666
Views
25
CrossRef citations to date
0
Altmetric
Review

Clinical challenges in de novo pediatric acute myeloid leukemia

, &
Pages 277-293 | Received 01 Nov 2017, Accepted 11 Jan 2018, Published online: 20 Jan 2018

References

  • Surveillance Research Program NCI. Fast stats an interactive tool for access to SEER cancer statistics. [ cited 2017 Jun 17]. Available from: http://seer.cancer.gov/faststats
  • Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012 Oct 18;120(16):3187–3205. PubMed PMID: 22879540.
  • Zwaan CM, Kolb EA, Reinhardt D, et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol. 2015 Sep 20;33(27):2949–2962. PubMed PMID: 26304895.
  • Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–198. PubMed PMID: 12194988.
  • Cancer Genome Atlas Research N, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 May 30;368(22):2059–2074. PubMed PMID: 23634996; PubMed Central PMCID: PMCPMC3767041. doi:10.1056/NEJMoa1301689
  • Metzeler KH, Herold T, Rothenberg-Thurley M, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016 Aug 4;128(5):686–698. PubMed PMID: 27288520. doi:10.1182/blood-2016-01-693879
  • Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016 Jun 9;374(23):2209–2221. PubMed PMID: 27276561; PubMed Central PMCID: PMCPMC4979995. doi:10.1056/NEJMoa1516192
  • Bullinger L, Dohner K, Dohner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017 Mar 20;35(9):934–946. PubMed PMID: 28297624. doi:10.1200/JCO.2016.71.2208.
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391–2405. PubMed PMID: 27069254. doi:10.1182/blood-2016-03-643544
  • Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985 Oct;103(4):620–625. PubMed PMID: 3862359.
  • Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med. 1985 Sep;103(3):460–462. PubMed PMID: 2411180.
  • Bennett JM, Catovsky D, Daniel MT, et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol. 1991 Jul;78(3):325–329. PubMed PMID: 1651754.
  • Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009 Jul 30;114(5):937–951. PubMed PMID: 19357394.
  • Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000 Dec 15;96(13):4075–4083. PubMed PMID: 11110676.
  • Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998 Oct 1;92(7):2322–2333. PubMed PMID: 9746770.
  • Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010 Jul 22;116(3):354–365. PubMed PMID: 20385793.
  • Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002 Dec 15;100(13):4325–4336. PubMed PMID: 12393746. doi:10.1182/blood-2002-03-0772
  • Weltermann A, Fonatsch C, Haas OA, et al. Impact of cytogenetics on the prognosis of adults with de novo AML in first relapse. Leukemia. 2004 Feb;18(2):293–302. PubMed PMID: 14671635. doi:10.1038/sj.leu.2403243
  • Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer. 2011 Feb;2(2):95–107. PubMed PMID: 21779483; PubMed Central PMCID: PMC3111245. doi:10.1177/1947601911408076.
  • Von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010 Jun 1;28(16):2682–2689. PubMed PMID: 20439630.
  • Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol. 2010 Jun 1;28(16):2674–2681. PubMed PMID: 20439644.
  • Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017 Jan 26;129(4):424–447. PubMed PMID: 27895058; PubMed Central PMCID: PMCPMC5291965. doi:10.1182/blood-2016-08-733196
  • Klein K, Kaspers G, Harrison CJ, et al. Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an International Retrospective Study by the International Berlin-Frankfurt-Munster Study Group. J Clin Oncol. 2015 Dec 20;33(36):4247–4258. PubMed PMID: 26573082. doi:10.1200/JCO.2015.61.1947
  • Jung HA, Maeng CH, Park S, et al. Prognostic factor analysis in core-binding factor-positive acute myeloid leukemia. Anticancer Res. 2014 Feb;34(2):1037–1045. PubMed PMID: 24511052.
  • Creutzig U, Zimmermann M, Bourquin JP, et al. Second induction with high-dose cytarabine and mitoxantrone: different impact on pediatric AML patients with t(8;21) and with inv(16). Blood. 2011 Nov 17;118(20):5409–5415. PubMed PMID: 21948298.
  • Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006 Jun;20(6):965–970. PubMed PMID: 16598313.
  • Goemans BF, Zwaan CM, Miller M, et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia. 2005 Sep;19(9):1536–1542. PubMed PMID: 16015387.
  • Shih LY, Liang DC, Huang CF, et al. Cooperating mutations of receptor tyrosine kinases and Ras genes in childhood core-binding factor acute myeloid leukemia and a comparative analysis on paired diagnosis and relapse samples. Leukemia. 2008 Feb;22(2):303–307. PubMed PMID: 17960171.
  • Pollard JA, Alonzo TA, Gerbing RB, et al. Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. Blood. 2010 Mar 25;115(12):2372–2379. PubMed PMID: 20056794.
  • Shimada A, Taki T, Tabuchi K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006 Mar 1;107(5):1806–1809. PubMed PMID: 16291592.
  • Manara E, Bisio V, Masetti R, et al. Core-binding factor acute myeloid leukemia in pediatric patients enrolled in the AIEOP AML 2002/01 trial: screening and prognostic impact of c-KIT mutations. Leukemia. 2013 Nov 14;28:1132–1134. PubMed PMID: 24226631.
  • Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006 Aug 20;24(24):3904–3911. PubMed PMID: 16921041.
  • Balgobind BV, Hollink IH, Arentsen-Peters ST, et al. Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica. 2011 Oct;96(10):1478–1487. PubMed PMID: 21791472.
  • Hollink IH, Zwaan CM, Zimmermann M, et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia. 2009 Feb;23(2):262–270. PubMed PMID: 19020547. doi:10.1038/leu.2008.313
  • Ho PA, Alonzo TA, Gerbing RB, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2009 Jun 25;113(26):6558–6566. PubMed PMID: 19304957; PubMed Central PMCID: PMC2943755. doi:10.1182/blood-2008-10-184747
  • Meyer C, Hofmann J, Burmeister T, et al. The MLL recombinome of acute leukemias in 2013. Leukemia. 2013 Nov;27(11):2165–2176. PubMed PMID: 23628958; PubMed Central PMCID: PMCPMC3826032. doi:10.1038/leu.2013.135
  • Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009 Sep 17;114(12):2489–2496. PubMed PMID: 19528532; PubMed Central PMCID: PMC2927031. doi:10.1182/blood-2009-04-215152
  • Sandahl JD, Coenen EA, Forestier E, et al. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica. 2014 May;99(5):865–872. PubMed PMID: 24441146; PubMed Central PMCID: PMC4008104. doi:10.3324/haematol.2013.098517
  • Tarlock K, Alonzo TA, Moraleda PP, et al. Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is associated with poor outcome in childhood AML regardless of FLT3-ITD status: a report from the Children’s Oncology Group. Br J Haematol. 2014 Jul;166(2):254–259. PubMed PMID: 24661089; PubMed Central PMCID: PMC4079767. doi:10.1111/bjh.12852
  • Gupta M, Ashok Kumar J, Sitaram U, et al. The t(6;9)(p22;q34) in myeloid neoplasms: a retrospective study of 16 cases. Cancer Genet Cytogenet. 2010 Dec;203(2):297–302. PubMed PMID: 21156248. doi:10.1016/j.cancergencyto.2010.08.012
  • Breems DA, Van Putten WL, De Greef GE, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008 Oct 10;26(29):4791–4797. PubMed PMID: 18695255. doi:10.1200/JCO.2008.16.0259
  • Anelli L, Pasciolla C, Zagaria A, et al. Monosomal karyotype in myeloid neoplasias: a literature review. Onco Targets Ther. 2017;10:2163–2171. PubMed PMID: 28461756; PubMed Central PMCID: PMCPMC5404799. doi:10.2147/OTT.S133937
  • Lee NH, Choi YB, Yi ES, et al. Monosomal karyotype is not a predictor of dismal outcome in childhood de novo acute myeloid leukemia. Leuk Res. 2016 Nov;50:57–62. PubMed PMID: 27683973. doi:10.1016/j.leukres.2016.09.015
  • Rasche M, Von Neuhoff C, Dworzak M, et al. Genotype-outcome correlations in pediatric AML: the impact of a monosomal karyotype in trial AML-BFM 2004. Leukemia. 2017 Apr; 25. PubMed PMID: 28443606. doi:10.1038/leu.2017.121
  • Zwaan CM, Meshinchi S, Radich JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood. 2003 Oct 1;102(7):2387–2394. PubMed PMID: 12816873.
  • Meshinchi S, Alonzo TA, Stirewalt DL, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006 Dec 01;108(12):3654–3661. PubMed PMID: 16912228; PubMed Central PMCID: PMC1895470. doi:10.1182/blood-2006-03-009233
  • Pratcorona M, Brunet S, Nomdedeu J, et al. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy. Blood. 2013 Apr 04;121(14):2734–2738. PubMed PMID: 23377436. doi:10.1182/blood-2012-06-431122
  • Shamaa S, Laimon N, Aladle DA, et al. Prognostic implications of NPM1 mutations and FLT3 internal tandem duplications in Egyptian patients with cytogenetically normal acute myeloid leukemia. Hematology. 2014 Jan;19(1):22–30. PubMed PMID: 23540998. doi:10.1179/1607845413Y.0000000085
  • Liang D-C, Shih L-Y, Hung I-J, et al. FLT3-TKD mutation in childhood acute myeloid leukemia. Leukemia. 2003 May;17(5):883–886. PubMed PMID: 12750701. doi:10.1038/sj.leu.2402928
  • Kang HJ, Hong SH, Kim IH, et al. Prognostic significance of FLT3 mutations in pediatric non-promyelocytic acute myeloid leukemia. Leuk Res. 2005 Jun;29(6):617–623. PubMed PMID: 15863200. doi:10.1016/j.leukres.2004.11.006
  • Bacher U, Haferlach C, Kern W, et al. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters--an analysis of 3082 patients. Blood. 2008 Mar 01;111(5):2527–2537. PubMed PMID: 17965322. doi:10.1182/blood-2007-05-091215
  • Hollink IH, Van Den Heuvel-Eibrink MM, Zimmermann M, et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood. 2009 Jun 04;113(23):5951–5960. PubMed PMID: 19171881. doi:10.1182/blood-2008-09-177949
  • Ho PA, Zeng R, Alonzo TA, et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2010 Aug 05;116(5):702–710. PubMed PMID: 20413658; PubMed Central PMCID: PMC2918327. doi:10.1182/blood-2010-02-268953
  • Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010 May 10;28(14):2348–2355. PubMed PMID: 20368543; PubMed Central PMCID: PMC2881719. doi:10.1200/JCO.2009.27.3730
  • Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010 Aug 01;28(22):3636–3643. PubMed PMID: 20567020. doi:10.1200/JCO.2010.28.3762
  • Damm F, Thol F, Hollink I, et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia. 2011 Nov;25(11):1704–1710. PubMed PMID: 21647152. doi:10.1038/leu.2011.142
  • Valerio DG, Katsman-Kuipers JE, Jansen JH, et al. Mapping epigenetic regulator gene mutations in cytogenetically normal pediatric acute myeloid leukemia. Haematologica. 2014 Aug;99(8):e130–2. PubMed PMID: 24816242; PubMed Central PMCID: PMC4116843. doi:10.3324/haematol.2013.094565
  • Creutzig U, Zimmermann M, Reinhardt D, et al. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer. 2016 Dec 15;122(24):3821–3830. PubMed PMID: 27529519. doi:10.1002/cncr.30220
  • Hollink IH, Van Den Heuvel-Eibrink MM, Arentsen-Peters ST, et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood. 2011 Sep 29;118(13):3645–3656. PubMed PMID: 21813447. doi:10.1182/blood-2011-04-346643
  • Ostronoff F, Othus M, Gerbing RB, et al. NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood. 2014 Oct 09;124(15):2400–2407. PubMed PMID: 25145343; PubMed Central PMCID: PMC4192751. doi:10.1182/blood-2014-04-570929
  • De Rooij JD, Hollink IH, Arentsen-Peters ST, et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia. 2013 Dec;27(12):2280–2288. PubMed PMID: 23531517. doi:10.1038/leu.2013.87
  • Beverloo HB, Panagopoulos I, Isaksson M, et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res. 2001 Jul 15;61(14):5374–5377. PubMed PMID: 11454678.
  • Von Bergh AR, Van Drunen E, Van Wering ER, et al. High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer. 2006 Aug;45(8):731–739. PubMed PMID: 16646086. doi:10.1002/gcc.20335
  • Gruber TA, Larson Gedman A, Zhang J, et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell. 2012 Nov 13;22(5):683–697. PubMed PMID: 23153540; PubMed Central PMCID: PMC3547667. doi:10.1016/j.ccr.2012.10.007
  • Masetti R, Pigazzi M, Togni M, et al. CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood. 2013 Apr 25;121(17):3469–3472. PubMed PMID: 23407549. doi:10.1182/blood-2012-11-469825
  • Mi JQ, Li JM, Shen ZX, et al. How to manage acute promyelocytic leukemia. Leukemia. 2012 Aug;26(8):1743–1751. PubMed PMID: 22422168. doi:10.1038/leu.2012.57
  • Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013 Jul 11;369(2):111–121. PubMed PMID: 23841729. doi:10.1056/NEJMoa1300874
  • Zhou J, Zhang Y, Li J, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood. 2010 Mar 4;115(9):1697–1702. PubMed PMID: 20029047. doi:10.1182/blood-2009-07-230805
  • Creutzig U, Dworzak MN, Bochennek K, et al. First experience of the aml-berlin-frankfurt-munster group in pediatric patients with standard-risk acute promyelocytic leukemia treated with arsenic trioxide and all-trans retinoid acid. Pediatric Blood & Cancer. 2017 Aug;64(8). doi:10.1002/pbc.26461. PubMed PMID: 28111878.
  • Kutny MA, Alonzo TA, Gerbing RB, et al. Arsenic trioxide consolidation allows anthracycline dose reduction for pediatric patients with acute promyelocytic leukemia: report from the Children’s Oncology Group Phase III Historically Controlled Trial AAML0631. J Clin Oncol. 2017 Sep 10;35(26):3021–3029. PubMed PMID: 28767288; PubMed Central PMCID: PMCPMC5590801. doi:10.1200/JCO.2016.71.6183
  • Abla O, Ribeiro RC, Testi AM, et al. Predictors of thrombohemorrhagic early death in children and adolescents with t(15;17)-positive acute promyelocytic leukemia treated with ATRA and chemotherapy. Ann Hematol. 2017 Sep;96(9):1449–1456. PubMed PMID: 28597167. doi:10.1007/s00277-017-3042-6
  • Zwaan CM, Reinhardt D, Hitzler J, et al. Acute leukemias in children with Down syndrome. Hematol Oncol Clin North Am. 2010 Feb;24(1):19–34. PubMed PMID: 20113894. doi:10.1016/j.hoc.2009.11.009
  • Roberts I, Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br J Haematol. 2014 Dec;167(5):587–599. PubMed PMID: 25155832. doi:10.1111/bjh.13096.
  • Sorrell AD, Alonzo TA, Hilden JM, et al. Favorable survival maintained in children who have myeloid leukemia associated with Down syndrome using reduced-dose chemotherapy on Children’s Oncology Group trial A2971: a report from the Children’s Oncology Group. Cancer. 2012 Oct 01;118(19):4806–4814. PubMed PMID: 22392565; PubMed Central PMCID: PMC3879144. doi:10.1002/cncr.27484
  • Uffmann M, Rasche M, Zimmermann M, et al. Therapy reduction in patients with Down syndrome and myeloid leukemia: the international ML-DS 2006 trial. Blood. 2017 Jun 22;129(25):3314–3321. PubMed PMID: 28400376. doi:10.1182/blood-2017-01-765057
  • Taub JW, Berman JN, Hitzler JK, et al. Improved outcomes for myeloid leukemia of Down syndrome: a report from the Children’s Oncology Group AAML0431 trial. Blood. 2017 Jun 22;129(25):3304–3313. PubMed PMID: 28389462; PubMed Central PMCID: PMCPMC5482102. doi:10.1182/blood-2017-01-764324
  • Taga T, Saito AM, Kudo K, et al. Clinical characteristics and outcome of refractory/relapsed myeloid leukemia in children with Down syndrome. Blood. 2012 Aug 30;120(9):1810–1815. PubMed PMID: 22776818. doi:10.1182/blood-2012-03-414755
  • Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004 Apr 15;350(16):1605–1616. PubMed PMID: 15084693. doi:10.1056/NEJMoa031046
  • Sievers EL, Lange BJ, Buckley JD, et al. Prediction of relapse of pediatric acute myeloid leukemia by use of multidimensional flow cytometry. J Natl Cancer Inst. 1996 Oct 16;88(20):1483–1488. PubMed PMID: 8841024.
  • Sievers EL, Lange BJ, Alonzo TA, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood. 2003 May 01;101(9):3398–3406. PubMed PMID: 12506020. doi:10.1182/blood-2002-10-3064
  • Van der Velden VH, Van der Sluijs-Geling A, Gibson BE, et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia. 2010 Sep;24(9):1599–1606. PubMed PMID: 20668473. doi:10.1038/leu.2010.153
  • Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010 Jun;11(6):543–552. PubMed PMID: 20451454.
  • Loken MR, Alonzo TA, Pardo L, et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood. 2012 Aug 23;120(8):1581–1588. PubMed PMID: 22649108; PubMed Central PMCID: PMC3429302. doi:10.1182/blood-2012-02-408336
  • Hanekamp D, Denys B, Kaspers GJL, et al. Leukaemic stem cell load at diagnosis predicts the development of relapse in young acute myeloid leukaemia patients. Br J Haematol. 2017 Oct; 26. PubMed PMID: 29076143. doi:10.1111/bjh.14991
  • Ommen HB, Schnittger S, Jovanovic JV, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010 Jan 14;115(2):198–205. PubMed PMID: 19901261. doi:10.1182/blood-2009-04-212530
  • Inaba H, Coustan-Smith E, Cao X, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012 Oct 10;30(29):3625–3632. PubMed PMID: 22965955; PubMed Central PMCID: PMC3462046. doi:10.1200/JCO.2011.41.5323
  • Burns RA, Topoz I, Reynolds SL. Tumor lysis syndrome: risk factors, diagnosis, and management. Pediatr Emerg Care. 2014 Aug;30(8):571–576; quiz 577–9. PubMed PMID: 25098804. doi:10.1097/PEC.0000000000000195
  • Oberoi S, Lehrnbecher T, Phillips B, et al. Leukapheresis and low-dose chemotherapy do not reduce early mortality in acute myeloid leukemia hyperleukocytosis: a systematic review and meta-analysis. Leuk Res. 2014 Apr;38(4):460–468. PubMed PMID: 24472688. doi:10.1016/j.leukres.2014.01.004
  • Lee JH, Joo YD, Kim H, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011 Oct 06;118(14):3832–3841. PubMed PMID: 21828126. doi:10.1182/blood-2011-06-361410
  • Kremer LC, Van Dalen EC, Offringa M, et al. Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann Oncol. 2002 Apr;13(4):503–512. PubMed PMID: 12056699.
  • Kremer LC, Van Dalen EC, Offringa M, et al. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol. 2001 Jan 01;19(1):191–196. PubMed PMID: 11134212. doi:10.1200/JCO.2001.19.1.191
  • Feijen EA, Leisenring WM, Stratton KL, et al. Equivalence ratio for daunorubicin to doxorubicin in relation to late heart failure in survivors of childhood cancer. J Clin Oncol. 2015 Nov 10;33(32):3774–3780. PubMed PMID: 26304888; PubMed Central PMCID: PMC4737860. doi:10.1200/JCO.2015.61.5187
  • Klein K, Kaspers GJL. A review of liposomal daunorubicin in the treatment of acute leukemia. Oncol Hematol Rev (US). 2013;9(2):142–148.
  • Creutzig U, Zimmermann M, Bourquin JP, et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood. 2013 Jul 4;122(1):37–43. PubMed PMID: 23704089.
  • Van Dalen EC, Van Der Pal HJ, Kremer LC. Different dosage schedules for reducing cardiotoxicity in people with cancer receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2016 Mar 03 3:CD005008. PubMed PMID: 26938118. doi:10.1002/14651858.CD005008.pub4.
  • Pession A, Masetti R, Rizzari C, et al. Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood. 2013 Jul 11;122(2):170–178. PubMed PMID: 23673857.
  • De Bont E, Reedijk A, Lammens T, et al. Excellent outcome in pediatric AML with response guided chemotherapy without allogeneic HSCT in first complete remission: results from protocol DB-AML01. Blood [Abstract]. 2015;126(23):2506.
  • Petit A, Ducassou S, Leblanc T, et al. Relevance of a one-year maintenance therapy with Interleukin-2 in the treatment of childhood acute myeloid leukemia: results from the French Multicenter, Phase III, Randomized Controlled Sfce Trial, ELAM02. Blood [Abstract]. 2014;124(21):378.
  • Alloin AL, Leverger G, Dalle JH, et al. Cytogenetics and outcome of allogeneic transplantation in first remission of acute myeloid leukemia: the French pediatric experience. Bone Marrow Transplant. 2017 Apr;52(4):516–521. PubMed PMID: 27941778. doi:10.1038/bmt.2016.293
  • Tomizawa D, Tawa A, Watanabe T, et al. Appropriate dose reduction in induction therapy is essential for the treatment of infants with acute myeloid leukemia: a report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol. 2013 Nov;98(5):578–588. PubMed PMID: 24068655. doi:10.1007/s12185-013-1429-2
  • Tomizawa D, Tawa A, Watanabe T, et al. Excess treatment reduction including anthracyclines results in higher incidence of relapse in core binding factor acute myeloid leukemia in children. Leukemia. 2013 Dec;27(12):2413–2416. PubMed PMID: 23677335. doi:10.1038/leu.2013.153
  • Entz-Werle N, Suciu S, Van der Werff Ten Bosch J, et al. Results of 58872 and 58921 trials in acute myeloblastic leukemia and relative value of chemotherapy vs allogeneic bone marrow transplantation in first complete remission: the EORTC Children Leukemia Group report. Leukemia. 2005 Dec;19(12):2072–2081. PubMed PMID: 16136166.
  • Abrahamsson J, Forestier E, Heldrup J, et al. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J Clin Oncol. 2011 Jan 20;29(3):310–315. PubMed PMID: 21149663.
  • Dluzniewska A, Balwierz W, Armata J, et al. Twenty years of Polish experience with three consecutive protocols for treatment of childhood acute myelogenous leukemia. Leukemia. 2005 Dec;19(12):2117–2124. PubMed PMID: 16107894. doi:10.1038/sj.leu.2403892
  • Tomizawa D, Tabuchi K, Kinoshita A, et al. Repetitive cycles of high-dose cytarabine are effective for childhood acute myeloid leukemia: long-term outcome of the children with AML treated on two consecutive trials of Tokyo Children’s Cancer Study Group. Pediatr Blood Cancer. 2007 Aug;49(2):127–132. PubMed PMID: 16807916.
  • Ravindranath Y, Steuber CP, Krischer J, et al. High-dose cytarabine for intensification of early therapy of childhood acute myeloid leukemia: a Pediatric Oncology Group study. J Clin Oncol. 1991 Apr;9(4):572–580. PubMed PMID: 2066754. doi:10.1200/JCO.1991.9.4.572
  • Burnett AK, Hills RK, Milligan DW, et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol. 2010 Feb 1;28(4):586–595. PubMed PMID: 20038732.
  • Burnett AK, Russell NH, Hills RK, et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol. 2013 Sep 20;31(27):3360–3368. PubMed PMID: 23940227. doi:10.1200/JCO.2012.47.4874
  • Tsukimoto I, Tawa A, Horibe K, et al. Risk-stratified therapy and the intensive use of cytarabine improves the outcome in childhood acute myeloid leukemia: the AML99 trial from the Japanese Childhood AML Cooperative Study Group. J Clin Oncol. 2009 Aug 20;27(24):4007–4013. PubMed PMID: 19620491.
  • Tomizawa D, Watanabe T, Hanada R, et al. Outcome of adolescent patients with acute myeloid leukemia treated with pediatric protocols. Int J Hematol. 2015 Sep;102(3):318–326. PubMed PMID: 26126642. doi:10.1007/s12185-015-1825-x
  • Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014 Aug;15(9):986–996. PubMed PMID: 25008258; PubMed Central PMCID: PMCPMC4137593. doi:10.1016/S1470-2045(14)70281-5
  • Parigger J, Zwaan CM, Reinhardt D, et al. Dose-related efficacy and toxicity of gemtuzumab ozogamicin in pediatric acute myeloid leukemia. Expert Rev Anticancer Ther. 2016;16(2):137–146. PubMed PMID: 26646091. doi:10.1586/14737140.2016.1129903
  • Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014 Sep 20;32(27):3021–3032. PubMed PMID: 25092781; PubMed Central PMCID: PMC4162498. doi:10.1200/JCO.2014.55.3628
  • Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008 Mar;9(3):257–268. PubMed PMID: 18308251. doi:10.1016/S1470-2045(08)70070-6.
  • Gibson BE, Webb DK, Howman AJ, et al. Results of a randomized trial in children with acute myeloid leukaemia: medical research council AML12 trial. Br J Haematol. 2011 Nov;155(3):366–376. PubMed PMID: 21902686. doi:10.1111/j.1365-2141.2011.08851.x
  • Hasle H, Abrahamsson J, Forestier E, et al. Gemtuzumab ozogamicin as postconsolidation therapy does not prevent relapse in children with AML: results from NOPHO-AML 2004. Blood. 2012 Aug 2;120(5):978–984. PubMed PMID: 22730539.
  • Getz KD, Alonzo TA, Sung L, et al. Four versus five courses of chemotherapy in patients with low risk acute myeloid leukemia: a children’s oncology group report. J Clin Oncol [Suppl; Abstr 10515]. 2017;35.
  • Perel Y, Auvrignon A, Leblanc T, et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit--multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia. 2005 Dec;19(12):2082–2089. PubMed PMID: 16121218.
  • Wells RJ, Woods WG, Buckley JD, et al. Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Childrens Cancer Group study. J Clin Oncol. 1994 Nov;12(11):2367–2377. PubMed PMID: 7964952. doi:10.1200/JCO.1994.12.11.2367
  • Tasian SK, Pollard JA, Aplenc R. Molecular therapeutic approaches for pediatric acute myeloid leukemia. Front Oncol. 2014;4:55. PubMed PMID: 24672775; PubMed Central PMCID: PMC3957536. doi:10.3389/fonc.2014.00055
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507–1517. PubMed PMID: 25317870; PubMed Central PMCID: PMCPMC4267531. doi:10.1056/NEJMoa1407222
  • Creutzig U, Reinhardt D. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?--a European view. Br J Haematol. 2002 Aug;118(2):365–377. PubMed PMID: 12139720.
  • Chen AR, Alonzo TA, Woods WG, et al. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?--an American view. Br J Haematol. 2002 Aug;118(2):378–384. PubMed PMID: 12139721.
  • Bleakley M, Lau L, Shaw PJ, et al. Bone marrow transplantation for paediatric AML in first remission: a systematic review and meta-analysis. Bone Marrow Transplant. 2002 May;29(10):843–852. PubMed PMID: 12058234. doi:10.1038/sj.bmt.1703528
  • Hasle H, Kaspers GJ. Strategies for reducing the treatment-related physical burden of childhood acute myeloid leukaemia - a review. Br J Haematol. 2017 Jan;176(2):168–178. PubMed PMID: 27766626. doi:10.1111/bjh.14419.
  • Niewerth D, Creutzig U, Bierings MB, et al. A review on allogeneic stem cell transplantation for newly diagnosed pediatric acute myeloid leukemia. Blood. 2010 Sep 30;116(13):2205–2214. PubMed PMID: 20538803. doi:10.1182/blood-2010-01-261800
  • Wheatley K. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?--a statistician’s view. Br J Haematol. 2002 Aug;118(2):351–356. PubMed PMID: 12139718.
  • Kaspers GJ, Zimmermann M, Reinhardt D, et al. Improved outcome in pediatric relapsed acute myeloid leukemia: results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J Clin Oncol. 2013 Feb 10;31(5):599–607. PubMed PMID: 23319696.
  • Creutzig U, Zimmermann M, Dworzak MN, et al. The prognostic significance of early treatment response in pediatric relapsed acute myeloid leukemia: results of the international study Relapsed AML 2001/01. Haematologica. 2014 Sep;99(9):1472–1478. PubMed PMID: 24763401; PubMed Central PMCID: PMC4562536. doi:10.3324/haematol.2014.104182
  • Klein K, Zimmermann M, Beverloo HB, et al. The prognostic impact of cytogenetics and karyotype changes in pediatric patients with relapsed acute myeloid leukemia: a retrospective cohort study within the relapsed AML 2001/01 study. Blood [Abstract]. 2016;128(22):2896.
  • Bachas C, Schuurhuis GJ, Hollink IH, et al. High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine. Blood. 2010 Oct 14;116(15):2752–2758. PubMed PMID: 20592250.
  • Kim Y, Jang J, Hyun SY, et al. Karyotypic change between diagnosis and relapse as a predictor of salvage therapy outcome in AML patients. Blood Res. 2013 Mar;48(1):24–30. PubMed PMID: 23589791; PubMed Central PMCID: PMC3624999. doi:10.5045/br.2013.48.1.24
  • Slats AM, Egeler RM, Van der Does-Van Den Berg A, et al. Causes of death--other than progressive leukemia--in childhood acute lymphoblastic (ALL) and myeloid leukemia (AML): the Dutch Childhood Oncology Group experience. Leukemia. 2005 Apr;19(4):537–544. PubMed PMID: 15690069.
  • Creutzig U, Zimmermann M, Reinhardt D, et al. Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98. J Clin Oncol. 2004 Nov 1;22(21):4384–4393. PubMed PMID: 15514380.
  • Creutzig U, Diekamp S, Zimmermann M, et al. Longitudinal evaluation of early and late anthracycline cardiotoxicity in children with AML. Pediatr Blood Cancer. 2007 Jun 15;48(7):651–662. PubMed PMID: 17183582.
  • Loeffen EA, Mulder RL, Van de Wetering MD, et al. Current variations in childhood cancer supportive care in the netherlands. Cancer. 2016 Feb 15;122(4):642–650. doi: 10.1002/cncr.29799
  • Lehrnbecher T, Ethier MC, Zaoutis T, et al. International variations in infection supportive care practices for paediatric patients with acute myeloid leukaemia. Br J Haematol. 2009 Oct;147(1):125–128. PubMed PMID: 19663826.
  • Lehrnbecher T, Aplenc R, Rivas Pereira F, et al. Variations in non-pharmacological anti-infective measures in childhood leukemia--results of an international survey. Haematologica. 2012 Oct;97(10):1548–1552. PubMed PMID: 22419572; PubMed Central PMCID: PMC3487555. doi:10.3324/haematol.2012.062885
  • Neumann S, Krause SW, Maschmeyer G, et al. Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematological malignancies and solid tumors : guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol. 2013 Apr;92(4):433–442. PubMed PMID: 23412562; PubMed Central PMCID: PMC3590398. doi:10.1007/s00277-013-1698-0
  • Stern A, Green H, Paul M, et al. Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev. 2014 Oct 01;(10):CD005590. PubMed PMID: 25269391. doi:10.1002/14651858.CD005590.pub3.
  • Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011 Feb 15;52(4):e56–93. PubMed PMID: 21258094. doi:10.1093/cid/cir073.
  • Gafter-Gvili A, Fraser A, Paul M, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012 Jan 18;1:CD004386. PubMed PMID: 22258955; PubMed Central PMCID: PMC4170789. doi:10.1002/14651858.CD004386.pub3
  • Alexander S, Nieder M, Zerr DM, et al. Prevention of bacterial infection in pediatric oncology: what do we know, what can we learn? Pediatr Blood Cancer. 2012 Jul 15;59(1):16–20. PubMed PMID: 22102612.
  • Sung L, Aplenc R, Alonzo TA, et al. Effectiveness of supportive care measures to reduce infections in pediatric AML: a report from the Children’s Oncology Group. Blood. 2013 May 02;121(18):3573–3577. PubMed PMID: 23471307; PubMed Central PMCID: PMC3643758. doi:10.1182/blood-2013-01-476614
  • Yousef AA, Fryer CJ, Chedid FD, et al. A pilot study of prophylactic ciprofloxacin during delayed intensification in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004 Nov;43(6):637–643. PubMed PMID: 15390313. doi:10.1002/pbc.20065
  • Yeh T-C, Liu H-C, Hou J-Y, et al. Severe infections in children with acute leukemia undergoing intensive chemotherapy can successfully be prevented by ciprofloxacin, voriconazole, or micafungin prophylaxis. Cancer. 2014 Apr 15;120(8):1255–1262. PubMed PMID: 24415457. doi:10.1002/cncr.28524
  • Gafter-Gvili A, Fraser A, Paul M, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev.2005;(4):CD004386. PubMed PMID: 16235360.
  • Felsenstein S, Orgel E, Rushing T, et al. Clinical and microbiologic outcomes of quinolone prophylaxis in children with acute myeloid leukemia. Pediatr Infect Dis J. 2015 Apr;34(4):e78–84. PubMed PMID: 25764103.
  • Cruciani M, Malena M, Bosco O, et al. Reappraisal with meta-analysis of the addition of Gram-positive prophylaxis to fluoroquinolone in neutropenic patients. J Clin Oncol. 2003 Nov 15;21(22):4127–4137. PubMed PMID: 14615441. doi:10.1200/JCO.2003.01.234
  • Kurt B, Flynn P, Shenep JL, et al. Prophylactic antibiotics reduce morbidity due to septicemia during intensive treatment for pediatric acute myeloid leukemia. Cancer. 2008 Jul 15;113(2):376–382. PubMed PMID: 18459178.
  • Inaba H, Gaur AH, Cao X, et al. Feasibility, efficacy, and adverse effects of outpatient antibacterial prophylaxis in children with acute myeloid leukemia. Cancer. 2014 Jul 1;120(13):1985–1992. PubMed PMID: 24677028.
  • Boztug H, Muhlegger N, Potschger U, et al. Antibiotic prophylaxis with teicoplanin on alternate days reduces rate of viridans sepsis and febrile neutropenia in pediatric patients with acute myeloid leukemia. Ann Hematol. 2016 Oct 4. PubMed PMID: 27699447. doi:10.1007/s00277-016-2833-5.
  • Groll AH, Castagnola E, Cesaro S, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Oncol. 2014 Jul;15(8):e327–40. PubMed PMID: 24988936. doi:10.1016/S1470-2045(14)70017-8
  • Lehrnbecher T, Robinson P, Fisher B, et al. Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem-cell transplantation recipients: 2017 update. J Clin Oncol. 2017 May 01:JCO2016717017. PubMed PMID: 28459614. doi: 10.1200/JCO.2016.71.7017
  • Lehrnbecher T, Phillips R, Alexander S, et al. Guideline for the management of fever and neutropenia in children with cancer and/or undergoing hematopoietic stem-cell transplantation. J Clin Oncol. 2012 Dec 10;30(35):4427–4438. PubMed PMID: 22987086. doi:10.1200/JCO.2012.42.7161
  • Bochennek K, Balan A, Muller-Scholden L, et al. Micafungin twice weekly as antifungal prophylaxis in paediatric patients at high risk for invasive fungal disease. J Antimicrob Chemother. 2015 May;70(5):1527–1530. PubMed PMID: 25564562. doi:10.1093/jac/dku544
  • Carter NJ, Keating GM. Micafungin: a review of its use in the prophylaxis and treatment of invasive Candida infections in pediatric patients. Paediatr Drugs. 2009;11(4):271–291. PubMed PMID: 19566111. doi:10.2165/00148581-200911040-00006
  • Lehrnbecher T, Robinson PD, Fisher BT, et al. Galactomannan, beta-D-glucan, and polymerase chain reaction-based assays for the diagnosis of invasive fungal disease in pediatric cancer and hematopoietic stem cell transplantation: a systematic review and meta-analysis. Clin Infect Dis. 2016 Nov 15;63(10):1340–1348. PubMed PMID: 27567122. doi:10.1093/cid/ciw592
  • Skoetz N, Bohlius J, Engert A, et al. Prophylactic antibiotics or G(M)-CSF for the prevention of infections and improvement of survival in cancer patients receiving myelotoxic chemotherapy. Cochrane Database Syst Rev. 2015 Dec 21;(12):CD007107. PubMed PMID: 26687844. doi:10.1002/14651858.CD007107.pub3.
  • Lehrnbecher T, Zimmermann M, Reinhardt D, et al. Prophylactic human granulocyte colony-stimulating factor after induction therapy in pediatric acute myeloid leukemia. Blood. 2007 Feb 01;109(3):936–943. PubMed PMID: 17008536. doi:10.1182/blood-2006-07-035915
  • Inaba H, Cao X, Pounds S, et al. Randomized trial of 2 dosages of prophylactic granulocyte-colony-stimulating factor after induction chemotherapy in pediatric acute myeloid leukemia. Cancer. 2011 Mar 15;117(6):1313–1320. PubMed PMID: 21381017; PubMed Central PMCID: PMC3116094. doi:10.1002/cncr.25536
  • Souza LM, Boone TC, Gabrilove J, et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 1986 Apr 04;232(4746):61–65. PubMed PMID: 2420009.
  • Lowenberg B, Touw IP. Hematopoietic growth factors and their receptors in acute leukemia. Blood. 1993 Jan 15;81(2):281–292. PubMed PMID: 8422455.
  • Ehlers S, Herbst C, Zimmermann M, et al. Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J Clin Oncol. 2010 May 20;28(15):2591–2597. PubMed PMID: 20406937. doi:10.1200/JCO.2009.25.9010
  • Klein K, Haarman EG, De Haas V, et al. Glucocorticoid-induced proliferation in untreated pediatric acute myeloid leukemic blasts. Pediatr Blood Cancer. 2016 Aug;63(8):1457–1460. PubMed PMID: 27093190. doi:10.1002/pbc.26011
  • Kaspers GJ, Pieters R, Klumper E, et al. Glucocorticoid resistance in childhood leukemia. Leuk Lymphoma. 1994 Apr;13(3–4):187–201. PubMed PMID: 8049644.
  • Clarkson JE, Worthington HV, Furness S, et al. Interventions for treating oral mucositis for patients with cancer receiving treatment. Cochrane Database Syst Rev. 2010 Aug 04;(8):CD001973. PubMed PMID: 20687070. doi:10.1002/14651858.CD001973.pub4.
  • Migliorati C, Hewson I, Lalla RV, et al. Systematic review of laser and other light therapy for the management of oral mucositis in cancer patients. Support Care Cancer. 2013 Jan;21(1):333–341. PubMed PMID: 23001179. doi:10.1007/s00520-012-1605-6
  • Kuhn A, Porto FA, Miraglia P, et al. Low-level infrared laser therapy in chemotherapy-induced oral mucositis: a randomized placebo-controlled trial in children. J Pediatr Hematol Oncol. 2009 Jan;31(1):33–37. PubMed PMID: 19125084. doi:10.1097/MPH.0b013e318192cb8e
  • Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008 Jun 05;358(23):2482–2494. PubMed PMID: 18525044. doi:10.1056/NEJMra0706547.
  • Cruz LB, Ribeiro AS, Rech A, et al. Influence of low-energy laser in the prevention of oral mucositis in children with cancer receiving chemotherapy. Pediatr Blood Cancer. 2007 Apr;48(4):435–440. PubMed PMID: 16862549. doi:10.1002/pbc.20943
  • Mulrooney DA, Dover DC, Li S, et al. Twenty years of follow-up among survivors of childhood and young adult acute myeloid leukemia: a report from the Childhood Cancer Survivor Study. Cancer. 2008 May 1;112(9):2071–2079. PubMed PMID: 18327823. doi:10.1002/cncr.23405
  • Leung W, Hudson MM, Strickland DK, et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol. 2000 Sep 15;18(18):3273–3279. PubMed PMID: 10986060. doi:10.1200/JCO.2000.18.18.3273
  • Molgaard-Hansen L, Skou A-S, Juul A, et al. Pubertal development and fertility in survivors of childhood acute myeloid leukemia treated with chemotherapy only: a NOPHO-AML study. Pediatr Blood Cancer. 2013 Dec;60(12):1988–1995. PubMed PMID: 24038890. doi:10.1002/pbc.24715
  • Israels T, Challinor J, Howard S, et al. Treating children with cancer worldwide--challenges and interventions. Pediatrics. 2015 Oct;136(4):607–610. PubMed PMID: 26371201. doi:10.1542/peds.2015-0300
  • Mostert S, Arora RS, Arreola M, et al. Abandonment of treatment for childhood cancer: position statement of a SIOP PODC Working Group. Lancet Oncol. 2011 Aug;12(8):719–720. PubMed PMID: 21719348. doi:10.1016/S1470-2045(11)70128-0
  • Mostert S, Njuguna F, Olbara G, et al. Corruption in health-care systems and its effect on cancer care in Africa. Lancet Oncol. 2015 Aug;16(8):e394–404. PubMed PMID: 26248847. doi:10.1016/S1470-2045(15)00163-1
  • Stefan DC. Childhood cancer in Africa: an overview of resources. J Pediatr Hematol Oncol. 2015 Mar;37(2):104–108. PubMed PMID: 24487917. doi:10.1097/MPH.0000000000000111.
  • Creutzig U, Ritter J, Niederbiermann-Koczy G, et al. [Prognostic significance of eosinophilia in children with acute myeloid leukemia in the studies AML-BFM-78 and −83]. Klin Padiatr. 1989 Jul-Aug;201(4):220–226. PubMed PMID: 2674528.
  • Klein K, De Haas V, Bank IEM, et al. Clinical and prognostic significance of eosinophilia and inv(16)/t(16;16) in pediatric acute myelomonocytic leukemia (AML-M4). Pediatr Blood Cancer. 2017 Oct;64(10):e26512. PubMed PMID: 28371234. doi:10.1002/pbc.26512

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.