179
Views
2
CrossRef citations to date
0
Altmetric
Articles

Computer simulation of airflows generated by jet fans in real road tunnel by parallel version of FDS 6

&
Pages 20-33 | Received 03 Apr 2019, Accepted 23 Nov 2019, Published online: 11 Dec 2019

References

  • Ang, C. D., Rein, G., Peiro, J., & Harrison, R. (2016). Simulating longitudinal ventilation flows in long tunnels: Comparison of full CFD and multi-scale modelling approaches in FDS6. Tunnelling and Underground Space Technology, 52, 119–126. doi:10.1016/j.tust.2015.11.003
  • Ansys. (2019). ANSYS Fluent. Retrieved from https://www.ansys.com/products/fluids/ansys-fluent
  • Beyer, M., Sturm, P.-J., Sauerwein, M., & Bacher, M. (2016). Evaluation of jet fan performance in tunnels. In IVT Reports. Proceedings Tunnel Safety and Ventilation (Vol. 100, p. 298). Graz: Verlag Der Technischen Universität Graz.
  • Brzezinska, D. (2018). Practical aspects of jet fan ventilation systems modelling in fire dynamics simulator code. International Journal of Ventilation, 17, 225–239.
  • Brzezinska, D., & Sompolinski, M. (2017). The accuracy of mapping the airstream of jet fan ventilators by fire dynamics simulator. Science and Technology for the Built Environment, 23(5), 736–747. doi:10.1080/23744731.2016.1249234
  • Chen, Y. J., Shu, C. M., Ho, S. P., Kung, H. C., Chien, S. W., Ho, H. H., & Hsu, W. S. (2019). Analysis of smoke movement in the Hsuehshan tunnel fire. Tunnelling and Underground Space Technology, 84, 142–150. doi:10.1016/j.tust.2018.11.007
  • Danisovic, P., Sramek, J., Hodon, M., & Hudik, M. (2017). Testing measurements of airflow velocity in road tunnels. MATEC Web of Conferences, E D P Sciences, 17 Ave DU Hoggar Parc D Activites Coutaboeuf BP 112, F-91944 Cedex A, France (Vol. 117, p. 00035).
  • Deckers, X., Haga, S., Tilley, N., & Merci, B. (2013). Smoke control in case of fire in a large car park: CFD simulations of full-scale configurations. Fire Safety Journal, 57, 22–34. doi:10.1016/j.firesaf.2012.02.005
  • Derkova, M., Vivoda, J., Bellus, M., Spaniel, O., Dian, M., Nestiak, M., & Zehnal, R. (2017). Recent improvements in the ALADIN/SHMU operational system. Meteorological Journal, 20, 45–52.
  • Heinisuo, M., & Partanen, M. (2013). Modeling of car fires with sprinklers (Research Report 161). Tampere: Structural Engineering, Department of Civil Engineering, Tampere University of Technology, 70 pp. + 4 app.
  • Hsu, W. S., Huang, Y. H., Shen, T. S., Cheng, C. Y., & Chen, T. Y. (2017). Analysis of the Hsuehshan tunnel fire in Taiwan. Tunnelling and Underground Space Technology, 69, 108–115. doi:10.1016/j.tust.2017.06.011
  • Hu, L. H., Fong, N. K., Yang, L. Z., Chow, W. K., Li, Y. Z., & Huo, R. (2007). Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: Fire dynamics simulator comparisons with measured data. Journal of Hazardous Materials, 140(1–2), 293–298. doi:10.1016/j.jhazmat.2007.06.093
  • Krol, A., & Krol, M. (2018). Study on numerical modeling of jet fans. Tunnelling and Underground Space Technology, 73, 225–235.
  • McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2014). Fire dynamics simulator technical reference guide, validation (6th ed., Vol. 3). Gaithersburg, Maryland, USA: National Institute of Standards and Technology and Espoo, Finland: VTT Technical Research Centre of Finland.
  • McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2017a). Fire dynamics simulator, technical reference guide (6th ed.). Gaithersburg, Maryland, USA: National Institute of Standards and Technology and Espoo, Finland: VTT Technical Research Centre of Finland.
  • McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2017b). Fire dynamics simulator, user’s guide (6th ed.). Gaithersburg, Maryland, USA: National Institute of Standards and Technology and Espoo, Finland: VTT Technical Research Centre of Finland.
  • McGrattan, K., Bouldin, C., & Forney, G. (2005). Federal building and fire safety investigation of the World Trade Center disaster: Computer simulation of the fires in the WTC towers (NIST NCSTAR 1-5F). Gaithersburg, Maryland, USA: National Institute of Standards and Technology.
  • NDS. (2018). Technické podmienky TP 049 - vetranie cestnych tunelov [Technical conditions TP 049 – Road tunnels ventilation]. Bratislava, Slovak Republic: Ministry of Transport and Construction.
  • NDS. (2019). Motorways and Expressways Network in Slovakia. Retrieved from https://www.ndsas.sk/stavby/dialnicna-siet.
  • Neutrium. (2019). Absolute Roughness of Pipe Material. Retrieved from https://neutrium.net/fluid_flow/absolute-roughness/
  • OpenFOAM. (2019). OpenFOAM. Retrieved from https://www.openfoam.com/
  • Pope, S. B. (2000). Turbulent flows. Cambridge, UK: Cambridge University Press.
  • Pospisil, P., & Ockajak, R. (2016). Tunel Polana - DRS Vetranie tunela a unikovej stolne [Polana tunnel – tunnel and escape tunnel ventilation]. Technical report. Munchenstein, Switzerland: IP Engineering GmbH.
  • Pospisil, P., & Ockajak, R. (2017). Skusky vetrania tunela Polana a Svrcinovec [Ventilation tests in Polana and Svrcinovec tunnels]. Technical report. Munchenstein, Switzerland: IP Engineering GmbH.
  • Rohne, E. (1988). The friction losses on walls caused by a row of four parallel jet flows. Proceedings of the 6th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels (pp. 151–164), Durham: BHR Group.
  • Rohne, E. (1991). Friction losses of a single jet due to its contact with vaulted ceiling. Proceedings of the 7th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels (pp. 679–687), Brighton: BHR Group.
  • Pyrosim. (2019). Pyrosim. Retrieved from https://www.thunderheadeng.com/pyrosim/resources/
  • Tilley, N., Rauwoens, P., & Merci, B. (2011). Verification of the accuracy of CFD simulations in small-scale tunnel and atrium fire configurations. Fire Safety Journal, 46(4), 186–193. doi:10.1016/j.firesaf.2011.01.007
  • Valasek, L., & Glasa, J. (2017). On realization of cinema hall fire simulation using fire dynamics simulator. Computing and Informatics, 36(4), 971–1000. doi:10.4149/cai_2017_4_971
  • Weisenpacher, P., Glasa, J., & Halada, L. (2016). Automobile Interior Fire and Its Spread to an Adjacent Vehicle: Parallel Simulation. Journal of Fire Sciences, 34(4), 305–322. doi:10.1177/0734904116647972
  • Weisenpacher, P., Glasa, J., & Halada, L. (2016b). Parallel computation of smoke movement during a car park fire. Computing and Informatics, 35, 1416–1437.
  • Zhao, D., Jiang, J. C., Zhou, R., Tong, Y., Wu, F., & Shi, L. J. (2016). Numerical study on the optimisation of smoke ventilation mode for interchange subway station fire. International Journal of Ventilation, 15(1), 79–93. doi:10.1080/14733315.2016.1173294

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.