221
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting HIF-1α in sickle cell disease and cancer: unraveling therapeutic opportunities and risks

, , , , &
Pages 357-373 | Received 10 Feb 2024, Accepted 10 Jun 2024, Published online: 14 Jun 2024

References

  • Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000 Aug 15;14(16):1983–1991. doi: 10.1101/gad.14.16.1983
  • Catling DC, Glein CR, Zahnle KJ, et al. Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology. 2005 Jun;5(3):415–438. doi: 10.1089/ast.2005.5.415
  • Hoogewijs D, Terwilliger NB, Webster KA, et al. From critters to cancers: bridging comparative and clinical research on oxygen sensing, HIF signaling, and adaptations towards hypoxia. Integr Comp Biol. 2007 Oct;47(4):552–577. doi: 10.1093/icb/icm072
  • Wang GL, Semenza GL. Oxygen sensing and response to hypoxia by mammalian cells. Redox Rep. 1996 Apr;2(2):89–96. doi: 10.1080/13510002.1996.11747034
  • Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996 Jul;76(3):839–885. doi: 10.1152/physrev.1996.76.3.839
  • Ruas JL, Poellinger L. Hypoxia-dependent activation of HIF into a transcriptional regulator. Semin Cell Dev Biol. 2005 Aug;16(4–5):514–522. doi: 10.1016/j.semcdb.2005.04.001
  • Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005 Dec 9;338(1):617–626. doi: 10.1016/j.bbrc.2005.08.111
  • Okazaki K, Maltepe E. Oxygen, epigenetics and stem cell fate. Regener Med. 2006 Jan;1(1):71–83. doi: 10.2217/17460751.1.1.71
  • Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010 Feb 4;29(5):625–634. doi: 10.1038/onc.2009.441
  • Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012 Feb 3;148(3):399–408. doi: 10.1016/j.cell.2012.01.021
  • Crowe SA, Maresca JA, Jones C, et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology. 2014 Jul;12(4):322–339. doi: 10.1111/gbi.12089
  • Bar-Even A, Noor E, Lewis NE, et al. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA. 2010 May 11;107(19):8889–8894. doi: 10.1073/pnas.0907176107
  • Costantini D. Oxidative stress in ecology and evolution: lessons from avian studies. Ecol Lett. 2008 Nov;11(11):1238–1251. doi: 10.1111/j.1461-0248.2008.01246.x
  • Lane N, Martin WF. Eukaryotes really are special, and mitochondria are why. Proc Natl Acad Sci USA. 2015 Sep 1;112(35):E4823. doi: 10.1073/pnas.1509237112
  • Kaelin WG Jr., Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008 May 23;30(4):393–402. doi: 10.1016/j.molcel.2008.04.009
  • Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007 Oct 9;2007(407):cm8. doi: 10.1126/stke.4072007cm8
  • Singh V, Singh R, Kushwaha R, et al. The molecular role of HIF1alpha is elucidated in chronic myeloid leukemia. Front Oncol. 2022;12:912942. doi: 10.3389/fonc.2022.912942
  • Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer. 2002 Jan;2(1):38–47. doi: 10.1038/nrc704
  • Marleau AM, Chen CS, Joyce JA, et al. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med. 2012 Jun 27;10(1):134. doi: 10.1186/1479-5876-10-134
  • Gao P, Sun L, He X, et al. MicroRNAs and the Warburg effect: new players in an old arena. Curr Gene Ther. 2012 Aug;12(4):285–291. doi: 10.2174/156652312802083620
  • Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer. J Mol Med (Berl). 2007 Dec;85(12):1301–1307. doi: 10.1007/s00109-007-0281-3
  • Rousset M, Zweibaum A, Fogh J. Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res. 1981 Mar;41(3):1165–1170.
  • Kumar B, Verma S, Kashif M, et al. Metacaspase-3 of Plasmodium falciparum: An atypical trypsin-like serine protease. Int J Biol Macromol. 2019 Oct 1;138:309–320. doi: 10.1016/j.ijbiomac.2019.07.067
  • Cheng KW, Agarwal R, Mitra S, et al. Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Mol Med. 2012 Feb;4(2):125–141. doi: 10.1002/emmm.201100193
  • Guin S, Pollard C, Ru Y, et al. Role in tumor growth of a glycogen debranching enzyme lost in glycogen storage disease. J Natl Cancer Inst. 2014 Apr 3;106(5). doi: 10.1093/jnci/dju062
  • Shen GM, Zhang FL, Liu XL, et al. Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia. FEBS Lett. 2010 Oct 22;584(20):4366–4372. doi: 10.1016/j.febslet.2010.09.040
  • Pelletier J, Bellot G, Gounon P, et al. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Front Oncol. 2012;2:18. doi: 10.3389/fonc.2012.00018
  • Zois CE, Favaro E, Harris AL. Glycogen metabolism in cancer. Biochem Pharmacol. 2014 Nov 1;92(1):3–11. doi: 10.1016/j.bcp.2014.09.001
  • Zhu Q, Yang J, Han S, et al. Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate. 2011 Jun 1;71(8):835–845. doi: 10.1002/pros.21300
  • Iyer NV, Leung SW, Semenza GL. The human hypoxia-inducible factor 1alpha gene: HIF1A structure and evolutionary conservation. Genomics. 1998 Sep 1;52(2):159–165. doi: 10.1006/geno.1998.5416
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029–1033. doi: 10.1126/science.1160809
  • Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006 Mar;3(3):177–185. doi: 10.1016/j.cmet.2006.02.002
  • Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006 Apr 7;281(14):9030–9037. doi: 10.1074/jbc.M511397200
  • Singh V, Singh R, Kumar D, et al. A new variant of the human alpha-lactalbumin-oleic acid complex as an anticancer agent for chronic myeloid leukemia. J Med Life. 2021 Sep;14(5):620–635. doi: 10.25122/jml-2021-0065
  • Danhier P, Banski P, Payen VL, et al. Cancer metabolism in space and time: beyond the Warburg effect. Biochim Biophys Acta Bioenerg. 2017 Aug;1858(8):556–572. doi: 10.1016/j.bbabio.2017.02.001
  • Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014 Dec 5;224:164–175. doi: 10.1016/j.cbi.2014.10.016
  • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002
  • Rehman AU, Iqbal MA, Sattar RSA, et al. Elevated expression of RUNX3 co-expressing with EZH2 in esophageal cancer patients from India. Cancer Cell Int. 2020;20(1):445. doi: 10.1186/s12935-020-01534-y
  • Trachootham D, Lu W, Ogasawara MA, et al. Redox regulation of cell survival. Antioxid Redox Signal. 2008 Aug;10(8):1343–1374. doi: 10.1089/ars.2007.1957
  • Le Gal K, Ibrahim MX, Wiel C, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med. 2015 Oct 7;7(308):308re8. doi: 10.1126/scitranslmed.aad3740
  • Waypa GB, Marks JD, Mack MM, et al. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002 Oct 18;91(8):719–726. doi: 10.1161/01.RES.0000036751.04896.F1
  • Pezzuto A, Carico E. Role of HIF-1 in cancer progression: novel insights: a review. Curr Mol Med. 2018;18(6):343–351. doi: 10.2174/1566524018666181109121849
  • Semenza GL. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta. 2016 Mar;1863(3):382–391. doi: 10.1016/j.bbamcr.2015.05.036
  • Ganguly R, Mohyeldin A, Thiel J, et al. MELK—a conserved kinase: functions, signaling, cancer, and controversy. Clin Transl Med. 2015;4(1):11. doi: 10.1186/s40169-014-0045-y
  • Shankar S, Prasad KM, Kashif M, et al. A nonpeptidyl molecule modulates apoptosis-like cell death by inhibiting P. falciparum metacaspase-2. Biochem J. 2020 Apr 17;477(7):1323–1344. doi: 10.1042/BCJ20200050
  • Mole DR, Blancher C, Copley RR, et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009 Jun 19;284(25):16767–16775. doi: 10.1074/jbc.M901790200
  • Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008 Apr 18;283(16):10892–10903. doi: 10.1074/jbc.M800102200
  • Singh V, Singh R, Kushwaha R. Exploring novel protein biomarkers for early-stage diagnosis and prognosis of T-acute lymphoblastic leukemia (T-ALL). Hematol Transfus Cell Ther. 2024 Mar 28. doi: 10.1016/j.htct.2024.02.016
  • Fukuda R, Zhang H, Kim JW, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007 Apr 6;129(1):111–122. doi: 10.1016/j.cell.2007.01.047
  • Esteban MA, Tran MG, Harten SK, et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 2006 Apr 1;66(7):3567–3575. doi: 10.1158/0008-5472.CAN-05-2670
  • Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 2006 Mar 1;66(5):2725–2731. doi: 10.1158/0008-5472.CAN-05-3719
  • Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation. 2020 Oct;43(5):1589–1598. doi: 10.1007/s10753-020-01242-9
  • Gunaratnam L, Morley M, Franovic A, et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem. 2003 Nov 7;278(45):44966–44974. doi: 10.1074/jbc.M305502200
  • Erler JT, Giaccia AJ. Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res. 2006 Nov 1;66(21):10238–10241. doi: 10.1158/0008-5472.CAN-06-3197
  • Feldser D, Agani F, Iyer NV, et al. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999 Aug 15;59(16):3915–3918.
  • Hellwig-Burgel T, Rutkowski K, Metzen E, et al. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood. 1999 Sep 1;94(5):1561–1567. doi: 10.1182/blood.V94.5.1561
  • Laughner E, Taghavi P, Chiles K, et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001 Jun;21(12):3995–4004. doi: 10.1128/MCB.21.12.3995-4004.2001
  • Zelzer E, Levy Y, Kahana C, et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. Embo J. 1998 Sep 1;17(17):5085–5094. doi: 10.1093/emboj/17.17.5085
  • Richard DE, Berra E, Gothie E, et al. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999 Nov 12;274(46):32631–32637. doi: 10.1074/jbc.274.46.32631
  • Sodhi A, Montaner S, Patel V, et al. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res. 2000 Sep 1;60(17):4873–4880.
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. doi: 10.1016/S0092-8674(00)80108-7
  • Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta. 2011 Jul;1813(7):1263–1268. doi: 10.1016/j.bbamcr.2010.08.006
  • Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011 Jun;11(6):393–410. doi: 10.1038/nrc3064
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674. doi: 10.1016/j.cell.2011.02.013
  • Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988 Feb;71(2):524–527. doi: 10.1182/blood.V71.2.524.524
  • Koury ST, Koury MJ, Bondurant MC, et al. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood. 1989 Aug 1;74(2):645–651. doi: 10.1182/blood.V74.2.645.645
  • Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977 Aug 10;252(15):5558–5564. doi: 10.1016/S0021-9258(19)63387-9
  • Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4304–4308. doi: 10.1073/pnas.90.9.4304
  • Firth JD, Ebert BL, Pugh CW, et al. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase a genes: similarities with the erythropoietin 3’ enhancer. Proc Natl Acad Sci USA. 1994 Jul 5;91(14):6496–6500. doi: 10.1073/pnas.91.14.6496
  • Nagao M, Ebert BL, Ratcliffe PJ, et al. Drosophila melanogaster SL2 cells contain a hypoxically inducible DNA binding complex which recognises mammalian HIF-binding sites. FEBS Lett. 1996 Jun 3;387(2–3):161–166. doi: 10.1016/0014-5793(96)00484-X
  • Luks AM. Physiology in Medicine: a physiologic approach to prevention and treatment of acute high-altitude illnesses. J Appl Physiol (1985). 2015 Mar 1;118(5):509–519. doi: 10.1152/japplphysiol.00955.2014
  • West JB. High-altitude medicine. Am J Respir Crit Care Med. 2012 Dec 15;186(12):1229–1237. doi: 10.1164/rccm.201207-1323CI
  • Bartsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007 Nov 6;116(19):2191–2202. doi: 10.1161/CIRCULATIONAHA.106.650796
  • Schodel J, Ratcliffe PJ. Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol. 2019 Oct;15(10):641–659. doi: 10.1038/s41581-019-0182-z
  • Yasukochi Y, Nishimura T, Ugarte J, et al. Effect of EGLN1 Genetic Polymorphisms on Hemoglobin Concentration in Andean Highlanders. Biomed Res Int. 2020;2020:1–16. doi: 10.1155/2020/3436581
  • Azad P, Stobdan T, Zhou D, et al. High-altitude adaptation in humans: from genomics to integrative physiology. J Mol Med (Berl). 2017 Dec;95(12):1269–1282. doi: 10.1007/s00109-017-1584-7
  • Bigham AW, Lee FS. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 2014 Oct 15;28(20):2189–2204. doi: 10.1101/gad.250167.114
  • Pamenter ME, Hall JE, Tanabe Y, et al. Cross-Species Insights into Genomic Adaptations to Hypoxia. Front Genet. 2020;11:743. doi: 10.3389/fgene.2020.00743
  • Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001 Jul 12;345(2):107–114. doi: 10.1056/NEJM200107123450206
  • Grocott M, Montgomery H, Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit Care. 2007;11(1):203. doi: 10.1186/cc5142
  • Adamovich Y, Dandavate V, Asher G. Circadian clocks’ interactions with oxygen sensing and signalling. Acta Physiol (Oxf). 2022 Feb;234(2):e13770. doi: 10.1111/apha.13770
  • O’Connell EJ, Martinez CA, Liang YG, et al. Out of breath, out of time: interactions between HIF and circadian rhythms. Am J Physiol Cell Physiol. 2020 Sep 1;319(3):C533–C540. doi: 10.1152/ajpcell.00305.2020
  • Peek CB. Metabolic implications of circadian-HIF crosstalk. Trends Endocrinol Metab. 2020 Jun;31(6):459–468. doi: 10.1016/j.tem.2020.02.008
  • Adamovich Y, Ladeuix B, Golik M, et al. Rhythmic oxygen levels reset circadian clocks through HIF1alpha. Cell Metab. 2017 Jan 10;25(1):93–101. doi: 10.1016/j.cmet.2016.09.014
  • Manella G, Aviram R, Bolshette N, et al. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc Natl Acad Sci USA. 2020 Jan 7;117(1):779–786. doi: 10.1073/pnas.1914112117
  • Adamovich Y, Ladeuix B, Sobel J, et al. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metab. 2019 May 7;29(5):1092–1103 e3. doi: 10.1016/j.cmet.2019.01.007
  • Peek CB, Levine DC, Cedernaes J, et al. Circadian clock interaction with HIF1alpha mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017 Jan 10;25(1):86–92. doi: 10.1016/j.cmet.2016.09.010
  • Wu D, Hamanaka RB, Fang Y, et al. Letter by Wu et al regarding article, “mechanical activation of hypoxia-inducible factor 1alpha drives endothelial dysfunction at atheroprone sites”. Arterioscler Thromb Vasc Biol. 2017 Dec;37(12):e197–e198. doi: 10.1161/ATVBAHA.117.310335
  • Bosco G, Ionadi A, Panico S, et al. Effects of hypoxia on the circadian patterns in men. High Alt Med Biol. 2003 Fall;4(3):305–318. doi: 10.1089/152702903769192269
  • Mortola JP. Hypoxia and circadian patterns. Respir Physiol Neurobiol. 2007 Sep 30;158(2–3):274–279. doi: 10.1016/j.resp.2007.02.005
  • Ponchia A, Noventa D, Bertaglia M, et al. Cardiovascular neural regulation during and after prolonged high altitude exposure. Eur Heart J. 1994 Nov;15(11):1463–1469. doi: 10.1093/oxfordjournals.eurheartj.a060415
  • Vargas M, Jimenez D, Leon-Velarde F, et al. Circadian patterns in men acclimatized to intermittent hypoxia. Respir Physiol. 2001 Jul;126(3):233–243. doi: 10.1016/S0034-5687(01)00226-2
  • Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985). 2015 Dec 15;119(12):1432–1440. doi: 10.1152/japplphysiol.00248.2015
  • Robach P, Cairo G, Gelfi C, et al. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood. 2007 Jun 1;109(11):4724–4731. doi: 10.1182/blood-2006-08-040006
  • Goetze O, Schmitt J, Spliethoff K, et al. Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers. Hepatology. 2013 Dec;58(6):2153–2162. doi: 10.1002/hep.26581
  • Holdsworth DA, Frise MC, Bakker-Dyos J, et al. Iron bioavailability and cardiopulmonary function during ascent to very high altitude. Eur Respir J. 2020 Sep;56(3):1902285. doi: 10.1183/13993003.02285-2019
  • Piperno A, Galimberti S, Mariani R, et al. Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project. Blood. 2011 Mar 10;117(10):2953–2959. doi: 10.1182/blood-2010-08-299859
  • Willick SE, Cushman DM, Klatt J, et al. The NICA injury surveillance system: Design, methodology and preliminary data of a prospective, longitudinal study of injuries in youth cross country mountain bike racing. J Sci Med Sport. 2021 Oct;24(10):1032–1037. doi: 10.1016/j.jsams.2020.05.021
  • Mairbaurl H. Red blood cell function in hypoxia at altitude and exercise. Int J Sports Med. 1994 Feb;15(2):51–63. doi: 10.1055/s-2007-1021020
  • Camaschella C, Longo DL. Iron-deficiency anemia. N Engl J Med. 2015 May 7;372(19):1832–1843. doi: 10.1056/NEJMra1401038
  • Taylor LE, Stotts NA, Humphreys J, et al. A review of the literature on the multiple dimensions of chronic pain in adults with sickle cell disease. J Pain Symptom Manage. 2010 Sep;40(3):416–435. doi: 10.1016/j.jpainsymman.2009.12.027
  • Gladwin MT, Sachdev V. Cardiovascular abnormalities in sickle cell disease. J Am Coll Cardiol. 2012 Mar 27;59(13):1123–1133. doi: 10.1016/j.jacc.2011.10.900
  • Bunn HF. Erythropoietin. Cold Spring Harb Perspect Med. 2013 Mar 1;3(3):a011619. doi: 10.1101/cshperspect.a011619
  • Taher AT, Musallam KM, Cappellini MD. Beta-Thalassemias. N Engl J Med. 2021 Feb 25;384(8):727–743. doi: 10.1056/NEJMra2021838
  • Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol. 2018 Mar;180(5):630–643. doi: 10.1111/bjh.15038
  • Steinberg MH. Fetal hemoglobin in sickle cell anemia. Blood. 2020 Nov 19;136(21):2392–2400. doi: 10.1182/blood.2020007645
  • Doerfler PA, Sharma A, Porter JS, et al. Genetic therapies for the first molecular disease. J Clin Invest. 2021 Apr 15;131(8). doi: 10.1172/JCI146394
  • El Hoss S, Cochet S, Godard A, et al. Fetal hemoglobin rescues ineffective erythropoiesis in sickle cell disease. Haematologica. 2021 Oct 1;106(10):2707–2719. doi: 10.3324/haematol.2020.265462
  • Palstra RJ, de Laat W, Grosveld F. Beta-globin regulation and long-range interactions. Adv Genet. 2008;61:107–142.
  • Alter BP, Rappeport JM, Huisman TH, et al. Fetal erythropoiesis following bone marrow transplantation. Blood. 1976 Dec;48(6):843–853. doi: 10.1182/blood.V48.6.843.843
  • Link MP, Alter BP. Fetal-like erythropoiesis during recovery from transient erythroblastopenia of childhood (TEC). Pediatr Res. 1981 Jul;15(7):1036–1039. doi: 10.1203/00006450-198107000-00012
  • Stamatoyannopoulos G, Veith R, Al-Khatti A, et al. On the induction of fetal hemoglobin in the adult; stress erythropoiesis, cell cycle-specific drugs, and recombinant erythropoietin. Prog clin biol res. 1987;251:443–453.
  • Bard H, Fouron JC, Gagnon C, et al. Hypoxemia and increased fetal hemoglobin synthesis. J Pediatr. 1994 Jun;124(6):941–943. doi: 10.1016/S0022-3476(05)83188-9
  • Papayannopoulou T. Control of fetal globin expression in man: new opportunities to challenge past discoveries. Exp Hematol. 2020 Dec;92:43–50. doi: 10.1016/j.exphem.2020.09.195
  • Scortegagna M, Ding K, Zhang Q, et al. HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood. 2005 Apr 15;105(8):3133–3140. doi: 10.1182/blood-2004-05-1695
  • Gruber M, Hu CJ, Johnson RS, et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci USA. 2007 Feb 13;104(7):2301–2306. doi: 10.1073/pnas.0608382104
  • Bhoopalan SV, Huang LJ, Weiss MJ. Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Res. 2020;9:1153. doi: 10.12688/f1000research.26648.1
  • Kashif M, Quadiri A, Singh AP. Essential role of a Plasmodium berghei heat shock protein (PBANKA_0938300) in gametocyte development. Sci Rep. 2021 Dec 8;11(1):23640. doi: 10.1038/s41598-021-03059-4
  • Hsieh MM, Linde NS, Wynter A, et al. HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis, and modest fetal hemoglobin expression in rhesus macaques. Blood. 2007 Sep 15;110(6):2140–2147. doi: 10.1182/blood-2007-02-073254
  • Bunn HF. Evolution of mammalian hemoglobin function. Blood. 1981 Aug;58(2):189–197. doi: 10.1182/blood.V58.2.189.189
  • Hebbel RP, Eaton JW, Kronenberg RS, et al. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest. 1978 Sep;62(3):593–600. doi: 10.1172/JCI109165
  • Hebbel RP, Berger EM, Eaton JW. Effect of increased maternal hemoglobin oxygen affinity on fetal growth in the rat. Blood. 1980 Jun;55(6):969–974. doi: 10.1182/blood.V55.6.969.969
  • Quadiri A, Kalia I, Kashif M, et al. Identification and characterization of protective CD8(+) T-epitopes in a malaria vaccine candidate SLTRiP. Immun Inflamm Dis. 2020 Mar;8(1):50–61. doi: 10.1002/iid3.283
  • Imanirad P, Dzierzak E. Hypoxia and HIFs in regulating the development of the hematopoietic system. Blood Cells Mol Dis. 2013 Dec;51(4):256–263. doi: 10.1016/j.bcmd.2013.08.005
  • Kim I, Kim M, Park MK, et al. The disubstituted adamantyl derivative LW1564 inhibits the growth of cancer cells by targeting mitochondrial respiration and reducing hypoxia-inducible factor (HIF)-1alpha accumulation. Exp Mol Med. 2020 Nov;52(11):1845–1856. doi: 10.1038/s12276-020-00523-5
  • Mayer A, Hockel M, Horn LC, et al. GLUT-1 staining of squamous cell carcinomas of the uterine cervix identifies a novel element of invasion. Int J Oncol. 2011 Jan;38(1):145–150. doi: 10.3892/ijo_00000833
  • Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000 Mar 15;60(6):1541–1545.
  • Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000 Feb 15;14(4):391–396. doi: 10.1101/gad.14.4.391
  • Dudkin L, Dilling MB, Cheshire PJ, et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res. 2001 Jun;7(6):1758–1764.
  • Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999 Nov 15;59(22):5830–5835.
  • Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000 Aug;157(2):411–421. doi: 10.1016/S0002-9440(10)64554-3
  • Bos R, van der Groep P, Greijer AE, et al. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003 Mar 15;97(6):1573–1581. doi: 10.1002/cncr.11246
  • Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001 Sep 14;85(6):881–890. doi: 10.1054/bjoc.2001.2018
  • Kato GJ, Piel FB, Reid CD, et al. Sickle cell disease. Nat Rev Dis Primers. 2018 Mar 15;4(1):18010. doi: 10.1038/nrdp.2018.10
  • Gupta Y, Sharma N, Singh S, et al. The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca(2+) Homeostasis by Targeting a Unique Ion Channel. Pharmaceutics. 2022 Jun 28;14(7):1371. doi: 10.3390/pharmaceutics14071371
  • Adams RJ, McKie VC, Brambilla D, et al. Stroke prevention trial in sickle cell anemia. Control Clin Trials. 1998 Feb;19(1):110–129. doi: 10.1016/S0197-2456(97)00099-8
  • Wutzen J, Lewicki Z. The effect of immobilization on ultrastructural changes in the myocardium of rats on a low-magnesium diet. Mater Med Pol. 1985 Oct;17(4):221–226.
  • Reeves SL, Madden B, Freed GL, et al. Transcranial doppler screening among children and adolescents with sickle cell anemia. JAMA Pediatr. 2016 Jun 1;170(6):550–556. doi: 10.1001/jamapediatrics.2015.4859
  • Barriteau CM, Murdoch A, Gallagher SJ, et al. A patient-centered medical home model for comprehensive sickle cell care in infants and young children. Pediatr Blood Cancer. 2020 Jun;67(6):e28275. doi: 10.1002/pbc.28275
  • Kim A, Dean A. Chromatin loop formation in the beta-globin locus and its role in globin gene transcription. Mol Cells. 2012 Jul;34(1):1–5. doi: 10.1007/s10059-012-0048-8
  • Breda L, Motta I, Lourenco S, et al. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood. 2016 Aug 25;128(8):1139–1143. doi: 10.1182/blood-2016-01-691089
  • Love PE, Warzecha C, Li L. Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet. 2014 Jan;30(1):1–9. doi: 10.1016/j.tig.2013.10.001
  • Xu Z, Huang S, Chang LS, et al. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol. 2003 Nov;23(21):7585–7599. doi: 10.1128/MCB.23.21.7585-7599.2003
  • Li L, Freudenberg J, Cui K, et al. Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood. 2013 May 30;121(22):4575–4585. doi: 10.1182/blood-2013-01-479451
  • Tsubakihara Y, Akizawa T, Nangaku M, et al. A 24-week anemia correction study of daprodustat in japanese dialysis patients. Ther Apher Dial. 2020 Apr;24(2):108–114. doi: 10.1111/1744-9987.12962
  • Parmar DV, Kansagra KA, Patel JC, et al. Outcomes of desidustat treatment in people with anemia and chronic kidney disease: a phase 2 study. Am J Nephrol. 2019;49(6):470–478. doi: 10.1159/000500232
  • Akizawa T, Yamada T, Nobori K, et al. Molidustat for Japanese patients with renal anemia receiving dialysis. Kidney Int Rep. 2021 Oct;6(10):2604–2616. doi: 10.1016/j.ekir.2021.07.015
  • Chen N, Hao C, Liu BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med. 2019 Sep 12;381(11):1011–1022. doi: 10.1056/NEJMoa1901713
  • Nangaku M, Kondo K, Kokado Y, et al. Phase 3 randomized study comparing vadadustat with darbepoetin alfa for anemia in Japanese patients with nondialysis-dependent CKD. J Am Soc Nephrol. 2021 Jul;32(7):1779–1790. doi: 10.1681/ASN.2020091311
  • Akizawa T, Nangaku M, Yamaguchi T, et al. A Phase 3 study of enarodustat (JTZ-951) in Japanese hemodialysis patients for treatment of anemia in chronic kidney disease: symphony HD study. Kidney Dis (Basel). 2021 Nov;7(6):494–502. doi: 10.1159/000517053
  • Haigentz M Jr., Kim M, Sarta C, et al. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncol. 2012 Dec;48(12):1281–1288. doi: 10.1016/j.oraloncology.2012.05.024
  • San-Miguel JF, Hungria VT, Yoon SS, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014 Oct;15(11):1195–1206. doi: 10.1016/S1470-2045(14)70440-1
  • Krug LM, Kindler HL, Calvert H, et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol. 2015 Apr;16(4):447–456. doi: 10.1016/S1470-2045(15)70056-2
  • Heath EI, Hillman DW, Vaishampayan U, et al. A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2008 Dec 1;14(23):7940–7946. doi: 10.1158/1078-0432.CCR-08-0221
  • Sharma S, Kemeny N, Kelsen DP, et al. A phase II trial of farnesyl protein transferase inhibitor SCH 66336, given by twice-daily oral administration, in patients with metastatic colorectal cancer refractory to 5-fluorouracil and irinotecan. Ann Oncol. 2002 Jul;13(7):1067–1071. doi: 10.1093/annonc/mdf173
  • Mackay H, Hedley D, Major P, et al. A phase II trial with pharmacodynamic endpoints of the proteasome inhibitor bortezomib in patients with metastatic colorectal cancer. Clin Cancer Res. 2005 Aug 1;11(15):5526–5533. doi: 10.1158/1078-0432.CCR-05-0081
  • Garrett CR, Bekaii-Saab TS, Ryan T, et al. Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer. 2013 Dec 15;119(24):4223–4230. doi: 10.1002/cncr.28358
  • Jeong W, Rapisarda A, Park SR, et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1alpha), in patients with refractory solid tumors. Cancer Chemother Pharmacol. 2014 Feb;73(2):343–348. doi: 10.1007/s00280-013-2362-z
  • Marshall ME, Wolf MK, Crawford ED, et al. Phase II trial of echinomycin for the treatment of advanced renal cell carcinoma. A Southwest Oncology Group study. Invest New Drugs. 1993 May;11(2–3):207–209. doi: 10.1007/BF00874157

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.