4,490
Views
5
CrossRef citations to date
0
Altmetric
Drug Profile

Tackling metastatic triple-negative breast cancer with sacituzumab govitecan

ORCID Icon, &
Pages 1303-1311 | Received 08 Sep 2021, Accepted 11 Oct 2021, Published online: 22 Oct 2021

References

  • S S. Triple-negative breast cancer: metastatic risk and role of platinum agents. ASCO Clinical Science Symposium 2008 Chicago, IL.
  • Trivers KF, Lund MJ, Porter PL, et al. The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control. 2009 Sep;20(7):1071–1082.
  • Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res off J Am Assoc Cancer Res. 2007 Aug 1;13(15 Pt 1):4429–4434.
  • Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers (Basel). 2020 Apr 8;12(4):916.
  • Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020 Dec 5;396(10265):1817–1828.
  • H.S. Rugo, J., Cortés,D.W., Cescon . KEYNOTE-355: final results from a randomized, double-blind phase 3 study of first-line pembrolizumab + chemotherapy vs placebo + chemotherapy for metastatic TNBC. ESMO Congress 2021, Abstract LBA16. Annals of Oncology (2021) 32 (suppl_5): S1283-S1346. https://doi.org/10.1016/annonc/annonc741.
  • Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018 Nov 29;379(22):2108–2121.
  • Miles D, Gligorov J, André F, et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol. 2021 Aug;32(8):994–1004.
  • Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018 Aug 23;379(8):753–763.
  • Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017 Aug 10;377(6):523–533.
  • Poggio F, Bruzzone M, Ceppi M, et al. Single-agent PARP inhibitors for the treatment of patients with BRCA-mutated HER2-negative metastatic breast cancer: a systematic review and meta-analysis. ESMO Open. 2018;3(4):e000361.
  • Robson ME, Tung N, Conte P, et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019 Apr 1;30(4):558–566.
  • Litton JK, Hurvitz SA, Mina LA, et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial. Ann Oncol. 2020 Nov;31(11):1526–1535.
  • Lehmann BD, Pietenpol JA, Tan AR. Triple-negative breast cancer: molecular subtypes and new targets for therapy. Am Soc Clin Oncol Educ Book. 2015;35:e31–9. DOI:https://doi.org/10.14694/EdBook_AM.2015.35.e31
  • Weiss J, Glode A, Messersmith WA, et al. Sacituzumab govitecan: breakthrough targeted therapy for triple-negative breast cancer. Expert Rev Anticancer Ther. 2019 Aug;19(8):673–679.
  • Yin L, Duan JJ, Bian XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 Jun 9;22(1):61.
  • Khosravi-Shahi P, Cabezón-Gutiérrez L, Custodio-Cabello S. Metastatic triple negative breast cancer: optimizing treatment options, new and emerging targeted therapies. Asia Pac J Clin Oncol. 2018 Feb;14(1):32–39.
  • Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016 Jun;17(6):e254–e262.
  • Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017 May;16(5):315–337.
  • Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer. Lancet. 2019 Elsevier Ltd;394(10200):793–804.
  • FDA approves moxetumomab pasudotox-tdfk for hairy cell leukemia. US Food & Drug Administration. Accessed 2021 Sept 1. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-moxetumomab-pasudotox-tdfk-hairy-cell-leukemia
  • FDA grants regular approval to enfortumab vedotin-ejfv for locally advanced or metastatic urothelial cancer. US Food & Drug Administration. Accessed 2021 Aug 1. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-enfortumab-vedotin-ejfv-locally-advanced-or-metastatic-urothelial-cancer
  • FDA granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma. US Food & Drug Administration. Accessed 2021 Aug 1. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-granted-accelerated-approval-belantamab-mafodotin-blmf-multiple-myeloma
  • FDA grants accelerated approval to loncastuximab tesirine-lpyl for large B-cell lymphoma. US Food & Drug Administration. Accessed 2021 Aug 1. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-loncastuximab-tesirine-lpyl-large-b-cell-lymphoma
  • Syed YY. Sacituzumab govitecan: first approval. Drugs. 2020 Jul;80(10):1019–1025.
  • Ramesh M, Ahlawat P, Srinivas NR. Irinotecan and its active metabolite, SN-38: review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomed Chromatogr. 2010 Jan;24(1):104–123.
  • Gokduman K. Strategies targeting DNA topoisomerase I in cancer chemotherapy: camptothecins, nanocarriers for camptothecins, organic non-camptothecin compounds and metal complexes. Curr Drug Targets. 2016;17(16):1928–1939.
  • Cardillo TM, Govindan SV, Sharkey RM, et al. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res off J Am Assoc Cancer Res. 2011 May 15;17(10):3157–3169.
  • Goldenberg DM, Sharkey RM. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: a case study of anti-TROP-2 sacituzumab govitecan. MAbs. 2019 Aug/Sep;11(6):987–995.
  • Goldenberg DM, Cardillo TM, Govindan SV, et al. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015 Sep 8;6(26):22496–22512.
  • Sharkey RM, McBride WJ, Cardillo TM, et al. Enhanced delivery of SN-38 to human tumor xenografts with an anti-Trop-2-SN-38 antibody conjugate (sacituzumab govitecan). Clin Cancer Res off J Am Assoc Cancer Res. 2015 Nov 15;21(22):5131–5138.
  • Cardillo TM, Govindan SV, Sharkey RM, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015 May 20;26(5):919–931.
  • Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019 Feb 21;380(8):741–751.
  • Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018 Jun 22;9(48):28989–29006.
  • Starodub AN, Ocean AJ, Shah MA, et al. First-in-human trial of a novel anti-Trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res off J Am Assoc Cancer Res. 2015 Sep 1;21(17):3870–3878.
  • Ocean AJ, Starodub AN, Bardia A, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: safety and pharmacokinetics. Cancer. 2017 Oct 1;123(19):3843–3854.
  • Xie R, Mathijssen RH, Sparreboom A, et al. Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther. 2002 Sep;72(3):265–275.
  • Kweekel D, Guchelaar HJ, Gelderblom H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat Rev. 2008 Nov;34(7):656–669.
  • Bardia A, Messersmith WA, Kio EA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann Oncol. 2021 Jun;32(6):746–756.
  • Immunomedics I. TRODELVY (sacituzumab govitecan-hziy) [package insert]. US Food and Drug Administration Website. Revised April, 2020. Accessed Aug, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761115s000lbl.pdf
  • Nangia J, Wang T, Osborne C, et al. Effect of a scalp cooling device on Alopecia in women undergoing chemotherapy for breast cancer: the SCALP randomized clinical trial. Jama. 2017 Feb 14;317(6):596–605.
  • Rugo HS, Klein P, Melin SA, et al. Association between use of a scalp cooling device and alopecia after chemotherapy for breast cancer. Jama. 2017 Feb 14;317(6):606–614.
  • Bardia A, Mayer IA, Diamond JR, et al. Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol. 2017 Jul 1;35(19):2141–2148.
  • Wahby S, Fashoyin-Aje L, Osgood CL, et al. FDA approval summary: accelerated approval of sacituzumab Govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin Cancer Res off J Am Assoc Cancer Res. 2021 Apr 1;27(7):1850–1854.
  • Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021 Apr 22;384(16):1529–1541.
  • FDA grants regular approval to sacituzumab govitecan for triple-negative breast cancer. US Food and Drug Administration. Accessed 2021 Aug 3. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-sacituzumab-govitecan-triple-negative-breast-cancer
  • Diéras V, Weaver R, Tolaney SM, et al. Abstract PD13-07: subgroup analysis of patients with brain metastases from the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer. Cancer Res. 2021;81(4Supplement): PD13-07.
  • Gray JE, Heist RS, Starodub AN, et al. Therapy of small cell lung cancer (SCLC) with a topoisomerase-I-inhibiting antibody-drug conjugate (ADC) targeting Trop-2, sacituzumab govitecan. Clin Cancer Res off J Am Assoc Cancer Res. 2017 Oct 1;23(19):5711–5719.
  • Heist RS, Guarino MJ, Masters G, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-Trop-2 drug conjugate, sacituzumab govitecan. J Clin Oncol. 2017 Aug 20;35(24):2790–2797.
  • Tagawa ST, Balar AV, Petrylak DP, et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021 Apr 30:Jco2003489. DOI:https://doi.org/10.1200/jco.20.03489.
  • FDA grants accelerated approval to sacituzumab govitecan for advanced urothelial cancer. U.S. Food & Drug Administration. Accessed 2021 Jul 22. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sacituzumab-govitecan-advanced-urothelial-cancer
  • Bardia A, Tolaney SM, Punie K, et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol. 2021 Sep;32(9):1148–1156.
  • Han Y, Yu X, Li S, et al. New perspectives for resistance to PARP inhibitors in triple-negative breast cancer. Front Oncol. 2020;10:578095.
  • Kassam F, Enright K, Dent R, et al. Survival outcomes for patients with metastatic triple-negative breast cancer: implications for clinical practice and trial design. Clin Breast Cancer. 2009 Feb;9(1):29–33.
  • Kalinsky K, Diamond JR, Vahdat LT, et al. Sacituzumab govitecan in previously treated hormone receptor-positive/HER2-negative metastatic breast cancer: final results from a phase I/II, single-arm, basket trial. Ann Oncol. 2020 Dec;31(12):1709–1718.
  • Pfizer. CAMPTOSAR- irinotecan hydrochloride injection, solution [prescribing information, package insert]. Food and Drug Administration Website. Revised December, 2014. Accessed Jul, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020571s048lbl.pdf
  • Bednova O, Leyton JV. Targeted molecular therapeutics for bladder cancer—a new option beyond the mixed fortunes of immune checkpoint inhibitors? Int J Mol Sci. 2020 Oct 1;21(19):7268.
  • TRODELVY ACCESS SUPPORT. Gilead Sciences, Inc. Accessed 2021 Oct 7. https://trodelvy.com/patient/mTNBC/access-support
  • Financial support for the uninsured—multiple options available for enrollment. Gilead Sciences, Inc. Accessed 2021 Oct 7. https://www.gileadadvancingaccess.com/financial-support/uninsured
  • Strop P, Tran TT, Dorywalska M, et al. RN927C, a site-specific trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol Cancer Ther. 2016 Nov;15(11):2698–2708.
  • King GT, Eaton KD, Beagle BR, et al. A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Invest New Drugs. 2018 Jan 15;36(5):836–847.
  • Tang W, Huang X, Ou Z, et al. Abstract P6-20-16: BAT8003, a potent anti-Trop-2 antibody-drug conjugate, for the treatment of triple negative breast cancer. Cancer Res. 2019;79(4Supplement): P6-20-16.
  • Okajima D, Yasuda S, Yokouchi Y, et al. Preclinical efficacy studies of DS-1062a, a novel TROP2-targeting antibody-drug conjugate with a novel DNA topoisomerase I inhibitor DXd. J clin oncol. 2018;36(15_suppl):e24206–e24206.
  • Sands JM, Shimizu T, Garon EB, et al. First-in-human phase 1 study of DS-1062a in patients with advanced solid tumors. J clin oncol. 2019;37(15_suppl):9051.