67
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting inflammasome complexes as a novel therapeutic strategy for mood disorders

, , &
Pages 401-418 | Received 11 Mar 2024, Accepted 07 Jun 2024, Published online: 18 Jun 2024

References

  • Collaborators GMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9(2):137–150.
  • Malhi GS, Mann JJ. Course and prognosis. Lancet. 2018;392(10161):2299–2312. doi: 10.1016/S0140-6736(18)31948-2
  • Ghaemi SN. The Need for Non-profit Psychiatric Drug Discovery and Development. J Clin Psychopharmacol. 2022;42(6):518–522. doi: 10.1097/JCP.0000000000001607
  • Möller H-J, Falkai P. Is the serotonin hypothesis/theory of depression still relevant? Methodological reflections motivated by a recently published umbrella review. Eur Arch Psychiatry Clin Neurosci. 2023;273(1):1–3. doi: 10.1007/s00406-022-01549-8
  • Colpo GD, Leboyer M, Dantzer R, et al. Immune-based strategies for mood disorders: facts and challenges. Expert Rev Neurotherapeutics. 2018;18(2):139–152. doi: 10.1080/14737175.2018.1407242
  • Dantzer R, O’Connor JC, Lawson MA, et al. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011 Apr;36(3):426–436. doi: 10.1016/j.psyneuen.2010.09.012
  • Mithaiwala MN, Santana-Coelho D, Porter GA, et al. Neuroinflammation and the kynurenine pathway in CNS disease: molecular mechanisms and therapeutic implications. Cells. [2021 Jun 19];10(6):1548. doi: 10.3390/cells10061548
  • Wichers MC, Koek GH, Robaeys G, et al. IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry. 2005 Jun;10(6):538–544. doi: 10.1038/sj.mp.4001600
  • Raison CL, Dantzer R, Kelley KW, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010 Apr;15(4):393–403. doi: 10.1038/mp.2009.116
  • de Brito Toscano EC, Rocha NP, Lopes BN, et al. Neuroinflammation in Alzheimer’s disease: focus on NLRP1 and NLRP3 inflammasomes. Current Protein Pept Sci. 2021;22(8):584–598. doi: 10.2174/1389203722666210916141436
  • de Oliveira Furlam T, Roque IG, da Silva EWM, et al. Inflammasome activation and assembly in Huntington’s disease. Mol Immunol. 2022;151:134–142. doi: 10.1016/j.molimm.2022.09.002
  • Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol. 2013;3:414. doi: 10.3389/fimmu.2012.00414
  • Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann NY Acad Sci. 2019;1437(1):57–67. doi: 10.1111/nyas.13712
  • Teixeira AL, Martins LB, Berk M, et al. Severe psychiatric disorders and general medical comorbidities: inflammation-related mechanisms and therapeutic opportunities. Clin Sci. 2022;136(17):1257–1280. doi: 10.1042/CS20211106
  • Skaper SD, Facci L, Zusso M, et al. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. doi: 10.3389/fncel.2018.00072
  • Bauer ME, Teixeira AL. Neuroinflammation in mood disorders: role of regulatory immune cells. Neuroimmunomodulation. 2021;28(3):99–107. doi: 10.1159/000515594
  • Fries GR, Walss-Bass C, Bauer ME, et al. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav. 2019;177:12–19. doi: 10.1016/j.pbb.2018.12.006
  • Goldsmith D, Rapaport M, Miller B. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–1709. doi: 10.1038/mp.2016.3
  • Solmi M, Sharma MS, Osimo EF, et al. Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability. Brain Behav Immun. 2021;97:193–203. doi: 10.1016/j.bbi.2021.07.014
  • Zhang Y, Wang J, Ye Y, et al. Peripheral cytokine levels across psychiatric disorders: a systematic review and network meta-analysis. Prog Neuro Psychopharmacol Biol Psychiatry. 2023;125:110740. doi: 10.1016/j.pnpbp.2023.110740
  • Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153–160. doi: 10.1016/j.bbi.2006.09.006
  • Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008 Jan;9(1):46–56. doi: 10.1038/nrn2297
  • Maes M, Berk M, Goehler L, et al. Depression and sickness behavior are janus-faced responses to shared inflammatory pathways. BMC Med. 2012;10(1):1–19. doi: 10.1186/1741-7015-10-66
  • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Molecular Cell. 2002;10(2):417–426. doi: 10.1016/S1097-2765(02)00599-3
  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407. doi: 10.1038/nri.2016.58
  • Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci. [2017 Dec 1];130(23):3955–3963. doi: 10.1242/jcs.207365
  • Voet S, Srinivasan S, Lamkanfi M, et al. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019;11(6):e10248. doi: 10.15252/emmm.201810248
  • Mamik MK, Power C. Inflammasomes in neurological diseases: emerging pathogenic and therapeutic concepts. Brain. 2017;140(9):2273–2285. doi: 10.1093/brain/awx133
  • Venegas C, Heneka MT. Inflammasome‐mediated innate immunity in Alzheimer’s disease. Faseb J. 2019;33(12):13075–13084. doi: 10.1096/fj.201900439
  • de Brito Toscano EC, Vieira ÉLM, Dias BBR, et al. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res. 2020;1752:147230. doi: 10.1016/j.brainres.2020.147230
  • Swanton T, Cook J, Beswick JA, et al. Is targeting the inflammasome a way forward for neuroscience drug discovery? Slas discovery: advancing life sciences R&D. Slas Discovery. 2018;23(10):991–1017. doi: 10.1177/2472555218786210
  • Jones GH, Vecera CM, Pinjari OF, et al. Inflammatory signaling mechanisms in bipolar disorder. J Biomed Sci. 2021;28(1):1–22. doi: 10.1186/s12929-021-00742-6
  • Wang D, Wang H, Gao H, et al. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci. 2020;10(1):1–9. doi: 10.1186/s13578-020-00388-1
  • Aricioglu F, Ozkartal CS, Bastaskin T, et al. Antidepressant-like effects induced by chronic blockade of the purinergic 2X7 receptor through inhibition of non-like receptor protein 1 inflammasome in chronic unpredictable mild stress model of depression in rats. Clin Psychopharmacol Neurosci. 2019;17(2):261. doi: 10.9758/cpn.2019.17.2.261
  • Aricioğlu F, Yalcinkaya C, Ozkartal CS, et al. NLRP1-mediated antidepressant effect of ketamine in chronic unpredictable mild stress model in rats. Psychiatry Investig. 2020;17(4):283. doi: 10.30773/pi.2019.0189
  • Song A-Q, Gao B, Fan J-J, et al. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. J Neuroinflammation. 2020;17(1):1–13. doi: 10.1186/s12974-020-01848-8
  • Zhu Y-J, Huang J, Chen R, et al. Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behaviors in mice. J Neuroinflammation. 2024;21(1):6. doi: 10.1186/s12974-023-02995-4
  • Pereira CF, Santos AE, Moreira PI, et al. Is Alzheimer’s disease an inflammasomopathy? Ageing Res Rev. 2019;56:100966. doi: 10.1016/j.arr.2019.100966
  • W-T H, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285. doi: 10.1038/cr.2015.139
  • Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–665. doi: 10.1038/nature15514
  • Pelegrin P. P2X7 receptor and the NLRP3 inflammasome: partners in crime. Biochem Pharmacol. 2021;187:114385. doi: 10.1016/j.bcp.2020.114385
  • Di Virgilio F, Dal Ben D, Sarti AC, et al. The P2X7 receptor in infection and inflammation. Immunity. 2017;47(1):15–31. doi: 10.1016/j.immuni.2017.06.020
  • Savio L, De Andrade M, Da Silva C, et al. The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol. 2018;9:52. doi: 10.3389/fphar.2018.00052
  • Yang D, He Y, Muñoz-Planillo R, et al. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015 Nov 17;43(5):923–932. doi: 10.1016/j.immuni.2015.10.009
  • Yap JKY, Pickard BS, Chan EWL, et al. The role of neuronal NLRP1 inflammasome in Alzheimer’s disease: bringing neurons into the neuroinflammation game. Mol Neurobiol. 2019;56(11):7741–7753. doi: 10.1007/s12035-019-1638-7
  • Sastalla I, Crown D, Masters SL, et al. Transcriptional analysis of the three Nlrp1 paralogs in mice. BMC Genomics. 2013;14(1):1–10. doi: 10.1186/1471-2164-14-188
  • Levinsohn JL, Newman ZL, Hellmich KA, et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLOS Pathog. 2012;8(3):e1002638. doi: 10.1371/journal.ppat.1002638
  • Ewald SE, Chavarria-Smith J, Boothroyd JC, et al. NLRP1 is an inflammasome sensor for toxoplasma gondii. Infect Immun. 2014;82(1):460–468. doi: 10.1128/IAI.01170-13
  • Nettis MA, Pariante CM. Chapter Two – Is there neuroinflammation in depression? Understanding the link between the brain and the peripheral immune system in depression. In: Clow A, Smyth N, editors. Int Rev Neurobiol. Vol. 152. Academic Press; 2020. p. 23–40. doi: 10.1016/bs.irn.2019.12.004
  • Herman FJ, Pasinetti GM. Principles of inflammasome priming and inhibition: Implications for psychiatric disorders. Brain Behav Immun. 2018 Oct 01;73:66–84. doi: 10.1016/j.bbi.2018.06.010
  • Wheeler RD, Brough D, Le Feuvre RA, et al. Interleukin‐18 induces expression and release of cytokines from murine glial cells: interactions with interleukin‐1β. J Neurochem. 2003;85(6):1412–1420. doi: 10.1046/j.1471-4159.2003.01787.x
  • Fleshner M, Frank M, Maier SF. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology. 2017;42(1):36–45. doi: 10.1038/npp.2016.125
  • Toscano E, Rocha N, Lopes B, et al. Neuroinflammation in Alzheimer’s disease: focus on NLRP1 and NLRP3 Inflammasomes. Curr Protein Peptide Sci. 2021 Nov 16;22(8):584–598. doi: 10.2174/1389203722666210916141436
  • Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: A review. Eur J Neurosci. 2021;53(1):151–171. doi: 10.1111/ejn.14720
  • Kouba BR, Gil-Mohapel JS, Rodrigues AL. NLRP3 inflammasome: from pathophysiology to therapeutic target in major depressive disorder. Int J Mol Sci. 2022;24(1):133. doi: 10.3390/ijms24010133
  • Lénárt N, Brough D, Dénes Á. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab. 2016;36(10):1668–1685. doi: 10.1177/0271678X16662043
  • Milner MT, Maddugoda M, Götz J, et al. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr Opin Immunol. 2021 Feb;68:116–124. doi: 10.1016/j.coi.2020.10.011
  • Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun. 2013;31:105–114. doi: 10.1016/j.bbi.2012.12.008
  • Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013;11(1):1–16. doi: 10.1186/1741-7015-11-200
  • Swardfager W, Hennebelle M, Yu D, et al. Metabolic/inflammatory/vascular comorbidity in psychiatric disorders; soluble epoxide hydrolase (sEH) as a possible new target. Neurosci Biobehav Rev. 2018;87:56–66. doi: 10.1016/j.neubiorev.2018.01.010
  • Alcocer-Gómez E, de Miguel M, Casas-Barquero N, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun. 2014;36:111–117. doi: 10.1016/j.bbi.2013.10.017
  • Kim HK, Andreazza AC, Elmi N, et al. Nod-like receptor pyrin containing 3 (NLRP3) in the post-mortem frontal cortex from patients with bipolar disorder: a potential mediator between mitochondria and immune-activation. J Psychiatr Res. 2016;72:43–50. doi: 10.1016/j.jpsychires.2015.10.015
  • Valvassori SS, Resende WR, Dal‐Pont G, et al. Lithium ameliorates sleep deprivation‐induced mania‐like behavior, hypothalamic‐pituitary‐adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice. Bipolar Disord. 2017;19(4):246–258. doi: 10.1111/bdi.12503
  • Komenoi S, Suzuki Y, Asami M, et al. Microarray analysis of gene expression in the diacylglycerol kinase η knockout mouse brain. Biochem Biophys Rep. 2019;19:100660. doi: 10.1016/j.bbrep.2019.100660
  • Taene A, Khalili-Tanha G, Esmaeili A, et al. The association of major depressive disorder with activation of NLRP3 inflammasome, lipid peroxidation, and total antioxidant capacity. J Mol Neurosci. 2020;70(1):65–70. doi: 10.1007/s12031-019-01401-0
  • Li S, Fang Y, Zhang Y, et al. Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep. 2022;41(4):111532. doi: 10.1016/j.celrep.2022.111532
  • Su W-J, Zhang Y, Chen Y, et al. NLRP3 gene knockout blocks NF-κB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav Brain Res. 2017;322:1–8. doi: 10.1016/j.bbr.2017.01.018
  • Zhu W, Cao F-S, Feng J, et al. NLRP3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience. 2017;343:77–84. doi: 10.1016/j.neuroscience.2016.11.037
  • Dang R, Guo Y-Y, Zhang K, et al. Predictable chronic mild stress promotes recovery from LPS-induced depression. Mol Brain. 2019;12(1):1–12. doi: 10.1186/s13041-019-0463-2
  • Ribeiro FM, Camargos E, Souza L, et al. Animal models of neurodegenerative diseases. Rev Bras Psiquiatr. 2013;35(suppl 2):S82–S91. doi: 10.1590/1516-4446-2013-1157
  • Markov DD, Novosadova EV. Chronic unpredictable mild stress model of depression: possible sources of poor reproducibility and latent variables. Biology (Basel). 2022;11(11):1621. doi: 10.3390/biology11111621
  • Yin R, Zhang K, Li Y, et al. Lipopolysaccharide-induced depression-like model in mice: meta-analysis and systematic evaluation. Front Immunol. 2023;14:1181973. doi: 10.3389/fimmu.2023.1181973
  • Pan Y, Chen X-Y, Zhang Q-Y, et al. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun. 2014;41:90–100. doi: 10.1016/j.bbi.2014.04.007
  • Zhang Y, Liu L, Liu Y-Z, et al. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol. 2015;18(8):yv006. doi: 10.1093/ijnp/pyv006
  • Yue N, Huang H, Zhu X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation. 2017;14(1):1–15. doi: 10.1186/s12974-017-0865-y
  • Yang Y, Xing M-J, Li Y, et al. Reduced NLRP3 inflammasome expression in the brain is associated with stress resilience. Psychoneuroendocrinology. 2021;128:105211. doi: 10.1016/j.psyneuen.2021.105211
  • Wickens RA, Ver Donck L, MacKenzie AB, et al. Repeated daily administration of increasing doses of lipopolysaccharide provides a model of sustained inflammation-induced depressive-like behaviour in mice that is independent of the NLRP3 inflammasome. Behav Brain Res. 2018;352:99–108. doi: 10.1016/j.bbr.2017.07.041
  • Lan T, Bai M, Chen X, et al. iTRAQ-based proteomics implies inflammasome pathway activation in the prefrontal cortex of CSDS mice may influence resilience and susceptibility. Life Sci. 2020;262:118501. doi: 10.1016/j.lfs.2020.118501
  • Golden SA, Covington HE III, Berton O, et al. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6(8):1183–1191. doi: 10.1038/nprot.2011.361
  • He Y, Wu Z, Lan T, et al. The 25 (OH) D/VDR signaling may play a role in major depression. Biochem Biophys Res Commun. 2020;523(2):405–410. doi: 10.1016/j.bbrc.2019.12.071
  • Hollis F, Kabbaj M. Social defeat as an animal model for depression. Ilar J. 2014;55(2):221–232. doi: 10.1093/ilar/ilu002
  • Alcocer-Gómez E, Casas-Barquero N, Williams MR, et al. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder. Pharmacol Res. 2017;121:114–121. doi: 10.1016/j.phrs.2017.04.028
  • Cattaneo A, Ferrari C, Turner L, et al. Whole-blood expression of inflammasome-and glucocorticoid-related mRnas correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study. Transl Psychiatry. 2020;10(1):232. doi: 10.1038/s41398-020-00874-7
  • Han K-M, Choi KW, Kim A, et al. Association of DNA methylation of the NLRP3 gene with changes in cortical thickness in Major depressive disorder. Int J Mol Sci. 2022;23(10):5768. doi: 10.3390/ijms23105768
  • Cattaneo A, Ferrari C, Uher R, et al. Absolute measurements of macrophage migration inhibitory factor and interleukin-1-β mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol. 2016;19(10):yw045. doi: 10.1093/ijnp/pyw045
  • Beyer DK, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord. 2017;5(1):1–26. doi: 10.1186/s40345-017-0104-6
  • Howerton AR, Roland AV, Bale TL. Dorsal raphe neuroinflammation promotes dramatic behavioral stress dysregulation. J Neurosci. 2014;34(21):7113–7123. doi: 10.1523/JNEUROSCI.0118-14.2014
  • Isozaki T, Komenoi S, Lu Q, et al. Deficiency of diacylglycerol kinase η induces lithium‐sensitive mania‐like behavior. J Neurochem. 2016;138(3):448–456. doi: 10.1111/jnc.13661
  • García-Álvarez L, Caso J, García-Portilla M, et al. Regulation of inflammatory pathways in schizophrenia: a comparative study with bipolar disorder and healthy controls. Eur Psychiatry. 2018;47:50–59. doi: 10.1016/j.eurpsy.2017.09.007
  • Scaini G, Barichello T, Fries GR, et al. TSPO upregulation in bipolar disorder and concomitant downregulation of mitophagic proteins and NLRP3 inflammasome activation. Neuropsychopharmacology. 2019;44(7):1291–1299. doi: 10.1038/s41386-018-0293-4
  • von Mücke-Heim I-A, Deussing JM. The P2X7 receptor in mood disorders: Emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology. 2023;224:109366. doi: 10.1016/j.neuropharm.2022.109366
  • Howes OD, Thase ME, Pillinger T. Treatment resistance in psychiatry: state of the art and new directions. Mol Psychiatry. 2022;27(1):58–72. doi: 10.1038/s41380-021-01200-3
  • Liu Q, Zhang M-M, Guo M-X, et al. Inhibition of microglial NLRP3 with MCC950 attenuates microglial morphology and NLRP3/caspase-1/IL-1β signaling in stress-induced mice. J Neuroimmune Pharmacol. 2022;17(3–4):503–514. doi: 10.1007/s11481-021-10037-0
  • Li W, Niu L, Liu Z, et al. Inhibition of the NLRP3 inflammasome with MCC950 prevents chronic social isolation-induced depression-like behavior in male mice. Neurosci Lett. 2021;765:136290. doi: 10.1016/j.neulet.2021.136290
  • Liu D, Lv F, Min S, et al. Inhibition of NLRP3 inflammasome-mediated neuroinflammation alleviates electroconvulsive shock-induced memory impairment via regulation of hippocampal synaptic plasticity in depressive rats. Behav Brain Res. 2022;428:113879. doi: 10.1016/j.bbr.2022.113879
  • Xu Y, Sheng H, Bao Q, et al. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression-and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun. 2016;56:175–186. doi: 10.1016/j.bbi.2016.02.022
  • Yang F, Zhu W, Cai X, et al. Minocycline alleviates NLRP3 inflammasome-dependent pyroptosis in monosodium glutamate-induced depressive rats. Biochem Biophys Res Commun. 2020;526(3):553–559. doi: 10.1016/j.bbrc.2020.02.149
  • Zhang Y, Liu L, Peng YL, et al. Involvement of inflammasome activation in lipopolysaccharide‐induced mice depressive‐like behaviors. CNS Neurosci Ther. 2014;20(2):119–124. doi: 10.1111/cns.12170
  • Li J-M, Liu L-L, Su W-J, et al. Ketamine may exert antidepressant effects via suppressing NLRP3 inflammasome to upregulate AMPA receptors. Neuropharmacology. 2019;146:149–153. doi: 10.1016/j.neuropharm.2018.11.022
  • Yamanashi T, Iwata M, Kamiya N, et al. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep. 2017;7(1):7677. doi: 10.1038/s41598-017-08055-1
  • Kajitani N, Iwata M, Miura A, et al. Prefrontal cortex infusion of beta‐hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, produces antidepressant‐like effects in a rodent model of depression. Neuropsychopharmacol Rep. 2020;40(2):157–165. doi: 10.1002/npr2.12099
  • Camargo A, Dalmagro AP, Wolin IA, et al. The resilient phenotype elicited by ketamine against inflammatory stressors-induced depressive-like behavior is associated with NLRP3-driven signaling pathway. J Psychiatr Res. 2021;144:118–128. doi: 10.1016/j.jpsychires.2021.09.057
  • Fawzi SF, Michel HE, Menze ET, et al. Clotrimazole ameliorates chronic mild stress-induced depressive-like behavior in rats; crosstalk between the HPA, NLRP3 inflammasome, and Wnt/β-catenin pathways. Int Immunopharmacol. 2024;127:111354. doi: 10.1016/j.intimp.2023.111354
  • Gubert C, Fries GR, Pfaffenseller B, et al. Role of P2X7 receptor in an animal model of mania induced by D-amphetamine. Mol Neurobiol. 2016;53(1):611–620. doi: 10.1007/s12035-014-9031-z
  • Gubert C, Andrejew R, Leite CE, et al. P2X7 purinergic receptor is involved in the pathophysiology of mania: a preclinical study. Mol Neurobiol. 2020;57(3):1347–1360. doi: 10.1007/s12035-019-01817-0
  • Recourt K, van der Aart J, Jacobs G, et al. Characterisation of the pharmacodynamic effects of the P2X7 receptor antagonist JNJ-54175446 using an oral dexamphetamine challenge model in healthy males in a randomised, double-blind, placebo-controlled, multiple ascending dose trial. J Psychopharm. 2020;34(9):1030–1042. doi: 10.1177/0269881120914206
  • Coll RC, Hill JR, Day CJ. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019 Jun;15(6):556–559. doi: 10.1038/s41589-019-0277-7
  • Zhou X, Fernando SM, Pan AY, et al. Characterizing the NLRP3 inflammasome in mood disorders: overview, technical development, and measures of peripheral activation in adolescent patients. Int J Mol Sci. 2021;22(22):12513. doi: 10.3390/ijms222212513
  • Youm Y-H, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Med. 2015;21(3):263–269. doi: 10.1038/nm.3804
  • Bae HR, Kim DH, Park MH, et al. β-hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget. 2016;7(41):66444. doi: 10.18632/oncotarget.12119
  • Phelps JR, Siemers SV, El-Mallakh RS. The ketogenic diet for type II bipolar disorder. Neurocase. 2013;19(5):423–426. doi: 10.1080/13554794.2012.690421
  • Campbell IH, Campbell H. Ketosis and bipolar disorder: controlled analytic study of online reports. BJPsych Open. 2019;5(4):e58. doi: 10.1192/bjo.2019.49
  • Danan A, Westman EC, Saslow LR, et al. The ketogenic diet for refractory mental illness: a retrospective analysis of 31 inpatients. Front Psychiatry. 2022;13:1421. doi: 10.3389/fpsyt.2022.951376
  • Kovács Z, D’Agostino DP, Diamond D, et al. Therapeutic potential of exogenous ketone supplement induced ketosis in the treatment of psychiatric disorders: review of current literature. Front Psychiatry. 2019;10:363. doi: 10.3389/fpsyt.2019.00363
  • Bohnen JL, Wigstrom TP, Griggs AM, et al. Ketogenic-Mimicking Diet as a Therapeutic Modality for Bipolar Disorder: Biomechanistic Rationale and Protocol for a Pilot Clinical Trial. Nutrients. 2023;15(13):3068. doi: 10.3390/nu15133068
  • Abbasi J. Ketamine minus the trip: new hope for treatment-resistant depression. JAMA. 2017;318(20):1964–1966. doi: 10.1001/jama.2017.12975
  • Rodrigues NB, McIntyre RS, Lipsitz O, et al. Safety and tolerability of IV ketamine in adults with major depressive or bipolar disorder: results from the Canadian rapid treatment center of excellence. Expert Opin Drug Saf. 2020;19(8):1031–1040. doi: 10.1080/14740338.2020.1776699
  • Fancy F, Rodrigues NB, Di Vincenzo JD, et al. Real‐world effectiveness of repeated ketamine infusions for treatment‐resistant bipolar depression. Bipolar Disord. 2023;25(2):99–109. doi: 10.1111/bdi.13284
  • Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biological Psychiatry. 2008;63(4):349–352. doi: 10.1016/j.biopsych.2007.05.028
  • Koike H, Iijima M, Chaki S. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res. 2011;224(1):107–111. doi: 10.1016/j.bbr.2011.05.035
  • Zhang K, Xu T, Yuan Z, et al. Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast-acting antidepressant responses of ketamine. Sci Signaling. 2016;9(458):ra123–ra123. doi: 10.1126/scisignal.aai7884
  • Gao M, Rejaei D, Liu H. Ketamine use in current clinical practice. Acta Pharmacol Sin. 2016;37(7):865–872. doi: 10.1038/aps.2016.5
  • Short B, Fong J, Galvez V, et al. Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry. 2018;5(1):65–78. doi: 10.1016/S2215-0366(17)30272-9
  • Hu Y, Kung S, Ozerdem A, et al. Hypomania associated with high dose ketamine treatment. Bipolar Disord. 2021;23(4):426–428. doi: 10.1111/bdi.13059
  • Debom G, Gazal M, Soares MSP, et al. Preventive effects of blueberry extract on behavioral and biochemical dysfunctions in rats submitted to a model of manic behavior induced by ketamine. Brain Res Bull. 2016;127:260–269. doi: 10.1016/j.brainresbull.2016.10.008
  • Chaves VC, Soares MS, Spohr L, et al. Blackberry extract improves behavioral and neurochemical dysfunctions in a ketamine-induced rat model of mania. Neurosci Lett. 2020;714:134566. doi: 10.1016/j.neulet.2019.134566
  • Saljoughi S, Kalantar H, Azadnasab R, et al. Neuroprotective effects of dimethyl fumarate against manic-like behavior induced by ketamine in rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2023;396(11):3007–3016. doi: 10.1007/s00210-023-02505-6
  • Basso AM, Bratcher NA, Harris RR, et al. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res. 2009;198(1):83–90. doi: 10.1016/j.bbr.2008.10.018
  • Csölle C, Baranyi M, Zsilla G, et al. Neurochemical changes in the mouse hippocampus underlying the antidepressant effect of genetic deletion of P2X7 receptors. PLoS One. 2013;8(6):e66547. doi: 10.1371/journal.pone.0066547
  • Bhattacharya A, Wang Q, Ao H, et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ‐47965567. Br J Pharmacol. 2013;170(3):624–640. doi: 10.1111/bph.12314
  • Lord B, Aluisio L, Shoblock JR, et al. Pharmacology of a novel central nervous system–penetrant P2X7 antagonist JNJ-42253432. J Pharmacol Exp Ther. 2014;351(3):628–641. doi: 10.1124/jpet.114.218487
  • Iwata M, Ota KT, Li X-Y, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biological Psychiatry. 2016;80(1):12–22. doi: 10.1016/j.biopsych.2015.11.026
  • Zhang K, Liu J, You X, et al. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice. Neurosci Lett. 2016;613:60–65. doi: 10.1016/j.neulet.2015.12.043
  • Ruiz-Ruiz C, Calzaferri F, García AG. P2X7 receptor antagonism as a potential therapy in amyotrophic lateral sclerosis. Front Mol Neurosci. 2020;13:93. doi: 10.3389/fnmol.2020.00093
  • Csölle C, Andó RD, Kittel A, et al. The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int J Neuropsychopharmacol. 2013;16(1):213–233. doi: 10.1017/S1461145711001933
  • Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a target for the development of treatments for bipolar disorder. CNS Drugs. 2022;36(8):787–801. doi: 10.1007/s40263-022-00934-0
  • Martins LB, Braga Tibaes JR, Sanches M, et al. Nutrition-based interventions for mood disorders. Expert Rev Neurotherapeutics. 2021;21(3):303–315. doi: 10.1080/14737175.2021.1881482
  • Li R, Wang X, Qin T, et al. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. [2016 Jan 1];296:318–325. doi: 10.1016/j.bbr.2015.09.031
  • Liu S, Xu S, Wang Z, et al. Anti-depressant-like effect of sinomenine on chronic unpredictable mild stress-induced depression in a mouse model. Med Sci Monit. 2018;24:7646. doi: 10.12659/MSM.908422
  • Zhang ChenYiyu ZC, Zeng MinJie ZM, Zhou LiPing ZL, et al. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression. Int Immunopharmacol. 2018;64:175–182. doi: 10.1016/j.intimp.2018.09.001
  • Fu S, Wang J, Hao C, et al. Tetramethylpyrazine ameliorates depression by inhibiting TLR4-NLRP3 inflammasome signal pathway in mice. Psychopharmacology. 2019;236(7):2173–2185. doi: 10.1007/s00213-019-05210-6
  • Zhang W-Y, Guo Y-J, Han W-X, et al. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. International Immunopharmacology. 2019;67:138–144. doi: 10.1016/j.intimp.2018.12.012
  • Ashraf A, Mahmoud PA, Reda H, et al. Silymarin and silymarin nanoparticles guard against chronic unpredictable mild stress induced depressive-like behavior in mice: involvement of neurogenesis and NLRP3 inflammasome. J Psychopharm. 2019;33(5):615–631. doi: 10.1177/0269881119836221
  • Wang H, Guo Y, Qiao Y, et al. Nobiletin ameliorates NLRP3 inflammasome-mediated inflammation through promoting autophagy via the AMPK pathway. Mol Neurobiol. 2020;57(12):5056–5068. doi: 10.1007/s12035-020-02071-5
  • Bian H-T, Wang G-H, Huang J-J, et al. Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats. Int Immunopharmacol. 2020;88:106943. doi: 10.1016/j.intimp.2020.106943
  • Tong Y, Fu H, Xia C, et al. Astragalin exerted antidepressant-like action through SIRT1 signaling modulated NLRP3 inflammasome deactivation. ACS Chem Neurosci. 2020;11(10):1495–1503. doi: 10.1021/acschemneuro.0c00156
  • Li Y, Song W, Tong Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis. J Neuroinflammation. 2021;18(1):1–23. doi: 10.1186/s12974-020-02040-8
  • Wei Y, Hu Y, Qi K, et al. Dihydromyricetin improves LPS-induced sickness and depressive-like behaviors in mice by inhibiting the TLR4/Akt/HIF1a/NLRP3 pathway. Behav Brain Res. 2022;423:113775. doi: 10.1016/j.bbr.2022.113775
  • Cao H, Yang D, Nie K, et al. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model. Eur J Pharmacol. 2023;952:175670. doi: 10.1016/j.ejphar.2023.175670
  • Han C, Pei H, Shen H, et al. Antcin K targets NLRP3 to suppress neuroinflammation and improve the neurological behaviors of mice with depression. Int Immunopharmacol. 2023;117:109908. doi: 10.1016/j.intimp.2023.109908
  • He H, Xie X, Zhang J, et al. Patchouli alcohol ameliorates depression-like behaviors through inhibiting NLRP3-mediated neuroinflammation in male stress-exposed mice. J Affect Disord. 2023;326:120–131. doi: 10.1016/j.jad.2023.01.065
  • Adeoluwa OA, Olayinka JN, Adeoluwa GO, et al. Quercetin abrogates lipopolysaccharide-induced depressive-like symptoms by inhibiting neuroinflammation via microglial NLRP3/NFκB/iNOS signaling pathway. Behav Brain Res. 2023;450:114503. doi: 10.1016/j.bbr.2023.114503
  • Cai L, Mu Y-r, Liu M-m, et al. Antidepressant-like effects of penta-acetyl geniposide in chronic unpredictable mild stress-induced depression rat model: involvement of inhibiting neuroinflammation in prefrontal cortex and regulating hypothalamic-pituitaryadrenal axis. Int Immunopharmacol. 2020 Mar 01;80:106182. doi: 10.1016/j.intimp.2019.106182
  • Recart VM, Spohr L, Soares MSP, et al. Therapeutic approaches employing natural compounds and derivatives for treating bipolar disorder: emphasis on experimental models of the manic phase. Metab Brain Dis. 2021;36(7):1481–1499. doi: 10.1007/s11011-021-00776-7
  • Larrieu T, Hilal L, Fourrier C, et al. Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behaviour through corticosterone secretion. Transl Psychiatry. 2014;4(9):e437–e437. doi: 10.1038/tp.2014.77
  • Wang CC, Du L, Shi HH, et al. Dietary EPA‐Enriched Phospholipids Alleviate Chronic Stress and LPS‐Induced Depression‐and Anxiety‐Like Behavior by Regulating Immunity and Neuroinflammation. Mol Nutr Food Res. 2021;65(17):2100009. doi: 10.1002/mnfr.202100009
  • Murri MB, Prestia D, Mondelli V, et al. The HPA axis in bipolar disorder: systematic review and meta-analysis. Psychoneuroendocrinology. 2016;63:327–342. doi: 10.1016/j.psyneuen.2015.10.014
  • Nandam LS, Brazel M, Zhou M, et al. Cortisol and major depressive disorder – translating findings from humans to animal models and back. Front Psychiatry. 2020;10:476719. doi: 10.3389/fpsyt.2019.00974
  • Busillo JM, Azzam KM, Cidlowski JA. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem. 2011;286(44):38703–38713. doi: 10.1074/jbc.M111.275370
  • Feng X, Zhao Y, Yang T, et al. Glucocorticoid-driven NLRP3 inflammasome activation in hippocampal microglia mediates chronic stress-induced depressive-like behaviors. Front Mol Neurosci. 2019;12:210. doi: 10.3389/fnmol.2019.00210
  • Ghaffaripour Jahromi G, Razi S, Rezaei N. NLRP3 inflammatory pathway. Can we unlock depression? Brain Res. 2024;1822:148644. doi: 10.1016/j.brainres.2023.148644
  • Li H, Guan Y, Liang B, et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 2022;928:175091. doi: 10.1016/j.ejphar.2022.175091
  • Ma Q, Schuetz J. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction. Pharmacol Rev. 2023;75(3):487–520. doi: 10.1124/pharmrev.122.000629
  • Liu Y-N, Peng Y-L, Liu L, et al. TNFα mediates stress-induced depression by upregulating indoleamine 2, 3-dioxygenase in a mouse model of unpredictable chronic mild stress. Eur Cytokine Netw. 2015;26(1):15–25. doi: 10.1684/ecn.2015.0362
  • Ashdown-Franks G, Firth J, Carney R, et al. Exercise as medicine for mental and substance use disorders: a meta-review of the benefits for neuropsychiatric and cognitive outcomes. Sports Med. 2020;50(1):151–170. doi: 10.1007/s40279-019-01187-6
  • Wang Y, Xu Y, Sheng H, et al. Exercise amelioration of depression-like behavior in OVX mice is associated with suppression of NLRP3 inflammasome activation in hippocampus. Behav Brain Res. 2016;307:18–24. doi: 10.1016/j.bbr.2016.03.044
  • Liu W, Wang H, Wang Y, et al. Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats. Psychiatry Res. [2015 Aug 30];228(3):257–264. doi: 10.1016/j.psychres.2015.05.102
  • Rosa JM, Pazini FL, Olescowicz G, et al. Prophylactic effect of physical exercise on Aβ(1-40)-induced depressive-like behavior: role of BDNF, mTOR signaling, cell proliferation and survival in the hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. [2019 Aug 30];94:109646. doi: 10.1016/j.pnpbp.2019.109646
  • Rosa JM, Camargo A, Wolin IAV. Physical exercise prevents amyloid β1−40-induced disturbances in NLRP3 inflammasome pathway in the hippocampus of mice. Metab Brain Dis. 2021 Feb;36(2):351–359. doi: 10.1007/s11011-020-00646-8
  • Khakroo Abkenar I, Rahmani-Nia F, Lombardi G. The effects of acute and chronic aerobic activity on the signaling pathway of the inflammasome NLRP3 complex in young men. Medicina (B Aires). 2019;55(4):105. doi: 10.3390/medicina55040105
  • Xu Y, Xu Y, Blevins H, et al. Discovery of carbon-11 labeled sulfonamide derivative: A PET tracer for imaging brain NLRP3 inflammasome. Bioorg Med Chem Lett. 2021;34:127777. doi: 10.1016/j.bmcl.2021.127777

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.