218
Views
13
CrossRef citations to date
0
Altmetric
Review

Detecting tumor progression in glioma: current standards and new techniques

, &
Pages 1177-1188 | Received 23 May 2016, Accepted 21 Sep 2016, Published online: 08 Oct 2016

References

  • Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–466.
  • Stupp R, Mason WP, Van Den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996.
  • Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N. Engl. J. Med. 2016;374:1344–1355.
  • Fisher BJ, Hu C, Macdonald DR, et al. Phase 2 study of temozolomide-based chemoradiation therapy for high-risk low-grade gliomas: preliminary results of radiation therapy oncology group 0424. Int. J. Radiat. Oncol. Biol. Phys. 2015;91:497–504.
  • Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: Long-term results of RTOG 9402. J. Clin. Oncol. 2013;31:337–343.
  • Stuplich M, Hadizadeh DR, Kuchlmeister K, et al. Late and prolonged pseudoprogression in glioblastoma after treatment with Lomustine and Temozolomide. J. Clin. Oncol. 2013;30:129–132.
  • Van Den Bent MJ, Vogelbaum MA, Wen PY, et al. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s criteria. J. Clin. Oncol. 2009;27:2905–2908.
  • Han K, Ren M, Wick W, et al. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: A literature-based meta-analysis from 91 trials. Neuro. Oncol. 2014;16:696–706.
  • Wen PY, Cloughesy TF, Ellingson BM, et al. Report of the jumpstarting brain tumor drug development coalition and FDA clinical trials neuroimaging endpoint workshop. Neuro. Oncol. 2014;16:vii36– vii 47.
  • Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014;370:699–708.
  • Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 2010;28:1963–1972.
  • Clarke JL, Chang SM. Pseudoprogression and pseudoresponse : challenges in brain tumor imaging. Curr. Neurol. Neurosci. Rep. 2009;9:241–246.
  • Eisele SC, Wen PY, Lee EQ. Assessment of brain tumor response: RANO and its offspring. Curr. Treat. Options Oncol. 2016;17:35.
  • Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Br. J. Radiol. 2011;84:107–111.
  • Macdonald DR, Cascino TL, Schold SC, et al. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 1990;8:1277–1280.
  • Bauman G, Lote K, Larson DA, et al. Pretreatment factors predict overall survival for patients with low-grade glioma: a recursive partitioning analysis. Int. J. Radiat. Oncol. Biol. Phys. 1999;45:923–929.
  • Ellingson BM, Bendszus M, Boxerman JL, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro. Oncol. 2015;17:1188–1198.
  • Reardon DA, Ballman KV, Buckner JC, et al. Impact of imaging measurements on response assessment in glioblastoma clinical trials. Neuro. Oncol. 2014;16: vii24–vii35.
  • Eisenhauer E, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 2009;45:228–247.
  • Okada H, Weller M, Huang RY, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16:e534–e542.
  • Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 2009;15:7412–7420.
  • Kazda T, Hardie JG, Pafundi DH, et al. Evaluation of RANO response criteria compared to clinician evaluation in WHO grade III anaplastic astrocytoma: implications for clinical trial reporting and patterns of failure. J. Neurooncology. 2015;8:1699–1712.
  • Gállego Pérez-Larraya J, Lahutte M, Petrirena G, et al. Response assessment in recurrent glioblastoma treated with irinotecan-bevacizumab: comparative analysis of the Macdonald, RECIST, RANO, and RECIST + F criteria. Neuro. Oncol. 2012;14:667–673.
  • Chen X, Wei X, Zhang Z, et al. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI. Clin. Imaging. 2015;39:775–780.
  • Bulik M, Kazda T, Slampa P, et al. The diagnostic ability of follow-up imaging biomarkers after treatment of glioblastoma in the temozolomide era: implications from proton MR spectroscopy and apparent diffusion coefficient mapping. Biomed Res. Int. 2015;2015:1–9.
  • Wang S, Sakai Y, Chawla S, et al. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. Am. J. Neuroradiol. 2016;37:28–36.
  • Chu HH, Choi SH, Ryoo I, et al. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology. 2013;269:831–840.
  • Ellingson BM, Sahebjam S, Kim HJ, et al. Pretreatment ADC histogram analysis is a predictive imaging biomarker for bevacizumab treatment but not chemotherapy in recurrent glioblastoma. Am. J. Neuroradiol. 2014;35:673–679.
  • Zulfiqar M, Yousem DM, Lai H. ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor? A meta-analysis. Am. J. Roentgenol. 2013;200:624–629.
  • Ryu YJ, Choi SH, Park SJ, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One. 2014;9:e108335.
  • Brynolfsson P, Nilsson D, Henriksson R, et al. ADC texture-an imaging biomarker for high-grade glioma? Med Phys. 2014;41:101903.
  • Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am. J. Neuroradiol. 2003;24:1989–1998.
  • Bulik M, Jancalek R, Vanicek J, et al. Potential of MR spectroscopy for assessment of glioma grading. Clin. Neurol. Neurosurg. 2013;115:146–153.
  • Verma N, Cowperthwaite MC, Burnett MG, et al. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro. Oncol. 2013;15:515–534.
  • Shah R, Vattoth S, Jacob R, et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012;32:1343–1359.
  • Guillevin R, Menuel C, Taillibert S, et al. Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy. Br. J. Cancer. 2011;104:1854–1861.
  • Lotumolo A, Caivano R, Rabasco P, et al. Comparison between magnetic resonance spectroscopy and diffusion weighted imaging in the evaluation of gliomas response after treatment. Eur. J. Radiol. 2015;84:2597–2604.
  • Al Sayyari A, Buckley R, McHenery C, et al. Distinguishing recurrent primary brain tumor from radiation injury: a preliminary study using a susceptibility-weighted MR imaging-guided apparent diffusion coefficient analysis strategy. Am. J. Neuroradiol. 2010;31:1049–1054.
  • Ratai E, Zhang Z, Snyder BS, et al. MR spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma : ACRIN 6677 /RTOG 0625. Neuro. Oncol. 2013;15:936–944.
  • Weybright P, Sundgren PC, Maly P, et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. Am. J. Roentgenol. 2005;185:1471–1476.
  • Elias AE, Carlos RC, Smith EA, et al. MR spectroscopy using normalized and non-normalized metabolite ratios for differentiating recurrent brain tumor from radiation injury. Acad. Radiol. 2011;18:1101–1108.
  • Jain R, Ellika SK, Scarpace L, et al. Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. Am. J. Neuroradiol. 2008;29:694–700.
  • Jain R, Narang J, Schultz LR, et al. Permeability estimates in histopathology-proved treatment-induced necrosis using perfusion CT: can these add to other perfusion parameters in differentiating from recurrent/progressive tumors?. Am J. Neuroradiol. 2011;32:658–663.
  • Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five most frequently asked technical questions. Am. J. Roentgenol. 2013;200:24–34.
  • Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging. 1999;10:223–232.
  • Jackson A, Jayson GC, Li KL, et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br. J. Radiol. 2003;76:153–156.
  • Suh CH, Kim HS, Choi YJ, et al. Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Am. J. Neuroradiol. 2013;34:2278–2286.
  • Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. J. Magn. Reson. Imaging. 2005;22:710–717.
  • Cha S, Knopp EA, Johnson G, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223:11–29.
  • Santarosa C, Castellano A, Conte GM, et al. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur. J. Radiol. 2016;85:1147–1156.
  • Young RJ, Gupta A, Shah AD, et al. MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin. Imaging. 2013;37:41–49.
  • Gahramanov S, Muldoon LL, Varallyay CG, et al. Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology. 2013;266:842–852.
  • Bedekar D, Jensen T, Schmainda KM. Standardization of Relative Cerebral Blood Volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn. Reson. Med. 2010;64:907–913.
  • Schmainda KM, Prah M, Connelly J, et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro. Oncol. 2014;16:880–888.
  • Haacke EM, Xu Y, Cheng Y-CN, et al. Susceptibility weighted imaging (SWI). Magn. Reson. Med. 2004;52:612–618.
  • Fahrendorf D, Schwindt W, Wolfer J, et al. Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme. Eur. Radiol. 2013;23:2868–2879.
  • Lupo JM, Molinaro AM, Essock-burns E, et al. The effects of anti-angiogenic therapy on the formation of radiation-induced microbleeds in normal brain tissue of patients with glioma. Neuro. Oncol. 2016;18:87–95.
  • Mohammed W, Xunning H, Haibin S, et al. Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: A review. Cancer Imaging. 2013;13:186–195.
  • Haneder S, Giordano FA, Konstandin S, et al. 23Na-MRI of recurrent glioblastoma multiforme after intraoperative radiotherapy: technical note. Neuroradiology. 2015;57:321–326.
  • Laymon CM, Oborski MJ, Lee VK, et al. Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis. Magn. Reson. Imaging. 2012;30:1268–1278.
  • Schepkin VD, Bejarano FC, Morgan T, et al. In vivo magnetic resonance imaging of sodium and diffusion in rat glioma at 21.1 Tesla. Magn. Reson. Med. 2012;67:1159–1166.
  • Park S-H, Larson PEZ, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro. Oncol. 2010;12:133–144.
  • Miloushev VZ, Keshari KR, Holodny AI. Hyperpolarization MRI: preclinical models and potential applications in neuroradiology. Top. Magn. Reson. Imaging. 2016;25:31–37.
  • Gallagher FA, Kettunen MI, Day SE, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature. 2008;453:940–943.
  • Ma B, Blakeley JO, Hong X, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J. Magn. Reson. Imaging. 2016;44:456–462.
  • Harris RJ, Cloughesy TF, Liau LM, et al. PH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro. Oncol. 2015;17:1514–1524.
  • Togao O, Hiwatashi A, Keupp J, et al. Scan-rescan reproducibility of parallel transmission based amide proton transfer imaging of brain tumors. J. Magn. Reson. Imaging. 2015;42:1346–1353.
  • Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro. Oncol. 2014;16:441–448.
  • Heo H-Y, Zhang Y, Lee D-H, et al. Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques. Magn. Reson. Med. 2016. [E-pub ahead of print].
  • Tie J, Gunawardana DH, Rosenthal MA. Differentiation of tumor recurrence from radiation necrosis in high-grade gliomas using 201Tl-SPECT. J. Clin. Neurosci. 2008;15:1327–1334.
  • Alexiou GA, Zikou A, Tsiouris S, et al. Comparison of diffusion tensor, dynamic susceptibility contrast MRI and 99mTc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma. Magn. Reson. Imaging. 2014;32:854–859.
  • Amin A, Moustafa H, Ahmed E, et al. Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (1H-MRS): initial results. J. Neurooncol. 2012;106:579–587.
  • Caroline I, Rosenthal MA. Imaging modalities in high-grade gliomas: pseudoprogression, recurrence, or necrosis? J Clin. Neurosci. 2012;19:633–637.
  • Chung J-K, Kim YK, Kim S, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging. 2002;29:176–182.
  • Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J. Nucl. Med. 2008;49:694–699.
  • Kim YH, Oh SW, Lim YJ, et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C- methionine PET and perfusion MRI. Clin. Neurol. Neurosurg. 2010;112:758–765.
  • Galldiks N, Dunkl V, Stoffels G, et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:685–695.
  • Morana G, Piccardo A, Puntoni M, et al. Diagnostic and prognostic value of 18 F-DOPA PET and 1 H-MR spectroscopy in pediatric supratentorial infiltrative gliomas: a comparative study. Neuro. Oncol. 2015;17:1637–1647.
  • Chen W, Silverman DHS, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med. 2006;47:904–911.
  • Schwarzenberg J, Czernin J, Cloughesy TF, et al. Treatment response evaluation using 18 F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin. Cancer Res. 2014;20:3550–3559.
  • Venneti S, Dunphy MP, Zhang H, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 2015;7:1–10.
  • Karavaeva E, Harris RJ, Leu K, et al. Relationship between [18F]FDOPA PET uptake, Apparent Diffusion Coefficient (ADC), and proliferation rate in recurrent malignant gliomas. Mol. Imaging Biol. 2015;17:434–442.
  • Belohlavek O, Fencl P, Majovsky M, et al. FLT-PET in previously untreated patients with low-grade glioma can predict their overall survival. Nucl. Med. Rev. Cent. East. Eur. 2014;17:7–12.
  • Dunet V, Pomoni A, Hottinger A, et al. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro. Oncol. 2016;18:426–434.
  • Roy B, Gupta RK, Maudsley AA, et al. Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology. 2013;55:603–613.
  • Cha J, Kim ST, Kim HJ, et al. Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametic histogram analysis. Am. J. Neuroradiol. 2014;37:1–9.
  • Yeung TPC, Yartsev S, Lee T-Y, et al. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma. J. Med. Radiat. Sci. 2014;61:4–13.
  • Jena A, Taneja S, Gambhir A, et al. Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-Fluoroethyl)-L- Tyrosine PET/MRI. Clin. Nucl. Med. 2016;41:228–236.
  • Kim MM, Lawrence TS, Cao Y. Advances in magnetic resonance and positron emission tomography imaging: assessing response in the treatment of low-grade glioma. Semin. Radiat. Oncol. 2015;25:172–180.
  • Chung C, Metser U, Ménard C. Advances in magnetic resonance imaging and positron emission tomography imaging for grading and molecular characterization of glioma. Semin. Radiat. Oncol. 2015;25:164–171.
  • Villalva C, Cortes U, Wager M, et al. O6-methylguanine-methyltransferase (MGMT) promoter methylation status in glioma stem-like cells is correlated to temozolomide sensitivity under differentiation-promoting conditions. Int. J. Mol. Sci. 2012;13:6983–6994.
  • Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 2008;26:2192–2197.
  • Moon W-J, Choi JW, Roh HG, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology. 2012;54:555–563.
  • Okita Y, Nonaka M, Shofuda T, et al. 11C-methinine uptake correlates with MGMT promoter methylation in nonenhancing gliomas. Clin. Neurol. Neurosurg. 2014;125:212–216.
  • Kang HC, Kim CY, Han JH, et al. Pseudoprogression in patients with malignant gliomas treated with concurrent temozolomide and radiotherapy: potential role of p53. J. Neurooncol. 2011;102:157–162.
  • Pouleau HB, Sadeghi N, Balériaux D, et al. High levels of cellular proliferation predict pseudoprogression in glioblastoma patients. Int. J. Oncol. 2012;40:923–928.
  • Van Velthuysen MLF, Groen EJ, Sanders J, et al. Reliability of proliferation assessment by Ki-67 expression in neuroendocrine neoplasms: eyeballing or image analysis? Neuroendocrinology. 2014;100:288–292.
  • Gzell C, Wheeler H, Huang D, et al. Proliferation index predicts survival after second craniotomy within 6 months of adjuvant radiotherapy for high-grade glioma. Clin. Oncol. 2016;28:215–222.
  • Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 2015;372:2499–2508.
  • de la Fuente MI, Young RJ, Rubel J, et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro. Oncol. 2016; 18:283–290.
  • Andronesi OC, Rapalino O, Gerstner E, et al. Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J. Clin. Invest. 2013;123:3659–3663.
  • Bal D, Gryff‐Keller A. 1H and 13C NMR study of 2‐hydroxyglutaric acid and its lactone. Magn. Reson. Chem. 2002;40:533–536.
  • Qiao XJ, Ellingson BM, Kim HJ, et al. Arterial spin-labeling perfusion mri stratifies progression-free survival and correlates with epidermal growth factor receptor status in glioblastoma. Am. J. Neuroradiol. 2015;36:672–677.
  • Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–820.
  • ElBanan MG, Amer AM, Zinn PO, et al. Imaging genomics of glioblastoma: state of the art bridge between genomics and neuroradiology Neuroimaging. Clin. N. Am. 2015;25:141–153.
  • Ellingson BM, Kim E, Woodworth DC, et al. Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: A multicenter, randomized, phase II trial of bevacizumab and chemotherapy in recurrent glioblastoma. Int. J. Oncol. 2015;46:1883–1892.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.