177
Views
1
CrossRef citations to date
0
Altmetric
Articles

Design and analysis of a novel solar hybrid air conditioning-ventilation-HDH desalination system

, , , &
Pages 34-49 | Received 30 May 2019, Accepted 24 Nov 2019, Published online: 17 Dec 2019

References

  • Abdallah, A. S. H. (2017). A new design of passive air condition integrated with solar chimney for hot arid region of Egypt. Procedia Engineering, 205, 1100–1107. doi:10.1016/j.proeng.2017.10.178
  • Akamine, Y., Kurabuchi, T., Ohba, M., Endo, T., & Kamata, M. (2004). A CFD analysis of the air flow characteristics at an inflow opening. International Journal of Ventilation, 2 (4), 431–437. doi:10.1080/14733315.2004.11683684
  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). (2003). Ventilation for acceptable indoor air quality. addendum n to ANSI/ASHRAE STANDARD 62-2001. ASHRAE Handbook Fundamentals, Atlanta.
  • Andreu, V. P., Fernández, C. A., Ibernón, A. M., & Vivancos, J. L. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165 (Part A), 63–74. doi:10.1016/j.energy.2018.09.015
  • Bourouni, K., & Chaibi, M. T. (2004). Modelling of heat and mass transfer in a horizontal-tube falling-film condenser for brackish water desalination in remote areas. Desalination, 166, 17–24. doi:10.1016/j.desal.2004.06.055
  • Bucchignani, E., Mercogliano, P., Panitz, H. J., & Montesarchio, M. (2018). Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Advances in Climate Change Research, 9(1), 66–80. doi:10.1016/j.accre.2018.01.004
  • Dhamneya, A. K., Rajput, S. P. S., & Singh, A. (2018). Thermodynamic performance analysis of direct evaporative cooling system for increased heat and mass transfer area. Ain Shams Engineering Journal, 9 (4), 2951–2960. doi:10.1016/j.asej.2017.09.008
  • Dyja, R., Gawronska, E., & Grosser, A. (2017). Numerical problems related to solving the navier-stokes equations in connection with the heat transfer with the use of FEM. Procedia Engineering, 177, 78–85. doi:10.1016/j.proeng.2017.02.187
  • Elattar, H. F., Fouda, A., & Nada, S. A. (2016). Performance investigation of a novel solar hybrid air conditioning and humidification–dehumidification water desalination system. Desalination, 382, 28–42. doi:10.1016/j.desal.2015.12.023
  • Fouda, A., Nada, S. A., & Elattar, H. F. (2016). An integrated A/C and HDH water desalination system assisted by solar energy: Transient analysis and economical study. Applied Thermal Engineering, 108, 1320–1335. doi:10.1016/j.applthermaleng.2016.08.026
  • Galdi, G. R. (2011). An introduction to the mathematical theory of the navier-stokes equations: steady-state problems, 2nd Ed. New York: Springer-Verlag. ISBN: 978-0-387-09620-9. 10.1007/978-0-387-09620-9
  • Gao, Y., Liu, J., Yuan, X., Zhang, K., Yang, Y., & Wang, Y. (2017). Air-conditioning system with underfloor air distribution integrated solar chimney in data center. Procedia Engineering, 205, 3420–3427. doi:10.1016/j.proeng.2017.09.852
  • Gholamalizadeh, E., & Kim, M. H. (2016). CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy, 107, 661–667. doi:10.1016/j.energy.2016.04.077
  • Kabeel, A. E., Abdelgaied, M., & Feddaoui, M. (2018). Hybrid system of an indirect evaporative air cooler and HDH desalination system assisted by solar energy for remote areas. Desalination, 439, 162–167. doi:10.1016/j.desal.2018.04.013
  • Kabeel, A. E., Abdelgaied, M., & Zakaria, Y. (2017). Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system. Energy Conversion and Management, 150, 382–391. doi:10.1016/j.enconman.2017.08.032
  • Kennett, R., Cao, T., & Hwang, Y. (2018). CFD modeling and testing of an extended-duct air delivery system in high bay buildings. Science and Technology for the Built Environment, 25 (1), 46–57. doi:10.1080/23744731.2018.1495016
  • Khanal, R., & Lei, C. (2015). A numerical investigation of buoyancy induced turbulent air flow in an inclined passive wall solar chimney for natural ventilation. Energy and Buildings, 93, 217–226. doi:10.1016/j.enbuild.2015.02.019
  • Kiwan, S., Al-Nimr, M., I., & Abdel Salam, Q. (2018). Solar chimney power-water distillation plant (SCPWDP). Desalination, 445, 105–114. doi:10.1016/j.desal.2018.08.006
  • Markovska, N., Duić, N., Mathiesen, B. V., Guzović, Z., Piacentino, A., Schlör, H., & Lund, H. (2016). Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems. Energy. 155 (Part 3), 1504–1512. doi:10.1016/j.energy.2016.10.086
  • Mazzoni, A., Heggy, E., & Scabbia, G. (2018). Forecasting water budget deficits and groundwater depletion in the main fossil aquifer systems in North Africa and the Arabian Peninsula. Global Environmental Change, 53, 157–173. doi:10.1016/j.gloenvcha.2018.09.009
  • Ming, T., Gong, T., K.de Richter, R., Cai, C., & Sherif, S. A. (2017). Numerical analysis of seawater desalination based on a solar chimney power plant. Applied Energy, 208, 1258–1273. doi:10.1016/j.apenergy.2017.09.028
  • Mohanta, L., Joardar, A., Esformes, J. L., Videto, B., & Sienel, T. H. (2019). Numerical analysis of fluid flow and heat transfer in wavy and hybrid-slit-wavy (HSW) fin-and-tube heat exchangers. Science and Technology for the Built Environment, posted online: 03 Apr 2019. doi:10.1080/23744731.2019.1600333
  • Morisot, O., Marchio, D., & Stabat, P. (2002). Simplified model for the operation of chilled water cooling coils under nonnominal conditions. HVAC&R Research, 8 (2), 135–158. doi:10.1080/10789669.2002.10391433
  • Nasri, F., Alqurashi, F., Nciri, R., & Ali, C. (2018). Design and simulation of a novel solar air-conditioning system coupled with solar chimney. Sustainable Cities and Society, 40, 667–676. doi:10.1016/j.scs.2018.04.012
  • National Oceanic and Atmospheric Administration. (2018). Gafsa climate normals 1961–1990. Retrieved November, 02. from http://ftp://ftp.atdd.noaa.gov/pub/GCOS/WMO-Normals/RA-I/TS/60745.TXT
  • Ong, K. S., & Chow, C. C. (2003). Performance of a solar chimney. Solar Energy, 74 (1), 1–17. doi:10.1016/S0038-092X(03)00114-2
  • Refalo, P., Ghirlando, R., & Abela, S. (2016). The use of a solar chimney and condensers to enhance the productivity of a solar still. Desalination and Water Treatment, 57 (48-49), 23024–23037. doi:10.1080/19443994.2015.1106096
  • Roshan, Gh, R., Farrokhzad, M., & Attia, S. (2017). Defining thermal comfort boundaries for heating and cooling demand estimation in Iran's urban settlements. Building and Environment, 121, 168–189. doi:10.1016/j.buildenv.2017.05.023
  • Roy, S., & Basak, T. (2005). Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s). International Journal of Engineering Science, 43 (8-9), 668–680. doi:10.1016/j.ijengsci.2005.01.002
  • Sukhatme, S. P., & Nayak, J. K. (2008). Solar energy: Principles of thermal collection and storage, 3rd Ed. New Delhi: McGraw-Hill. ISBN: 978-0-07-026064-1
  • Talaee, M. R., Kabiri, A., Ebrahimi, M., & Hakimzadeh, B. (2019). Analysis of induced interior air flow in subway train cabin due to accelerating and decelerating. International Journal of Ventilation, 18 (3), 204–219. doi:10.1080/14733315.2018.1462979
  • Taseska, V., Markovska, N., & Callaway, J. M. (2012). Evaluation of climate change impacts on energy demand. Energy, 48 (1), 88–95. doi:10.1016/j.energy.2012.06.053
  • Wan, K. K. W., Li, D. H. W., & Lam, J. C. (2011). Assessment of climate change impact on building energy use and mitigation measures in subtropical climates. Energy, 36 (3), 1404–1414. doi:10.1016/j.energy.2011.01.033
  • Yuan, F., & Chen, Q. (2012). Optimization criteria for the performance of heat and mass transfer in indirect evaporative cooling systems. Chinese Science Bulletin, 57 (6), 687–693. doi:10.1007/s11434-011-4903-3
  • Zhani, K., & Ben Bacha, H. (2013). Modeling, simulation and experimental validation of a pad humidifier used in solar desalination process. Desalination and Water Treatment, 51(7-9), 1477–1486. doi:10.1080/19443994.2012.694207
  • Zili-Ghedira, L., Gouider, H., & Ben Nasrallah, S. (2018). Mathematical modeling of heat and mass transfers in Humidifiers. Aloui, F., and Dincer, I. (eds). Exergy for a better environment and improved sustainability 1. Green energy and technology. Cham: Springer. ISBN: 978-3-319-62572-0. 10.1007/978-3-319-62572-0_32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.