260
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biofertilization increases soil organic carbon concentrations: results of a meta-analysis

ORCID Icon, , , , &
Article: 2361578 | Received 21 Nov 2023, Accepted 24 May 2024, Published online: 13 Jun 2024

References

  • Aloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13, 1–15. https://doi.org/10.3389/FPLS.2022.1002448
  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.
  • Augusto, L., Delerue, F., Gallet-Budynek, A., & Achat, D. L. (2013). Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach. Global Biogeochemical Cycles, 27(3), 804–815. https://doi.org/10.1002/GBC.20069
  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
  • Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068. https://doi.org/10.3389/FPLS.2019.01068
  • Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6, 1559. https://doi.org/10.3389/fmicb.2015.01559
  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis (1st ed.). John Wiley & Sons. https://doi.org/10.1002/9780470743386.
  • Bradford, M. A., Keiser, A. D., Davies, C. A., Mersmann, C. A., & Strickland, M. S. (2013). Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113(1–3), 271–281. https://doi.org/10.1007/s10533-012-9822-0
  • Chamizo, S., Mugnai, G., Rossi, F., Certini, G., & De Philippis, R. (2018). Cyanobacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration. Frontiers in Environmental Science, 6, 49. https://doi.org/10.3389/fenvs.2018.00049
  • Chander, K., Goyal, S., Mundra, M. C., & Kapoor, K. K. (1997). Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biology and Fertility of Soils, 24(3), 306–310. https://doi.org/10.1007/S003740050248
  • Chekwube Enebe, M., & Oluranti Babalola, O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Applied Microbiology and Biotechnology, 102(18), 7821–7835. https://doi.org/10.1007/s00253-018-9214-z
  • Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10(1), 101–129. https://doi.org/10.2307/3001666
  • Dębska, B., Długosz, J., Piotrowska-Długosz, A., & Banach-Szott, M. (2016). The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration – results from a field-scale study. Journal of Soils and Sediments, 16(10), 2335–2343. https://doi.org/10.1007/S11368-016-1430-5
  • DeRuyter, Y. S., & Fromme, P. (2007). The molecular structure of the photosynthetic apparatus. In Antonia Herrero & Enrique Flores (Eds.), Aquatic photosynthesis (pp. 201–236). Princeton University Press. https://doi.org/10.1515/9781400849727.201
  • Du, Y., Cui, B., Zhang, Q., Wang, Z., Sun, J., & Niu, W. (2020). Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. CATENA, 193, Article 104617. https://doi.org/10.1016/j.catena.2020.104617
  • Dutta, P., Biswas, S., & Kundu, S. (2014). Effect of organic manures and biofertilizers on production of organic litchi. Journal of Eco-friendly Agriculture, 6(1), 13–15.
  • Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A., & Ngom, K. (2022). Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical, and biological properties of the soil. Frontiers in Fungal Biology, 3, 3. https://doi.org/10.3389/FFUNB.2022.723892
  • FAO. (2005). The state of food and agriculture. Agricultural trade and poverty: Can trade work for the poor? Food and Agriculture Organization of the United Nations.
  • FAO. (2019). Measuring and modelling soil carbon stocks and stock changes in livestock production systems: Guidelines for assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership.
  • FAO. (2021). Recarbonizing global soils – a technical manual of recommended management practices (Volumes 1–6). Food and Agriculture Organization of the United Nations.
  • FAO and IIASA. (2023). Harmonized world soil database version 2.0. https://doi.org/10.4060/cc3823en
  • FAO and ITPS. (2015). Status of the world’s soil resources (SWSR) – main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils.
  • FAO and ITPS. (2021). Recarbonizing global soils – a technical manual of recommended sustainable soil, management. Volume 4: Cropland, grassland, integrated systems and farming approaches – case studies. FAO. https://doi.org/10.4060/cb6598en.
  • Fragkos, K. C., Tsagris, M., & Frangos, C. C. (2014). Publication bias in meta-analysis: Confidence intervals for Rosenthal’s fail-safe number. International Scholarly Research Notices, 2014, 1–17. https://doi.org/10.1155/2014/825383
  • Gong, W., Yan, X., & Wang, J. (2012). The effect of chemical fertilizer on soil organic carbon renewal and CO2 emission – a pot experiment with maize. Plant and Soil, 353(1–2), 85–94. https://doi.org/10.1007/s11104-011-1011-8
  • Gross, A., & Glaser, B. (2021). Meta-analysis on how manure application changes soil organic carbon storage. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-82739-7
  • Han, P., Zhang, W., Wang, G., Sun, W., & Huang, Y. (2016). Changes in soil organic carbon in croplands subjected to fertilizer management: A global meta-analysis. Scientific Reports, 6(1), 1–13. https://doi.org/10.1038/srep27199
  • Hardy, R. J., & Thompson, S. G. (1996). A likelihood approach to meta-analysis with random effects. Statistics in Medicine, 15(6), 619–629. https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A
  • Harrer, M., Cuijpers, P., Furukawa, T. A., & Ebert, D. D. (2021). Doing meta-analysis with R: A hands-on guide. Chapman and Hall. https://doi.org/10.1201/9781003107347
  • Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/SIM.1186
  • Hosseinzadeh, M. H., Ghalavand, A., Boojar, M. M.-A., Modarres-Sanavy, S. A. M., & Mokhtassi-Bidgoli, A. (2021). Application of manure and biofertilizer to improve soil properties and increase grain yield, essential oil and ω3 of purslane (Portulaca oleracea L.) under drought stress. Soil and Tillage Research, 205, 104633. http://dx.doi.org/10.1016/j.still.2020.104633
  • IPCC. (2006). Guidelines for national greenhouse gas inventories (Volumes 1–6). IGES.
  • Johnson, J. M., Allmaras, R. R., Reicosky, D. C., & Sauer, T. J. (2019). Intra-annual changes in soil organic carbon across a 100-year chronosequence of manure and fertilizer applications. Soil Science Society of America, 83(1), 87–97.
  • Jones, R., Hiederer, R., Rusco, E., Loveland, P., & Montanarella, L. (2003). The map of organic carbon in topsoils in Europe.
  • Kabir, Z., O’halloran, I. P., Fyles, J. W., & Hamel, C. (1997). Seasonal changes of arbuscular mycorrhizal root colonization. Plant and Soil, 192(2), 285–293. https://doi.org/10.1023/A:1004205828485
  • Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., & Stal, L. (2002). Dinitrogen fixation in the world’s oceans. Biogeochemistry, 57–58(1), 47–98. https://doi.org/10.1023/A:1015798105851
  • Kholssi, R., Lougraimzi, H., Grina, F., Lorentz, J. F., Silva, I., Castaño-Sánchez, O., & Marks, E. A. N. (2022). Green agriculture: A review of the application of micro- and macroalgae and their impact on crop production on soil quality. Journal of Soil Science and Plant Nutrition, 22(4), 4627–4641. https://doi.org/10.1007/s42729-022-00944-3
  • Krull, E. S., Baldock, J. A., & Skjemstad, J. O. (2003). Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology, 30(2), 207–222. https://doi.org/10.1071/FP02085
  • Kumar, S., Diksha, Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, Article 100094. https://doi.org/10.1016/J.CRMICR.2021.100094
  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396
  • Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815–830. https://doi.org/10.1098/rstb.2007.2185
  • Lal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212–222. https://doi.org/10.1002/FES3.96
  • Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., & Read, D. (2004). Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosytem functioning. Canadian Journal of Botany, 82(8), 1016–1045. https://doi.org/10.1139/b04-060
  • Lefèvre, C., Rekik, F., Alcantara, V., & Vargas, R. (2017). Soil organic carbon: The hidden potential (L. Wiese, V. Alcantara, R. Baritz & R. Vargas, Eds., pp. 1–99). Food and Agriculture Organization of the United Nations.
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2015). Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  • Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H., & Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199, 104577. http://dx.doi.org/10.1016/j.still.2020.104577
  • Li, J., Van Gerrewey, T., & Geelen, D. (2022). A meta-analysis of biostimulant yield effectiveness in field trials. Frontiers in Plant Science, 13, 1–13. https://doi.org/10.3389/fpls.2022.836702
  • Liu, Q., Meng, X., Li, M., Raza, W., Liu, D., & Shen, Q. (2020). The growth promotion of peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-based Biological Organic Fertilizer: Possible role of increasing nutrient availabilities. Microorganisms, 8, 1296.
  • Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., & Li, B. (2011). Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems and Environment, 140(1–2), 234–244. https://doi.org/10.1016/j.agee.2010.12.010
  • Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 139(1–2), 224–231. https://doi.org/10.1016/j.agee.2010.08.006
  • Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162, 31–87. https://doi.org/10.1016/bs.agron.2020.02.001
  • MalamIssa, O., Le Bissonnais, Y., Défarge, C., & Trichet, J. (2001). Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma, 101(3–4), 15–30. https://doi.org/10.1016/S0016-7061(00)00093-8
  • Marks, E. A. N., Montero, O., & Rad, C. (2019). The biostimulating effects of viable microalgal cells applied to a calcareous soil: Increases in bacterial biomass, phosphorus scavenging, and precipitation of carbonates. Science of the Total Environment, 692, 784–790. https://doi.org/10.1016/j.scitotenv.2019.07.289
  • Mcdonald, H., Frelih-Larsen, A., Lóránt, A., Duin, L., Andersen, S. P., Costa, G., & Bradley, H. (2021). Carbon farming making agriculture fit for 2030. Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies.
  • Miltner, A., Bombach, P., Schmidt-Brücken, B., & Kästner, M. (2012). SOM genesis: Microbial biomass as a significant source. Biogeochemistry, 111(1–3), 41–55. https://doi.org/10.1007/s10533-011-9658-z
  • Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking crop nutrition in times of modern microbiology: Innovative biofertilizer technologies. Frontiers in Sustainable Food Systems, 5, 29. https://doi.org/10.3389/fsufs.2021.606815
  • Müller, L. M. (2021). Underground connections: Arbuscular mycorrhizal fungi influence on interspecific plant-plant interactions. Plant Physiology, 187(3), 1270–1272. https://doi.org/10.1093/PLPHYS/KIAB397
  • Murugan, R., & Chitraputhirapillai, S. (2011). Effects of combined application of biofertilizers with neem cake on soil fertility, grain yield and protein content of black gram (Vigna mungo (L.) Hepper). World Journal of Agricultural Sciences, 7(5), 583–590.
  • Nisha, R., Kaushik, A., & Kaushik, C. P. (2007). Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma, 138(1–2), 49–56. https://doi.org/10.1016/j.geoderma.2006.10.007
  • Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL, 5(1), 15–32. https://doi.org/10.5194/SOIL-5-15-2019
  • Pathak, T. B., Maskey, M. L., Dahlberg, J. A., Kearns, F., Bali, K. M., & Zaccaria, D. (2018). Climate change trends and impacts on California agriculture: A detailed review. Agronomy, 8(3), 25. https://doi.org/10.3390/AGRONOMY8030025
  • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49–57. https://doi.org/10.1038/nature17174
  • Popa, R., Weber, P. K., Pett-Ridge, J., Finzi, J. A., Fallon, S. J., Hutcheon, I. D., Nealson, K. H., & Capone, D. G. (2007). Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. The ISME Journal, 1(4), 354–360. https://doi.org/10.1038/ismej.2007.44
  • Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. European Journal of Soil Science, 62(1), 42–55. https://doi.org/10.1111/j.1365-2389.2010.01342.x
  • Reddy, K. S., Karthik, R., & Kumar, G. S. (2021). Biofertilizer for crop production and soil fertility. Just Agriculture, 1, 1–5.
  • Riley, R. D., Higgins, J. P. T., & Deeks, J. J. (2011). Interpretation of random effects meta-analyses. BMJ, 342(7804), 964–967. https://doi.org/10.1136/BMJ.D549
  • Rose, M., Phuong, T., Nhan, D., Cong, P., Hien, N., & Kennedy, I. (2014). Up to 52% N fertilizer replaced by biofertilizer in lowland rice via farmer participatory research. Agronomy for Sustainable Development, 34(4), 857–868. https://doi.org/10.1007/s13593-014
  • Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638–641. https://doi.org/10.1037/0033-2909.86.3.638
  • Rubin, R. L., van Groenigen, K. J., & Hungate, B. A. (2017). Plant growth promoting rhizobacteria are more effective under drought: A meta-analysis. Plant and Soil, 416(1–2), 309–323. https://doi.org/10.1007/s11104-017-3199-8
  • Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9575–9580. https://doi.org/10.1073/pnas.1706103114
  • Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386
  • Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., & Mathimaran, N. (2018). Improving crop yield and nutrient use efficiency via biofertilization – a global meta-analysis. Frontiers in Plant Science, 8, 2204. https://doi.org/10.3389/fpls.2017.02204
  • Singh, Y. V., & Dhar, D. W. (2011). Changes in soil organic carbon and microbial population under organically managed rice (Oryza sativa)- wheat (Triticum aestivum) - greengram (Vigna radiata) cropping system. Indian Journal of Agricultural Sciences, 81(4), 363–365.
  • Singh, S. R., Najar, G. R., & Singh, U. (2007). Productivity and nutrient uptake of soybean (Glycine max) as influenced by bio-inoculants and farmyard manure under rainfed conditions. Indian Journal of Agronomy, 52(4), 325–329.
  • Singh, B., Upadhyay, A. K., Al-Tawaha, T. W., Al-Tawaha, A. R., & Sirajuddin, S. N. (2020). Biofertilizer as a tool for soil fertility management in changing climate. IOP Conference Series: Earth and Environmental Science, 492(1), 012158. https://doi.org/10.1088/1755-1315/492/1/012158
  • Sinha, R. K., Valani, D., Chauhan, K., & Agarwal, S. (2010). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of Sir Charles Darwin. Journal of Agricultural Biotechnology and Sustainable Development, 2(7), 113–128. https://doi.org/10.5897/JABSD.9000017
  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 55–176.
  • Stewart, C. E., Plante, A. F., Paustian, K., Conant, R. T., & Six, J. (2008). Soil carbon saturation: Linking concept and measurable carbon pools. Soil Science Society of America Journal, 72(2), 379–392. https://doi.org/10.2136/SSSAJ2007.0104
  • Tao, F., Huang, Y., Hungate, B. A., Manzoni, S., Frey, S. D., Schmidt, M. W. I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang, L., Lehmann, J., Wang, Y.-P., Houlton, B. Z., Ahrens, B., Mishra, U., Hugelius, G., Hocking, T. D., Lu, X., Shi, Z., … Luo, Y. (2023). Microbial carbon use efficiency promotes global soil carbon storage. Nature, 618(7967), 981–985. https://doi.org/10.1038/s41586-023-06042-3
  • Thomas, L., & Singh, I. (2019). Microbial biofertilizers: Types and applications. In B. Giri, R. Prasad, Q. S. Wu, & A. Varma (Eds.), Biofertilizers for sustainable agriculture and environment (pp. 1–19). Springer. https://doi.org/10.1007/978-3-030-18933-4_1
  • Toth, G. B., & Pavia, H. (2007). Induced herbivore resistance in seaweeds: A meta-analysis. Journal of Ecology, 95(3), 425–434. https://doi.org/10.1111/J.1365-2745.2007.01224.X
  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/JSS.V036.I03
  • Viechtbauer, W., Smits, L., Kotz, D., Budé, L., Spigt, M., Serroyen, J., & Crutzen, R. (2015). A simple formula for the calculation of sample size in pilot studies. Journal of Clinical Epidemiology, 68(11), 1375. https://doi.org/10.1016/j.jclinepi.2015.04.014
  • Wang, X. B., Cai, D. X., Hoogmoed, W. B., Oenema, O., & Perdok, U. D. (2006). Potential effect of conservation tillage on sustainable land use: A review of global long-term studies. Pedosphere, 16(5), 587–595. https://doi.org/10.1016/S1002-0160(06)60092-1
  • Waring, B. G., Álvarez-Cansino, L., Barry, K. E., Becklund, K. K., Dale, S., Gei, M. G., Keller, A. B., Lopez, O. R., Markesteijn, L., Mangan, S., Riggs, C. E., Rodríguez-Ronderos, M. E., Max Segnitz, R., Schnitzer, S. A., & Powers, J. S. (2015). Pervasive and strong effects of plants on soil chemistry: A meta-analysis of individual plant ‘Zinke’ effects. Proceedings of the Royal Society B: Biological Sciences, 282(1812), 20151001. https://doi.org/10.1098/RSPB.2015.1001
  • West, T. O., & Six, J. (2007). Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 80(1), 25–41. https://doi.org/10.1007/S10584-006-9173-8
  • Yadav, S. K., Khokhar, U. U., Sharma, S. D., & Kumar, P. (2015). Response of strawberry to organic versus inorganic fertilizers. Journal of Plant Nutrition, 39(2), 194–203. http://dx.doi.org/10.1080/01904167.2015.1109115
  • Yadav, S. K., Singh, Y., Yadav, M. K., Babu, S., & Singh, K. (2013). Effect of organic nitrogen sources on yield, nutrient uptake and soil. Indian Journal of Agricultural Sciences, 83(2), 170–175.
  • Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10(1), 177. https://doi.org/10.1038/S41598-019-56954-2
  • Yilmaz, E., & Sönmez, M. (2017). The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil and Tillage Research, 168, 118–124.
  • Youssef, M. A., & Farag, M. I. H. (2021). Co-application of organic manure and bio-fertilizer to improve soil fertility and production of quinoa and proceeding Jew’s Mallow crops. Journal of Soil Science and Plant Nutrition, 21(3), 2472–2488. http://dx.doi.org/10.1007/s42729-021-00538-5
  • Zhang, A., Carroll, A. L., & Atsumi, S. (2017). Carbon recycling by cyanobacteria: Improving CO2 fixation through chemical production. FEMS Microbiology Letters, 364(16), 165. https://doi.org/10.1093/femsle/fnx165