661
Views
9
CrossRef citations to date
0
Altmetric
Review

Pluripotency inducing Yamanaka factors: role in stemness and chemoresistance of liver cancer

&
Pages 853-864 | Received 28 Jan 2021, Accepted 24 Mar 2021, Published online: 06 May 2021

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [published online ahead of print, 2021 Feb 4]. CA Cancer J Clin. 2021 ;0:1-41.
  • Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2(1):3.
  • Li LQ, Pan D, Zhang SW, et al. autophagy regulates chemoresistance of gastric cancer stem cells via the Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22(11):3402–3407.
  • Rashidi MR, Mehta P, Bregenzer M, et al. Engineered 3D model of cancer stem cell enrichment and chemoresistance. Neoplasia. 2019;21(8):822–836.
  • Siddique HR, Saleem M. Role of BMI1, a stem-cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidence. Stem Cells. 2012;30(3):372–378.
  • Lee HY, Hong IS. Targeting liver cancer stem cells: an alternative therapeutic approach for liver cancer. Cancers (Basel). 2020;12(10):2746.
  • Mondal S, Bhattacharya K, Mandal C. Nutritional stress reprograms dedifferention in glioblastoma multiforme driven by PTEN/Wnt/Hedgehog axis: a stochastic model of cancer stem cells. Cell Death Discov. 2018;4(1):110.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. .
  • Huang J, Chen T, Liu X, et al. More synergetic cooperation of Yamanaka factors in induced pluripotent stem cells than in embryonic stem cells. Cell Res. 2009;19(10):1127–1138.
  • Holczbauer Á, Factor VM, Andersen JB, et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology. 2013;145(1):221–231.
  • Fiorenza MT, Rava A. The TCL1 function revisited focusing on metabolic requirements of stemness. Cell Cycle. 2019;18(22):3055–3063.
  • Roy S, Kar M, Roy S, et al. KLF4 expression in the surgical cut margin is associated with disease relapse of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(2):154–165.
  • Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci. 2016;73(5):923–947.
  • Kuo KK, Lee KT, Chen KK, et al. Positive feedback loop of OCT4 and c‐JUN expedites cancer stemness in liver cancer. Stem Cells. 2016;34(11):2613–2624.
  • Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer. 2017;16(1):4.
  • Islam F, Qiao B, Smith RA, et al. Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol. 2015;98(2):184–191.
  • Virchow R. Cellular pathology as based on physiological and pathological histology. Philadelphia: J B Lippincott; 1963. DOI:10.5962/bhl.title.32770.
  • Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–1134. .
  • Siddique HR, Feldman DE, Chen CL, et al. NUMB phosphorylation destabilizes p53 and promotes self‐renewal of tumor‐initiating cells by a NANOG‐dependent mechanism in liver cancer. Hepatology. 2015;62(5):1466–1479. .
  • Maurya SK, Shadab G, Siddique HR. Chemosensitization of therapy resistant tumors: targeting multiple cell signaling pathways by lupeol, a pentacyclic triterpene. Curr Pharm Des. 2020;26(4):455–465.
  • Fatma H, Siddique HR. Role of long non-coding RNAs and MYC interaction in cancer metastasis: a possible target for therapeutic intervention. Toxicol Appl Pharmacol. 2020;399:115056.
  • Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep. 2017;50(6):285–298.
  • Mladinich M, Ruan D, Chan CH. Tackling cancer stem cells via inhibition of EMT transcription factors. Stem Cells Int. 2016;2016:5285892.
  • Sławek S, Szmyt K, Fularz M, et al. Pluripotency transcription factors in lung cancer-a review. Tumour Biol. 2016;37(4):4241–4249.
  • Padua D, Figueria P, Riberio I, et al. The relevance of transcription factors in gastric and colorectal cancer stem cells identification and eradication. Front Cell Dev Biol. 2020;8. DOI:10.3389/fcell.2020.00442.
  • Qiu L, Li H, Fu S, et al. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncol Lett. 2018;15(2):2039–2048.
  • Siddique H, Narayan P, Punj V, et al. MSI2 binds LncRNAs and promotes self-renewal and oncogenesis through MYC expression. [abstract]. In: Proceedings of the American association for cancer research annual meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017; 77(13Suppl): doi:10.1158/1538-7445.AM2017-2542.
  • Huch M, Dollé L. The plastic cellular states of liver cells: are EpCAM and Lgr5 fit for purpose? Hepatology. 2016;64(2):652–662.
  • Haraguchi N, Ishii H, Mimori K, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120(9):3326–3339.
  • Chen BD, Hui YF, Zhang HB, et al. Expression of CD90/EpCAM/CD24 in hepatocellular carcinoma cell lines at various stages of differentiation. Zhonghua Gan Zang Bing Za Zhi. 2013;21(9):688–691.
  • Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–250.
  • Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13(2):153–166.
  • Ma S, Lee TK, Zheng BJ, et al. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27(12):1749–1758.
  • Zhu Z, Hao X, Yan M, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer. 2010;126(9):2067–2078.
  • Ma S, Chan KW, Lee TK, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 2008;6(7):1146–1153.
  • Huang J, Zhang X, Zhang M, et al. Up-regulation of DLK1 as an imprinted gene could contribute to human hepatocellular carcinoma. Carcinogenesis. 2006;28(5):1094–1103.
  • Xiao Y, Lin M, Jiang X, et al. The recent advances on liver cancer stem cells: biomarkers, separation, and therapy. Anal Cell Pathol (Amst). 2017;2017:5108653.
  • Fu X, Zhu X, Qin F, et al. Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner. Mol Cancer. 2018;17(1):73.
  • Qiu Q, Hernandez JC, Dean AM, et al. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells. Stem Cells Dev. 2011;20(12):2177–2188.
  • Kim H, Choi GH, Na DC, et al. Human hepatocellular carcinomas with “Stemness”-related marker expression: keratin 19 expression and a poor prognosis. Hepatology. 2011;54(5):1707–1717.
  • Lee TK, Cheung VC, Lu P, et al. Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology. 2014;60(1):179–191.
  • Zhao W, Wang L, Han H, et al. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel α2δ1 subunit. Cancer Cell. 2013;23(4):541–556.
  • Liu S, Li N, Yu X, et al. Expression of intercellular adhesion molecule 1 by hepatocellular carcinoma stem cells and circulating tumor cells. Gastroenterology. 2013;144(5):1031–41.e10.
  • Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–2556.
  • Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest. 2013;123(5):1911–1918.
  • Xiang D, Cheng Z, Liu H, et al. Shp2 promotes liver cancer stem cell expansion by augmenting β-catenin signaling and predicts chemotherapeutic response of patients. Hepatology. 2017;65(5):1566–1580.
  • Lou W, Liu J, Gao Y, et al. MicroRNA regulation of liver cancer stem cells. Am J Cancer Res. 2018;8(7):1126–1141.
  • Afify SM, Sanchez Calle A, Hassan G, et al. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br J Cancer. 2020;122(9):1378–1390.
  • Liu Q, Chen K, Liu Z, et al. BORIS upregulates OCT4 via histone methylation to promote cancer stem cell-like properties in human liver cancer cells. Cancer Lett. 2017;403:165–174.
  • Liu Z, Dai X, Wang T, et al. Hepatitis B virus PreS1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells. Cancer Lett. 2017;400:149–160.
  • Lo RO, Mazza T, Giallongo S, et al. Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation. Theranostics. 2020;10(2):910–924.
  • Liu D, Li H, Dong H, et al. In-situ multiomics analysis reveals only minor genetic and epigenetic changes in human liver cancer stem cells. 2021;Res square. DOI:10.21203/rs.3.rs-244209/v1
  • Lo Re O, Douet J, Bushbeck M, et al. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics. 2018;13(8):829–845.
  • Zhao H, Yao P, Fu N, et al. deSUMOylation signaling: a novel mechanism of liver CSC properties and hepatocarcinogenesis in hypoxia. Acta Biochim Biophys Sin (Shanghai). 2017;49(12):1135–1137.
  • Chang HL, Bamodu OA, Ong JR, et al. Targeting the epigenetic non-coding RNA MALAT1/Wnt signaling axis as a therapeutic approach to suppress stemness and metastasis in hepatocellular carcinoma. Cells. 2020;9(4):1020.
  • Zhao J, Fu Y, Wu J, et al. The diverse mechanisms of miRNAs and lncRNAs in the maintenance of liver cancer stem cells. Biomed Res Int. 2018;2018:8686027.
  • Chen C, Luo F, Yang Q, et al. NF-κB-regulated miR-155, via repression of QKI, contributes to the acquisition of CSC-like phenotype during the neoplastic transformation of hepatic cells induced by arsenite. Mol Carcinog. 2018;57(4):483–493.
  • Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.
  • Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol. 2013;997:23–33.
  • Fatma H, Maurya SK, Siddique HR. Epigenetic modifications of c-MYC: role in cancer cell reprogramming, progression and chemoresistance [published online ahead of print, 2020 Nov 18]. Semin Cancer Biol. 2020;S1044-579X(20):30242–X.
  • Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7(1):51–63.
  • Lagadec C, Vlashi E, Della DL, et al. Radiation-induced reprogramming of breast cancer cells. Stem Cells. 2012;30(5):833–844.
  • Yu F, Li J, Chen H, et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene. 2011;30(18):2161–2172.
  • Wolfer A, Wittner BS, Irimia D, et al. MYC regulation of a “poor-prognosis” metastatic cancer cell state. Proc Natl Acad Sci U S A. 2010;107(8):3698–3703.
  • Wang J, Wang H, Li Z, et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One. 2008;3(11):e3769.
  • Cairo S, Wang Y, De Reyniès A, et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A. 2010;107(47):20471–20476.
  • Pu H, Zheng Q, Li H, et al. CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc. Oncotarget. 2015;6(38):40775–40798.
  • Cheng Z, Lei Z, Yang P, et al. Long non-coding RNA THOR promotes liver cancer stem cells expansion via β-catenin pathway. Gene. 2019;684:95–103.
  • Liu HL, Tang HT, Yang HL, et al. Oct4 regulates the transition of cancer stem-like cells to tumor endothelial-like cells in human liver cancer. Front Cell Dev Biol. 2020;8:563316.
  • Zhu P, Wang Y, He L, et al. ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J Clin Invest. 2015;125(10):3795–3808.
  • Li R, He Q, Han S, et al. MBD3 inhibits formation of liver cancer stem cells. Oncotarget. 2017;8(4):6067–6078.
  • Liu L, Liu C, Zhang Q, et al. SIRT1-mediated transcriptional regulation of SOX2 is important for self-renewal of liver cancer stem cells. Hepatology. 2016;64(3):814–827.
  • Sun D, Qin L, Xu Y, et al. Influence of adriamycin on changes in Nanog, Oct-4, Sox2, ARID1 and Wnt5b expression in liver cancer stem cells. World J Gastroenterol. 2014;20(22):6974–6980.
  • Karagonlar ZF, Akbari S, Karabicici M, et al. A novel function for KLF4 in modulating the de-differentiation of EpCAM-/CD133- nonStem cells into EpCAM+/CD133+ liver cancer stem cells in HCC cell line HuH7. Cells. 2020;9(5):1198.
  • Chen L, Shi J, Wu Y, et al. CircRNA CDR1as promotes hepatoblastoma proliferation and stemness by acting as a miR-7-5p sponge to upregulate KLF4 expression [published online ahead of print, 2020 Oct 14]. Aging (Albany NY). 2020;12(19):19233–19253.
  • Castelli G, Pelosi E, Testa U. Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers (Basel). 2017;9(9):127.
  • Zheng H, Pomyen Y, Hernandez MO, et al. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. 2018;68(1):127–140.
  • Yoshida GJ. The heterogeneity of cancer stem-like cells at the invasive front. Cancer Cell Int. 2017;17(1):23.
  • Choe C, Kim H, Min S, et al. SOX2, a stemness gene, induces progression of NSCLC A549 cells toward anchorage-independent growth and chemoresistance to vinblastine. Onco Targets Ther. 2018;11:6197–6207.
  • Müller M, Hermann PC, Liebau S, et al. The role of pluripotency factors to drive stemness in gastrointestinal cancer. Stem Cell Res. 2016;16(2):349–357.
  • Yeo CD, Kang N, Choi SY, et al. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation. Korean J Intern Med. 2017;32(4):589–599.
  • Qian J, Rankin EB. Hypoxia-induced phenotypes that mediate tumor heterogeneity. Adv Exp Med Biol. 2019;1136:43–55.
  • Reers S, Pfannerstill AC, Maushagen R, et al. Stem cell profiling in head and neck cancer reveals an Oct- 4expressing subpopulation with properties of chemoresistance. Oral Oncol. 2014;50(3):155–162.
  • Wang XQ, Ongkeko WM, Chen L, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 2010;52(2):528–539.
  • Jia Q, Zhang X, Deng T, et al. Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells. Cell Reprogram. 2013;15(2):143–150.
  • Jia X, Zhang Z, Luo K, et al. TCRP1 transcriptionally regulated by c-MYC confers cancer chemoresistance in tongue and lung cancer. Sci Rep. 2017;7(1):3744.
  • Ganesan S. MYC. PARP1, and chemoresistance: BIN there, done that? Sci Signal. 2011;4(166):e15.
  • Yin X, Tang B, Li JH, et al. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. J Exp Clin Cancer Res. 2017;36(1):166.
  • Bai HY, Liao YJ, Cai MY, et al. Eukaryotic initiation factor 5A2 contributes to the maintenance of CD133(+) hepatocellular carcinoma cells via the c-Myc/microRNA-29b axis. Stem Cells. 2018;36(2):180–191.
  • Tripathi SC, Fahrmann JF, Celiktas M, et al. MCAM mediates chemoresistance in small-cell lung cancer via the PI3K/AKT/SOX2 signaling pathway. Cancer Res. 2017;77(16):4414–4425.
  • Zhi Y, Abudoureyimu M, Zhou H, et al. FOXM1-mediated LINC-ROR regulates the proliferation and sensitivity to sorafenib in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2019;16:576–588.
  • Méndez-Blanco C, Fondevila F, García-Palomo A, et al. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med. 2018;50(10):1–9.
  • Jeon HM, Sohn YW, Oh SY, et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2 [published correction appears in Cancer Res. 2011 Jun 15;71(12):4325][published correction appears in Cancer Res. 2011 Sep 15;71(18):6085.Oh, Se-Young [corrected to Oh, Se-Yeong]]. Cancer Res. 2011;71(9):3410–3421.
  • Chou YT, Lee CC, Hsiao SH, et al. The emerging role of SOX2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer. Stem Cells. 2013;31(12):2607–2619.
  • Fang T, Lv H, Wu F, et al. Musashi 2 contributes to the stemness and chemoresistance of liver cancer stem cells via LIN28A activation. Cancer Lett. 2017;384:50–59.
  • Murakami S, Ninomiya W, Sakamoto E, et al. SRY and OCT4 are required for the acquisition of cancer stem cell-like properties and are potential differentiation therapy targets. Stem Cells. 2015;33(9):2652–2663.
  • Wu DM, Zheng ZH, Zhang YB, et al. Down-regulated lncRNA DLX6-AS1 inhibits tumorigenesis through STAT3 signaling pathway by suppressing CADM1 promoter methylation in liver cancer stem cells. J Exp Clin Cancer Res. 2019;237:38.
  • Lee SI, Kim DK, Seo EJ, et al. Role of krüppel-like factor 4 in the maintenance of chemoresistance of anaplastic thyroid cancer. Thyroid. 2017;27(11):1424–1432.
  • Hüser L, Novak D, Umansky V, et al. Targeting SOX2 in anticancer therapy. Expert Opin Ther Targets. 2018;22(12):983–991.
  • Deheeger M, Lesniak MS, Ahmed AU. Cellular plasticity regulated cancer stem cell niche: a possible new mechanism of chemoresistance. Cancer Cell Microenviron. 2014;1(5):e295.
  • Cheng CC, Shi LH, Wang XJ, et al. Stat3/Oct-4/c-Myc signal circuit for regulating stemness-mediated doxorubicin resistance of triple-negative breast cancer cells and inhibitory effects of WP1066. Int J Oncol. 2018;53(1):339–348.
  • Liu L, Zhang J, Yang X, et al. SALL4 as an epithelial-mesenchymal transition and drug resistance inducer through the regulation of c-Myc in endometrial cancer. PLoS One. 2015;10(9):e0138515.
  • Jang KY, Noh SJ, Lehwald N, et al. SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. PLoS One. 2012;7(9):e45119.
  • Zhang F, Li K, Yao X, et al. A miR-567-PIK3AP1-PI3K/AKT-c-Myc feedback loop regulates tumour growth and chemoresistance in gastric cancer. EBioMedicine. 2019;44:311–321.
  • Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6(1):11–23.
  • Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 2018;3(1):5.
  • Li W, Zhou Y, Zhang X, et al. Dual inhibiting OCT4 and AKT potently suppresses the propagation of human cancer cells. Sci Rep. 2017;7(1):46246.
  • Abraham SA, Hopcroft LE, Carrick E, et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature. 2016;534(7607):341–346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.