107
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Novel benzimidazole angiotensin receptor blockers with anti-SARS-CoV-2 activity equipotent to that of nirmatrelvir: computational and enzymatic studies

, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 437-459 | Received 13 Feb 2024, Accepted 29 May 2024, Published online: 07 Jun 2024

References

  • Gadanec LK, McSweeney KR, Qaradakhi T, et al. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci. 2021;22(3):992. doi: 10.3390/ijms22030992
  • Kate Gadanec L, Qaradakhi T, Renee McSweeney K, et al. Dual targeting of Toll-like receptor 4 and angiotensin-converting enzyme 2: a proposed approach to SARS-CoV-2 treatment. Future Med. 2021;16(4):205–209. doi: 10.2217/fmb-2021-0018
  • Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220. doi: 10.1038/s41586-020-2180-5
  • Feehan J, Apostolopoulos V. Is COVID-19 the worst pandemic? Maturitas. 2021;149:56–58. doi: 10.1016/j.maturitas.2021.02.001
  • Chavda VP, Kapadia C, Soni S, et al. A global picture: therapeutic perspectives for COVID-19. Immunotherapy. 2022;14(5):351–371. doi: 10.2217/imt-2021-0168
  • Burki T. The future of paxlovid for COVID-19. The lancet respiratory medicine. Lancet Respir Med. 2022;10(7):e68. doi: 10.1016/S2213-2600(22)00192-8
  • Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022;386(15):1397–1408. doi: 10.1056/NEJMoa2118542
  • Fischer W, Eron Jr JJ, Holman W, et al. Molnupiravir, an oral antiviral treatment for COVID-19. medRxiv. 2021 Jun 17:2021–06.
  • Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–520. doi: 10.1056/NEJMoa2116044
  • Tian L, Pang Z, Li M, et al. Molnupiravir and its antiviral activity against COVID-19. Front Immunol. 2022:13. doi: 10.3389/fimmu.2022.855496
  • Owen DR, Allerton CMN, Anderson AS, et al. An oral SARS-CoV-2 mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586–1593. doi: 10.1126/science.abl4784
  • Jeong JH, Chokkakula S, Min SC, et al. Combination therapy with nirmatrelvir and molnupiravir improves the survival of SARS-CoV-2 infected mice. Antiviral Research. 2022;208:105430.
  • Manns MP, Maasoumy B. Breakthroughs in hepatitis C research: from discovery to cure. Nat Rev Gastroenterol Hepatol. 2022;19(8):533–550. doi: 10.1038/s41575-022-00608-8
  • Tsai E. Review of Current and potential treatments for chronic hepatitis B virus infection. Gastroenterol Hepatol (N Y). 2021;17(8):367–376.
  • Timmermans PB, Duncia JV, Carini DJ, et al. Discovery of losartan, the first angiotensin II receptor antagonist. J Hum Hypertens. 1995;9(Suppl 5):S3–18.
  • Timmermans PBMWM. Angiotensin II receptor antagonists: an emerging new class of cardiovascular therapeutics. Hypertens Res. 1999;22(2):147–153. doi: 10.1291/hypres.22.147
  • Ridgway H, Chasapis CT, Kelaidonis K, et al. Understanding the driving forces that trigger mutations in SARS-CoV-2: mutational energetics and the role of arginine blockers in COVID-19 therapy. Viruses. 2022;14(5):1029. doi: 10.3390/v14051029
  • Ridgway H, Moore GJ, Mavromoustakos T, et al. Discovery of a new generation of angiotensin receptor blocking drugs: Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2. Computat Struct Biotechnol J. 2022;20:2091–2111. doi: 10.1016/j.csbj.2022.04.010
  • Vaduganathan M, Vardeny O, Michel T, et al. Renin–angiotensin–aldosterone system inhibitors in patients with covid-19. N Engl J Med. 2020;382(17):1653–1659. doi: 10.1056/NEJMsr2005760
  • Rico-Mesa JS, White A, Anderson AS. Outcomes in Patients with COVID-19 Infection Taking ACEI/ARB. Curr Cardiol Rep. 2020;22(5):5. doi: 10.1007/s11886-020-01291-4
  • Duarte M, Pelorosso F, Nicolosi LN, et al. Telmisartan for treatment of Covid-19 patients: An open multicenter randomized clinical trial. EClinicalMedicine. 2021;37:100962. doi: 10.1016/j.eclinm.2021.100962
  • Kakuta H, Sudoh K, Sasamata M, et al. Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor: comparison with other angiotensin II type 1 receptor blockers. Int J Clin Pharmacol Res. 2005;25(1):41–46.
  • Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126(12):1671–1681. doi: 10.1161/CIRCRESAHA.120.317134
  • Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17(2):116–129. doi: 10.1038/s41569-019-0244-8
  • Agelis G, Kelaidonis K, Resvani A, et al. Facile and efficient syntheses of a series of N-Benzyl and N-Biphenylmethyl substituted imidazole derivatives based on (E)-urocanic acid, as angiotensin II AT1 receptor blockers. Molecules. 2013;18(7):7510–7532. doi: 10.3390/molecules18077510
  • Agelis G, Resvani A, Durdagi S, et al. The discovery of new potent non-peptide Angiotensin II AT1 receptor blockers: A concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives. Eur J Med Chem. 2012;55:358–374. doi: 10.1016/j.ejmech.2012.07.040
  • Agelis G, Resvani A, Koukoulitsa C, et al. Rational design, efficient syntheses and biological evaluation of N, N′-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers. Eur J Med Chem. 2013;62:352–370. doi: 10.1016/j.ejmech.2012.12.044
  • Agelis G, Resvani A, Ntountaniotis D, et al. Interactions of the potent synthetic AT1 antagonist analog BV6 with membrane bilayers and mesoporous silicate matrices. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2013;1828(8):1846–1855. doi: 10.1016/j.bbamem.2013.03.009
  • Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. doi: 10.1038/nature02145
  • Gadanec LK, Swiderski J, Apostolopoulos V, et al. Existence of quantum pharmacology in Sartans: evidence in isolated rabbit iliac arteries. Int J Mol Sci. 2023;24(24):17559. doi: 10.3390/ijms242417559
  • Swiderski J, Gadanec LK, Apostolopoulos V, et al. Role of angiotensin II in cardiovascular diseases: introducing bisartans as a novel therapy for coronavirus 2019. Biomolecules. 2023;13(5):787. doi: 10.3390/biom13050787
  • Lemmin T, Kalbermatter D, Harder D, et al. Structures and dynamics of the novel S1/S2 protease cleavage site loop of the SARS-CoV-2 spike glycoprotein. J Struct Bio. 2020;4:100038. doi: 10.1016/j.yjsbx.2020.100038
  • Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6(7):899–909. doi: 10.1038/s41564-021-00908-w
  • Ferreira JC, Fadl S, Villanueva AJ, et al. Catalytic Dyad Residues His41 and Cys145 impact the catalytic activity and overall conformational fold of the main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Front Chem. 2021;9:491. doi: 10.3389/fchem.2021.692168
  • Ahmad B, Batool M, Ain QU, et al. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int J Mol Sci. 2021;22(17):9124. doi: 10.3390/ijms22179124
  • Moore GJ, Matsoukas JM. Angiotensin as a model for hormone – receptor interactions. Biosci Rep. 1985;5(5):407–416. doi: 10.1007/BF01116558
  • Moore GJ, Smitht JR, Baylis BW, et al. Design and Pharmacology of Peptide Mimetics. Adv Pharmacol. 1995;33:91–141.
  • Arnautova YA, Vorobjev YN, Vila JA, et al. Identifying native-like protein structures with scoring functions based on all-atom ECEPP force fields, implicit solvent models and structure relaxation. Proteins Struct Funct Bioinf. 2009;77(1):38–51. doi: 10.1002/prot.22414
  • Bertoni M, Kiefer F, Biasini M, et al. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep. 2017;7(1):1. doi: 10.1038/s41598-017-09654-8
  • Duan Y, Wu C, Chowdhury S, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 2003;24(16):1999–2012. doi: 10.1002/jcc.10349
  • Maier JA, Martinez C, Kasavajhala K, et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696–3713. doi: 10.1021/acs.jctc.5b00255
  • Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23(16):1623–1641. doi: 10.1002/jcc.10128
  • Trott O, Olson AJ, Vina A. Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;NA-NA:455–461.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174. doi: 10.1002/jcc.20035
  • Abagyan R, Totrov M. Biased probability monte carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994;235(3):983–1002. doi: 10.1006/jmbi.1994.1052
  • Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins Struct Funct Bioinf. 2002;47(3):393–402. doi: 10.1002/prot.10104
  • Krieger E, Vriend G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 2014;30(20):2981–2982. doi:10.1093/bioinformatics/btu426
  • Krieger E, Nielsen JE, Spronk CAEM, et al. Fast empirical pKa prediction by Ewald summation. J Mol Graphics Modell. 2006;25(4):481–486. doi: 10.1016/j.jmgm.2006.02.009
  • Hornak V, Abel R, Okur A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. proteins: structure, function, and bioinformatics. Proteins Struct Funct Bioinf. 2006;65(3):712–725. doi: 10.1002/prot.21123
  • Govorkova EA, McCullers JA. Therapeutics Against Influenza. Springer. 2011;370:273–300.
  • Borgio JF, Schmidt J, Berghaus S, et al. Genotyping of familial Mediterranean fever gene (MEFV)—Single nucleotide polymorphism—Comparison of nanopore with conventional sanger sequencing. PLoS One. 2022;17(3):e0265622. doi: 10.1371/journal.pone.0265622
  • Liu Y, Hu G, Wang Y, et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. In: Proceedings of the National Academy of Sciences; 2021. p. 12, 118.
  • Melin AD, Orkin JD, Janiak MC, et al. Variation in predicted COVID‐19 risk among lemurs and lorises. American Journal of Primatology. 2021;83:e23255.
  • Panagiotopoulos A, Tseliou M, Karakasiliotis I, et al. p‐cymene impairs SARS‐CoV‐2 and Influenza a (H1N1) viral replication: In silico predicted interaction with SARS‐CoV‐2 nucleocapsid protein and H1N1 nucleoprotein. Pharmacol Res Perspec. 2021;9(4):4. doi: 10.1002/prp2.798
  • Keyaerts E, Vijgen L, Maes P, et al. Growth kinetics of SARS-coronavirus in Vero E6 cells. Biochem Biophys Res Commun. 2005;329(3):1147–1151. doi: 10.1016/j.bbrc.2005.02.085
  • Evangelou K, Veroutis D, Paschalaki K, et al. Pulmonary infection by SARS-CoV-2 induces senescence accompanied by an inflammatory phenotype in severe COVID-19: possible implications for viral mutagenesis. Eur Respir J. 2022;60(2):2102951. doi: 10.1183/13993003.02951-2021
  • Towler P, Staker B, Prasad SG, et al. ACE2 X-Ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004;279(17):17996–18007. doi: 10.1074/jbc.M311191200
  • Nami B, Ghanaeian A, Ghanaeian K, et al. The Effect of ACE2 Inhibitor MLN-4760 on the Interaction of SARS-CoV-2 Spike Protein with Human ACE2: A Molecular Dynamics Study. ChemRxiv. 2020.
  • Guy JL, Jackson RM, Jensen HA, et al. Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. FEBS J. 2005;272(14):3512–3520. doi: 10.1111/j.1742-4658.2005.04756.x
  • Pedrosa MA, Valenzuela R, Garrido-Gil P, et al. Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clin Sci. 2021;135(3):465–481. doi: 10.1042/CS20201511
  • Deaton DN, Gao EN, Graham KP, et al. Thiol-based angiotensin-converting enzyme 2 inhibitors: P1 modifications for the exploration of the S1 subsite. Bioorganic Med Chem Lett. 2008;18(2):732–737. doi: 10.1016/j.bmcl.2007.11.048
  • Jensen DA, Rao M, Zhang J, et al. The potential for using rare, native species in reforestation–a case study of yews (Taxaceae) in China. For Ecol Manage. 2021;482:118816. doi: 10.1016/j.foreco.2020.118816
  • Chen S, Li W, Zheng X, et al. Immunomagnetic microscopy of tumor tissues using quantum sensors in diamond. In: Proceedings of the National Academy of Sciences; 2022. p. 5, 119.
  • Lavie M, Dubuisson J, Belouzard S, et al. SARS-CoV-2 spike furin cleavage site and S2′ basic residues modulate the entry process in a Host cell-dependent manner. J Virol. 2022;96(13):13. doi: 10.1128/jvi.00474-22
  • Essalmani R, Jain J, Susan-Resiga D, et al. Distinctive roles of Furin and TMPRSS2 in SARS-CoV-2 infectivity. J Virol. 2022;96(8):8. doi: 10.1128/jvi.00128-22
  • Michaud V, Deodhar M, Arwood M, et al. ACE2 as a therapeutic target for COVID-19; its role in infectious processes and Regulation by modulators of the RAAS System. J Clin Med. 2020;9(7):7. doi: 10.3390/jcm9072096
  • Zaheer J, Kim H, Kim JS. Correlation of ACE2 with RAS components after Losartan treatment in light of COVID-19. Sci Rep. 2021;11(1):24397. doi: 10.1038/s41598-021-03921-5
  • Zheng YY, Ma YT, Zhang JY, et al. Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nat Rev Cardiol. 2020;17(5):313–314. doi: 10.1038/s41569-020-0369-9
  • Brooks SD, Smith RL, Moreira AS, et al. Oral Lisinopril Raises Tissue Levels of ACE2, the SARS-CoV-2 receptor, in healthy male and female mice. Front Pharmacol. 2022;13:798349. doi: 10.3389/fphar.2022.798349
  • Wu C, Ye D, Mullick AE, et al. Effects of Renin-Angiotensin Inhibition on ACE2 and TMPRSS2 Expression: Insights into COVID-19. bioRxiv. 2020.
  • Li Y, Zhou W, Yang L, et al. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. 2020;157:104833. doi: 10.1016/j.phrs.2020.104833
  • Guney C, Akar F. Epithelial and Endothelial Expressions of ACE2: SARS-CoV-2 Entry Routes. J Pharm Pharm Sci. 2021;24:84–93. doi: 10.18433/jpps31455
  • Mpekoulis G, Frakolaki E, Taka S, et al. Alteration of L-Dopa decarboxylase expression in SARS-CoV-2 infection and its association with the interferon-inducible ACE2 isoform. PLOS ONE. 2021;16(6):e0253458. doi: 10.1371/journal.pone.0253458
  • Guo J, Huang Z, Lin L, et al. Coronavirus Disease 2019 (COVID‐19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin‐converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc. 2020;9(7):7. doi: 10.1161/JAHA.120.016219
  • Nejat R, Sadr AS. Are losartan and imatinib effective against SARS-CoV2 pathogenesis? A pathophysiologic-based in silico study. Silico Pharmacol. 2020;9(1):1. doi: 10.1007/s40203-020-00058-7
  • Moore GJ, Pires JM, Kelaidonis K, et al. Receptor Interactions of Angiotensin II and Angiotensin Receptor Blockers—Relevance to COVID-19. Biomolecules. 2021;11(7):979. doi: 10.3390/biom11070979
  • Wingler LM, McMahon C, Staus DP, et al. Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell. 2019;176(3):479–490.e12. doi: 10.1016/j.cell.2018.12.006
  • Courvoisier E, Williams PA, Lim GK, et al. The crystal structure of l-arginine. Chem Comm. 2012;48(22):2761. doi: 10.1039/c2cc17203h
  • Zhang H, Unal H, Desnoyer R, et al. Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J Biol Chem. 2015;290(49):29127–29139. doi: 10.1074/jbc.M115.689000
  • Zhang H, Unal H, Gati C, et al. Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell. 2015;161(4):833–844. doi: 10.1016/j.cell.2015.04.011
  • Krieger E, Dunbrack RL, Hooft RWW, et al. Assignment of protonation states in proteins and ligands: combining pka prediction with hydrogen bonding network optimization. Computational Drug Discovery and Design. 2012;819:405–421.
  • Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36(13):996–1007. doi: 10.1002/jcc.23899
  • Muegge I. PMF Scoring Revisited. J Med Chem. 2005;49(20):5895–5902. doi: 10.1021/jm050038s
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084
  • Zhang YH, Hao QQ, Wang XY, et al. ACE2 activity was increased in atherosclerotic plaque by losartan: Possible relation to anti-atherosclerosis. J Renin Angiotensin Aldosterone Syst. 2015;16(2):292–300. doi: 10.1177/1470320314542829
  • Wysocki J, Lores E, Ye M, et al. Kidney and Lung ACE2 Expression after an ACE Inhibitor or an ang II receptor Blocker: implications for COVID-19. J Am Soc Nephrol. 2020;31(9):1941–1943. doi: 10.1681/ASN.2020050667
  • Brojakowska A, Narula J, Shimony R, et al. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system: JACC review topic of the Week. J Am Coll Cardiol. 2020;75(24):3085–3095. doi: 10.1016/j.jacc.2020.04.028
  • Banu N, Panikar SS, Leal LR, et al. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci. 2020;256:117905. doi: 10.1016/j.lfs.2020.117905
  • Fatouros PR, Roy U, Sur S. Modeling Substrate Coordination to Zn-Bound Angiotensin Converting Enzyme 2. International Journal of Peptide Research and Therapeutics. 2021;28:65.
  • Cui X, Chen W, Zhou H, et al. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front Pharmacol. 2021:12. doi: 10.3389/fphar.2021.664349
  • Augustine R, Abhilash S, Nayeem A, et al. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin–angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact. 2022;351:109738. doi: 10.1016/j.cbi.2021.109738
  • Ruiz-Ortega M, Lorenzo O, Ruperez M, et al. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension. 2001;38(6):1382–1387. doi: 10.1161/hy1201.100589
  • Meng J, Xiao G, Zhang J, et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020;9(1):757–760. doi: 10.1080/22221751.2020.1746200
  • McGree J, Hockham C, Kotwal S, et al. Controlled evaLuation of angiotensin receptor blockers for COVID-19 respIratorY disease (CLARITY): statistical analysis plan for a randomised controlled Bayesian adaptive sample size trial. Trials. 2022;23(1):361. doi: 10.1186/s13063-022-06167-2
  • Liu D, Wu P, Gu W, et al. Potential of angiotensin II receptor blocker telmisartan in reducing mortality among hospitalized patients with COVID-19 compared with recommended drugs. Cell Discov. 2022;8(1):91. doi: 10.1038/s41421-022-00454-7
  • Jardine MJ, Kotwal SS, Bassi A, et al. Angiotensin receptor blockers for the treatment of covid-19: pragmatic, adaptive, multicentre, phase 3, randomised controlled trial. BMJ. 2022;2022:379. doi:10.1136/bmj-2022-072175
  • Lukito AA, Widysanto A, Lemuel TAY, et al. Candesartan as a tentative treatment for COVID-19: A prospective non-randomized open-label study. Inter J Infect Dis. 2021;108:159–166. doi: 10.1016/j.ijid.2021.05.019
  • Berteotti A, Vacondio F, Lodola A, et al. Predicting the reactivity of nitrile-carrying compounds with cysteine: a combined computational and experimental study. ACS Med Chem Lett. 2014;5(5):501–505. doi: 10.1021/ml400489b
  • Turner RJ, Matsoukas JM, Moore GJ. Tyrosinate fluorescence lifetimes for oxytocin and vasopressin in receptor-simulating environments: relationship to biological activity and 1H-NMR data. Biochem Biophys Res Commun. 1990;171(3):996–1001. doi: 10.1016/0006-291X(90)90782-I
  • Turner RJ, Matsoukas JM, Moore GJ. Fluorescence properties of angiotensin II analogues in receptor-simulating environments: relationship between tyrosinate fluorescence lifetime and biological activity. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1991;1065(1):21–28. doi: 10.1016/0005-2736(91)90005-S
  • Matsoukas J, Cordopatis P, Belte U, et al. Importance of the N-terminal domain of the type II angiotensin antagonist sarmesin for receptor blockade. J Med Chem. 1988;31(7):1418–1421. doi: 10.1021/jm00402a028
  • Matsoukas JM, Agelis G, Hondrelis J, et al. Synthesis and biological activities of angiotensin II, sarilesin, and sarmesin analogs containing aze or pip at position 7. J Med Chem. 1993;36(7):904–911. doi: 10.1021/jm00059a016
  • Matsoukas JM, Bigam G, Zhou N, et al. I. 1H-NMR studies of [Sar1]angiotensin II conformation by nuclear Overhauser effect spectroscopy in the rotating frame (ROESY): Clustering of the aromatic rings in dimethylsulfoxide. Peptides. 1990;11(2):359–366. doi: 10.1016/0196-9781(90)90093-K
  • Matsoukas JM, Hondrelis J, Keramida M, et al. Role of the NH2-terminal domain of angiotensin II (ANG II) and [Sar1]angiotensin II on conformation and activity. NMR evidence for aromatic ring clustering and peptide backbone folding compared with [des-1,2,3]angiotensin II. J Biol Chem. 1994;269(7):5303–5312. doi: 10.1016/S0021-9258(17)37688-3
  • Hondrelis J, Lonergan G, Voliotis S, et al. One pot synthesis and conformation of N-t-butyloxycarbonyl, O-Phenacyl derivatives of proline and other secondary amino acids. Tetrahedron. 1990;46(2):565–576. doi: 10.1016/S0040-4020(01)85437-5
  • Blow DM, Birktoft JJ, Hartley BS. Role of a buried acid group in the mechanism of action of Chymotrypsin. Nature. 1969;221(5178):337–340. doi: 10.1038/221337a0
  • Moore GJ, Ridgway H, Kelaidonis K, et al. Actions of novel angiotensin receptor blocking drugs, bisartans, relevant for COVID-19 therapy: biased agonism at angiotensin receptors and the beneficial effects of neprilysin in the renin angiotensin system. Molecules. 2022;27(15):4854. doi: 10.3390/molecules27154854
  • Coe CL, Reyes TM, Pauza CD, et al. Quinolinic acid and lymphocyte subsets in the intrathecal compartment as biomarkers of SIV infection and Simian AIDS. AIDS Res Human Retroviruses. 1997;13(10):891–897. doi: 10.1089/aid.1997.13.891
  • Gahbauer S, Correy GJ, Schuller M, et al. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. In: Proceedings of the National Academy of Sciences; 2023. p. 2, 120.
  • Yan F, Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Computat Struct Biotechnol J. 2021;19:4868–4883. doi: 10.1016/j.csbj.2021.08.036
  • Fehr AR, Jankevicius G, Ahel I, et al. Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends Microbiol. 2018;26(7):598–610. doi: 10.1016/j.tim.2017.11.011
  • Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–2460. doi: 10.1084/jem.20070657

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.