression of ZO-1 is essential for normal atrioventricular conduction but does not alter ventricular function. Circ Res. 2020;127(2):284–297. doi: 10.1161/CIRCRESAHA.119.315539
  • Liang Y, Sheikh F. Zippering up a role for ZO-1 in atrioventricular node conduction and disease. Circ Res. 2020;127(2):298–300. doi: 10.1161/CIRCRESAHA.120.317291
  • Kreuzberg MM, Schrickel JW, Ghanem A, et al. Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(15):5959–5964.
  • Hucker WJ, McCain ML, Laughner JI, et al. Connexin 43 expression delineates two discrete pathways in the human atrioventricular junction. Anatomical Record (Hoboken, NJ: 2007). 2008;291(2):204–215. doi: 10.1002/ar.20631
  • Nikolski VP, Jones SA, Lancaster MK, et al. Cx43 and dual-pathway electrophysiology of the atrioventricular node and atrioventricular nodal reentry. Circ Res. 2003;92(4):469–475. doi: 10.1161/01.RES.0000059304.97120.2F
  • Hulsmans M, Clauss S, Xiao L, et al. Macrophages Facilitate Electrical Conduction in the heart. Cell. 2017;169(3):510–522.e20. doi: 10.1016/j.cell.2017.03.050
  • Bhattacharyya S, Munshi NV. Development of the cardiac conduction system cold Spring harbor perspectives in biology. Cold Spring Harbor Perspect Biol. 2020;12(12):a037408. doi: 10.1101/cshperspect.a037408
  • Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004;117(3):373–386. doi: 10.1016/s0092-8674(04)00405-2
  • van Ouwerkerk AF, Bosada FM, van Duijvenboden K, et al. Patient-specific TBX5-G125R variant induces profound transcriptional deregulation and atrial dysfunction. circulation. 2022;145(8):606–619. doi: 10.1161/CIRCULATIONAHA.121.054347
  • Captur G, Arbustini E, Bonne G, et al. Lamin and the heart. Heart. 2018;104(6):468–479. doi: 10.1136/heartjnl-2017-312338
  • Berk JM, Tifft KE, Wilson KL. The nuclear envelope LEM-domain protein emerin. nucleus (Austin Tex). 2013;4(4):298–314. doi: 10.4161/nucl.25751
  • Jakobs PM, Hanson EL, Crispell KA, et al. Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. J Card Fail. 2001;7(3):249–256. doi: 10.1054/jcaf.2001.26339
  • Kong D, Zhan Y, Liu C, et al. a novel mutation of the EMD gene in a family with cardiac conduction abnormalities and a high incidence of sudden cardiac death. Pharmacogenomics personalized med[Cdata[pharmacogenomics and personalized Medicine]]. 2019;12:319–327. doi: 10.2147/PGPM.S221444
  • Lazzerini PE, Abbate A, Boutjdir M, et al. Fir(e)ing the rhythm: inflammatory cytokines and cardiac arrhythmias. JACC basic transl sci. 2023;8(6):728–750. doi: 10.1016/j.jacbts.2022.12.004
  • Lazzerini PE, Acampa M, Cupelli M, et al. Unravelling atrioventricular block risk in inflammatory diseases: systemic inflammation acutely delays atrioventricular conduction via a cytokine-mediated inhibition of Connexin43 expression. J Am Heart Assoc. 2021;10(21):e022095. doi: 10.1161/JAHA.121.022095
  • Zhu X, Wang Y, Xiao Y, et al. Arrhythmogenic mechanisms of interleukin-6 combination with hydroxychloroquine and azithromycin in inflammatory diseases. Sci Rep. 2022;12(1):1075. doi: 10.1038/s41598-022-04852-5
  • Verweij N, Mateo Leach I, van den Boogaard M, et al. Genetic determinants of P wave duration and PR segment. Circ Cardiovasc Genet. 2014;7(4):475–481. doi: 10.1161/CIRCGENETICS.113.000373
  • Guan H, Liu J, Ding J, et al. Arrhythmias in patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: incidences and implications. J Electrocardiol. 2021;65:96–101. doi: 10.1016/j.jelectrocard.2021.01.012
  • Lazzerini PE, Laghi-Pasini F, Boutjdir M, et al. Inflammatory cytokines and cardiac arrhythmias: the lesson from COVID-19 nature reviews immunology. Nat Rev Immunol. 2022;22(5):270–272. doi: 10.1038/s41577-022-00714-3
  • Lazzerini PE, Capecchi PL, Laghi-Pasini F, et al. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol. 2017;14(9):521–535. doi: 10.1038/nrcardio.2017.61
  • Wainwright B, Bhan R, Trad C, et al. Autoimmune-mediated congenital heart block. Best Pract Res Clin Obstet Gynaecol. 2020;64:41–51. doi: 10.1016/j.bpobgyn.2019.09.001
  • Akuka A, Ben-Shabat N, Watad A, et al. Association of anti-Ro seropositivity with cardiac rhythm and conduction disturbances. Eur Heart J. 2022;43(47):4912–4919. doi: 10.1093/eurheartj/ehac516
  • Korkmaz S, Zitron E, Bangert A, et al. Provocation of an autoimmune response to cardiac voltage-gated sodium channel NaV1.5 induces cardiac conduction defects in rats. J Am Coll Cardiol. 2013;62(4):340–349. doi: 10.1016/j.jacc.2013.04.041
  • Mesirca P, Nakao S, Nissen SD, et al. Intrinsic electrical remodeling underlies atrioventricular block in athletes. Circ Res. 2021;129(1):e1–e20. doi: 10.1161/CIRCRESAHA.119.316386
  • Willis R, Seif AM, McGwin G Jr., et al. Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: data from LUMINA (LXXV), a multiethnic US cohort. Lupus. 2012;21(8):830–835. doi: 10.1177/0961203312437270
  • Izmirly P, Kim M, Friedman DM, et al. Hydroxychloroquine to prevent recurrent congenital heart block in fetuses of anti-SSA/Ro-positive mothers. J Am Coll Cardiol. 2020;76(3):292–302. doi: 10.1016/j.jacc.2020.05.045
  • Lazzerini PE, Salvini V, Srivastava U, et al. Anti-Ca(v)1.2 Antibody-Induced Atrioventricular Block as a novel form in the adult: long-term pacemaker-sparing activity of Hydroxychloroquine. Circ Arrhythm Electrophysiol. 2022;15(7):e011042. doi: 10.1161/CIRCEP.122.011042
  • Lazzerini PE, Capecchi PL, Laghi-Pasini F. Isolated atrioventricular block of unknown origin in adults and anti-Ro/SSA antibodies: clinical evidence, putative mechanisms and therapeutic implications. Heart Rhythm. 2015;12(2):449–454. doi: 10.1016/j.hrthm.2014.10.031
  • Santos-Pardo I, Martínez-Morillo M, Villuendas R, et al. Anti-ro antibodies and reversible atrioventricular block the new. Engl J Med. 2013;368(24):2335–2337. doi: 10.1056/NEJMc1300484
  • Egom EE, Kruzliak P, Rotrekl V, et al. The effect of the sphingosine-1-phosphate analogue FTY720 on atrioventricular nodal tissue. J Cell Mol Med. 2015;19(7):1729–1734. doi: 10.1111/jcmm.12549
  • Sanna MG, Vincent KP, Repetto E, et al. Bitopic sphingosine 1-phosphate receptor 3 (S1P3) antagonist rescue from complete heart block: pharmacological and genetic evidence for direct S1P3 regulation of mouse cardiac conduction. Mol Pharmacol. 2016;89(1):176–186. doi: 10.1124/mol.115.100222
  • Knops RE, Reddy VY, Ip JE, et al. A dual-chamber leadless pacemaker the new. Engl J Med. 2023;388(25):2360–2370. doi: 10.1056/NEJMoa2300080
  • Aksu T, Gopinathannair R, Bozyel S, et al. Cardioneuroablation for treatment of atrioventricular block. Circ Arrhythm Electrophysiol. 2021;14(9):e010018. doi: 10.1161/CIRCEP.121.010018
  • Rivarola EWR, Hachul D, Wu TC, et al. Long-term outcome of cardiac denervation procedures: the anatomically guided septal approach. JACC Clin Electrophysiol. 2023;9(8):1344–1353. doi: 10.1016/j.jacep.2023.01.032
  • Maass K, Shekhar A, Lu J, et al. Isolation and characterization of embryonic stem cell-derived cardiac purkinje cells. Stem Cells. 2015;33(4):1102–1112. doi: 10.1002/stem.1921
  • Logantha S, Cai XJ, Yanni J, et al. Remodeling of the Purkinje Network in congestive heart failure in the rabbit. Circ Heart Fail. 2021;14(7):e007505. doi: 10.1161/CIRCHEARTFAILURE.120.007505
  • He BJ, Boyden P, Scheinman M. Ventricular arrhythmias involving the His-Purkinje system in the structurally abnormal heart. Pacing Clin Electrophysiol. 2018;41(9):1051–1059. doi: 10.1111/pace.13465
  • Watanabe H, Koopmann TT, Le Scouarnec S, et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Investig. 2008;118(6):2260–2268. doi: 10.1172/JCI33891
  • Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol. 2004;287(4):H1762–70. doi:10.1152/ajpheart.00346.2004
  • Simon AM, Goodenough DA, Paul DL. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol. 1998;8(5):295–298. doi:10.1016/S0960-9822(98)70113-7
  • Ladenvall P, Andersson B, Dellborg M, et al. Genetic variation at the human connexin 43 locus but not at the connexin 40 locus is associated with left bundle branch block. Open Heart. 2015;2(1):e000187. doi: 10.1136/openhrt-2014-000187
  • Maguy A, Le Bouter S, Comtois P, et al. Ion channel subunit expression changes in cardiac purkinje fibers: a potential role in conduction abnormalities associated with congestive heart failure circulation research. Circ Res. 2009;104(9):1113–1122. doi: 10.1161/CIRCRESAHA.108.191809
  • Peng ML, Fu Y, Zhang Y, et al. Recovery of complete left bundle branch block in a dilated cardiomyopathy patient after treatment with sacubitril/valsartan: a case report. Medicine (Baltimore). 2022;101(27):e29330. doi: 10.1097/MD.0000000000029330
  • Abudan A, Parimi N, Sami F, et al. Abstract 16271: resolution of left bundle branch block with Sacubitril/Valsartan in patients with heart failure with reduced ejection fraction. Circulation. 2020;142(Suppl_3):A16271–A16271. doi: 10.1161/circ.142.suppl_3.16271
  • Chung MK, Patton KK, Lau C-P, et al. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm. 2023;20(9):e17–e91. doi: 10.1016/j.hrthm.2023.03.1538
  • Arnold AD, Shun-Shin MJ, Ali N, et al. Contributions of atrioventricular delay shortening and ventricular resynchronization to hemodynamic benefits of biventricular pacing. JACC Clin Electrophysiol. 2023;9(1):117–119. doi: 10.1016/j.jacep.2022.07.024
  • Jones S, Lumens J, Sohaib SMA, et al. Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. Europace. 2017;19(7):1178–1186. doi: 10.1093/europace/euw136
  • Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure the new. Engl J Med. 2002;346(24):1845–1853. doi: 10.1056/NEJMoa013168
  • Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure the new. Engl J Med. 2004;350(21):2140–2150. doi: 10.1056/NEJMoa032423
  • Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure the new. N Engl J Med. 2005;352(15):1539–1549. doi: 10.1056/NEJMoa050496
  • Higgins SL, Hummel JD, Niazi IK, et al. Cardiac resynchronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias. J Am Coll Cardiol. 2003;42(8):1454–1459. doi: 10.1016/S0735-1097(03)01042-8
  • Kindermann M, Hennen B, Jung J, et al. Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction: the homburg biventricular pacing evaluation (HOBIPACE). J Am Coll Cardiol. 2006;47(10):1927–1937. doi: 10.1016/j.jacc.2005.12.056
  • Leclercq C, Walker S, Linde C, et al. Comparative effects of permanent biventricular and right-univentricular pacing in heart failure patients with chronic atrial fibrillation. Eur Heart J. 2002;23(22):1780–1787. doi: 10.1053/euhj.2002.3232
  • Young JB, Abraham WT, Smith AL, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD trial. Jama. 2003;289(20):2685–2694. doi: 10.1001/jama.289.20.2685
  • Cazeau S, Leclercq C, Lavergne T, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay the new. Engl J Med. 2001;344(12):873–880. doi: 10.1056/NEJM200103223441202
  • Huang W, Su L, Wu S, et al. Long-term outcomes of his bundle pacing in patients with heart failure with left bundle branch block. Heart. 2019;105(2):137–143. doi: 10.1136/heartjnl-2018-313415
  • Arnold AD, Shun-Shin MJ, Keene D, et al. His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block. J Am Coll Cardiol. 2018;72(24):3112–3122. doi: 10.1016/j.jacc.2018.09.073
  • Upadhyay GA, Vijayaraman P, Nayak HM, et al. On-treatment comparison between corrective his bundle pacing and biventricular pacing for cardiac resynchronization: a secondary analysis of the his-SYNC Pilot trial. Heart Rhythm. 2019;16(12):1797–1807. doi: 10.1016/j.hrthm.2019.05.009
  • Padala SK, Ellenbogen KA. Left bundle branch pacing is the best approach to physiological pacing. Heart Rhythm O2. 2020;1(1):59–67. doi: 10.1016/j.hroo.2020.03.002
  • Kim JA, Kim SE, Ellenbogen KA, et al. Clinical outcomes of conduction system pacing versus biventricular pacing for cardiac resynchronization therapy: a systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2023;34(8):1718–1729. doi: 10.1111/jce.15976

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.