160
Views
1
CrossRef citations to date
0
Altmetric
Review

Human oncogenic viruses: an overview of protein biomarkers in viral cancers and their potential use in clinics

ORCID Icon & ORCID Icon
Pages 1211-1224 | Received 05 Feb 2022, Accepted 20 Oct 2022, Published online: 05 Nov 2022

References

  • Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13(4):397–411.
  • White MK, Pagano JS, Khalili K. Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev. 2014;27(3):463–481.
  • Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014;15(3):266–282.
  • International Agency for Research on Cancer. Agents classified by the IARC monographs, Lyon: IARC; [Cited 24 Jan 2022]. Available from: http://monographs.iarc.fr/ENG/Classification/index.php
  • Isaguliants M, Bayurova E, Avdoshina D, et al. Oncogenic effects of HIV-1 proteins. Mechanisms Behind. Cancers. 2021;13(2):305.
  • Krump NA, You J. From Merkel cell polyomavirus infection to Merkel cell carcinoma oncogenesis. Front Microbiol. 2021;12:739695.
  • de Martel C, Georges D, Bray F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–e190.
  • Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213–221.
  • Stelzer G, Rosen R, Plaschkes I, et al. The genecards suite: from gene data mining to disease genome sequence analysis. Curr Protoc Bioinformatics. 2016;54(1):1.30.1–1.30.33.
  • Uhlen M, Karlsson MJ, Zhong W, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366(6472):eaax9198.
  • Sheils T, Mathias SL, Siramshetty VB, et al. How to illuminate the druggable genome using pharos. Curr Protoc Bioinformatics. 2020;69(1):e92.
  • Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.
  • Turewicz M, Anika Frericks-Zipper A, Stepath M, et al. BIONDA: a free database for a fast information on published biomarkers. Bioinformatics Advances. 2021;1(1):vbab015.
  • Ammari MG, Gresham CR, McCarthy FM, et al. HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford). 2016;baw 103.
  • Sugimoto A, Yamashita Y, Kanda T, et al. Epstein-Barr virus genome packaging factors accumulate in BMRF1-cores within viral replication compartments. PLoS One. 2019;14(9):e0222519.
  • Kang MS, Kieff E. Epstein-Barr virus latent genes. Exp Mol Med. 2015;47(1):e131.
  • Fugl A, Andersen CL. Epstein-Barr virus and its association with disease - a review of relevance to general practice. BMC Fam Pract. 2019;20(1):62.
  • Farrell PJ. Epstein-Barr Virus and Cancer. Annu Rev Pathol. 2019;14(1):29–53.
  • Chesnokova LS, Hutt-Fletcher LM. Epstein-Barr virus infection mechanisms. Chin J Cancer. 2014;33(11):545–548.
  • Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16(12):789–802.
  • Ayee R, Ofori MEO, Wright E, et al. Epstein Barr virus associated lymphomas and epithelia cancers in humans. J Cancer. 2020;11(7):1737–1750.
  • Hämmerl L, Colombet M, Rochford R, et al. The burden of Burkitt lymphoma in Africa. Infect Agent Cancer. 2019;14(1):17.
  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–209.
  • Böger C, Behrens HM, Mathiak M, et al. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget. 2016;7(17):24269–24283.
  • Seo AN, Kang BW, Bae HI, et al. Exon 9 mutation of PIK3CA associated with poor survival in patients with Epstein-Barr virus-associated gastric cancer. Anticancer Res. 2019;39(4):2145–2154.
  • Gulley ML. Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma. Exp Mol Med. 2015;47(1):e134.
  • Kang HJ, Lee IS, Park YS, et al. Biomarkers of EBV-positive gastric cancers: loss of PTEN expression is associated with poor prognosis and nodal metastasis. Ann Surg Oncol. 2016;23(11):3684–3692.
  • Jiang W, Chamberlain PD, Garden AS, et al. Prognostic value of p16 expression in Epstein-Barr virus-positive nasopharyngeal carcinomas. Head Neck. 2016;38(S1):E1459–1466.
  • Zuo LL, Zhang J, Liu LZ, et al. Cadherin 6 is activated by Epstein-Barr virus LMP1 to mediate EMT and metastasis as an interplay node of multiple pathways in nasopharyngeal carcinoma. Oncogenesis. 2017;6(12):402.
  • Ikeda JI, Wada N, Nojima S, et al. ID1 upregulation and FoxO3a downregulation by Epstein-Barr virus-encoded LMP1 in Hodgkin’s lymphoma. Mol Clin Oncol. 2016;5(5):562–566.
  • Madihi S, Syed H, Lazar F, et al. A systematic review of the current Hepatitis B viral infection and hepatocellular carcinoma situation in Mediterranean countries. Biomed Res Int. 2020;2020:7027169.
  • Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol. 2011;26(S1):144–152.
  • Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. Hepatoma Res. 2016;2(7):163–186.
  • Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.
  • Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16(1):1.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Petruzziello A. Epidemiology of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) related hepatocellular carcinoma. Open Virol J. 2018;12(1):26–32.
  • Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160274.
  • Seo HW, Seo JP, Jung G. Heat shock protein 70 and heat shock protein 90 synergistically increase hepatitis B viral capsid assembly. Biochem Biophys Res Commun. 2018;503(4):2892–2898.
  • Wang C, Zhang Y, Guo K, et al. Heat shock proteins in hepatocellular carcinoma: molecular mechanism and therapeutic potential. Int J Cancer. 2016;138(8):1824–1834.
  • Yao M, Zhao J, Lu F. Alpha-fetoprotein still is a valuable diagnostic and prognosis predicting biomarker in hepatitis B virus infection-related hepatocellular carcinoma. Oncotarget. 2016;7(4):3702–3708.
  • Cui X, Li Z, Gao PJ, et al. Prognostic value of glypican-3 in patients with HBV-associated hepatocellular carcinoma after liver transplantation. Hepatobiliary Pancreat Dis Int. 2015;14(2):157–163.
  • Lim SO, Park SG, Yoo JH, et al. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol. 2005;11(14):2072–2079.
  • Cho HJ, Kim SS, Ahn SJ, et al. Low serum interleukin-6 levels as a predictive marker of recurrence in patients with hepatitis B virus related hepatocellular carcinoma who underwent curative treatment. Cytokine. 2015;73(2):245–252.
  • Deng H, Fan X, Wang X, et al. Serum pentraxin 3 as a biomarker of hepatocellular carcinoma in chronic hepatitis B virus infection. Sci Rep. 2020;10(1):20276.
  • Bukh J. The history of hepatitis C virus (HCV): basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol. 2016;65(1 Suppl):S2–S21.
  • Mahmoudvand S, Shokri S, Taherkhani R, et al. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. World J Gastroenterol. 2019;25(1):42–58.
  • Tateyama M, Yatsuhashi H, Taura N, et al. Alpha-fetoprotein above normal levels as a risk factor for the development of hepatocellular carcinoma in patients infected with hepatitis C virus. J Gastroenterol. 2011;46(1):92–100.
  • Liu J, Ma Z, Liu Y, et al. Screening of potential biomarkers in hepatitis C virus-induced hepatocellular carcinoma using bioinformatic analysis. Oncol Lett. 2019;18(3):2500–2508.
  • Zekri AR N, El Kassas M, Salam ESE, et al. The possible role of Dickkopf-1, Golgi protein- 73 and Midkine as predictors of hepatocarcinogenesis: a review and an Egyptian study. Sci Rep. 2020;10(1):5156.
  • Shimizu Y, Mizuno S, Fujinami N, et al. Plasma and tumoral glypican-3 levels are correlated in patients with hepatitis C virus-related hepatocellular carcinoma. Cancer Sci. 2020;111(2):334–342.
  • Kurosaki M, Izumi N, Onuki Y, et al. Serum KL-6 as a novel tumor marker for hepatocellular carcinoma in hepatitis C virus infected patients. Hepatol Res. 2005;33(3):250–257.
  • Tamai T, Uto H, Takami Y, et al. Serum manganese superoxide dismutase and thioredoxin are potential prognostic markers for hepatitis C virus-related hepatocellular carcinoma. World J Gastroenterol. 2011;17(44):4890–4898.
  • Juillard F, Tan M, Li S, et al. Kaposi’s sarcoma herpesvirus genome persistence. Front Microbiol. 2016;7:1149.
  • Liu J, Martin HJ, Liao G, et al. The Kaposi’s sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J Virol. 2007;81(19):10451–10459.
  • Cesarman E, Damania B, Krown SE, et al. Kaposi sarcoma. Nat Rev Dis Primers. 2019;5(1):9.
  • Facciolà A, Venanzi Rullo E, Ceccarelli M, et al. Kaposi’s sarcoma in HIV-infected patients in the era of new antiretrovirals. Eur Rev Med Pharmacol Sci. 2017;21(24):5868–5869.
  • Schneider JW, Dittmer DP. Diagnosis and treatment of Kaposi Sarcoma. Am J Clin Dermatol. 2017;18(4):529–539.
  • Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol. 2017;102(5):1199–1217.
  • Horenstein MG, Cesarman E, Wang X, et al. Cyclin D1 and retinoblastoma protein expression in Kaposi’s sarcoma. J Cutan Pathol. 1997;24(10):585–589.
  • Host KM, Jacobs SR, West JA, et al. Kaposi’s sarcoma-associated herpesvirus increases PD-L1 and proinflammatory cytokine expression in human monocytes. mBio. 2017;8(5):e00917–17.
  • Desnoyer A, Dupin N, Assoumou L, et al. Expression pattern of the CXCL12/CXCR4-CXCR7 trio in Kaposi sarcoma skin lesions. Br J Dermatol. 2016;175(6):1251–1262.
  • Masood R, Cai J, Tulpule A, et al. Interleukin 8 is an autocrine growth factor and a surrogate marker for Kaposi’s sarcoma. Clin Cancer Res. 2001;7(9):2693–2702.
  • Coffin JM. The discovery of HTLV-1, the first pathogenic human retrovirus. Proc Natl Acad Sci U S A. 2015;112(51):15525–15529.
  • Yamada K, Miyoshi H, Yoshida N, et al. Human T-cell lymphotropic virus HBZ and tax mRNA expression are associated with specific clinicopathological features in adult T-cell leukemia/lymphoma. Mod Pathol. 2021;34(2):314–326.
  • Hirons A, Khoury G, Purcell DFJ. Human T-cell lymphotropic virus type-1: a lifelong persistent infection, yet never truly silent. Lancet Infect Dis. 2021;21(1):e2–e10.
  • Hoshino H. Cellular factors involved in HTLV-1 entry and pathogenicit. Front Microbiol. 2012;3:222.
  • Zhao T. The role of HBZ in HTLV-1-induced oncogenesis. Viruses. 2016;8(2):34.
  • Shah UA, Shah N, Qiao B, et al. Epidemiology and survival trend of adult T-cell leukemia/lymphoma in the United States. Cancer. 2020;126(3):567–574.
  • Hermine O, Ramos JC, Tobinai K. A review of new findings in adult T-cell leukemia-lymphoma: a focus on current and emerging treatment strategies. Adv Ther. 2018;35(2):135–152.
  • Ward-Kavanagh LK, Lin WW, Šedý JR, et al. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity. 2016;44(5):1005–1019.
  • Guerrero CLH, Yamashita Y, Miyara M, et al. Proteomic profiling of HTLV-1 carriers and ATL patients reveals sTNFR2 as a novel diagnostic biomarker for acute ATL. Blood Adv. 2020;4(6):1062–1071.
  • Tanaka Y, Takahashi Y, Tanaka R, et al. Association of high levels of plasma OX40 with acute adult T-cell leukemia. Int J Hematol. 2019;109(3):319–327.
  • Nishioka C, Takemoto S, Kataoka S, et al. Serum level of soluble CD30 correlates with the aggressiveness of adult T-cell leukemia/lymphoma. Cancer Sci. 2005;6(11):810–815.
  • Takemoto S, Iwanaga M, Sagara Y, et al. Plasma soluble CD30 as a possible marker of Adult T-cell Leukemia in HTLV-1 carriers: a nested case-control study. Asian Pac J Cancer Prev. 2015;16(18):8253–8258.
  • Nakahata S, Syahrul C, Nakatake A, et al. Clinical significance of soluble CADM1 as a novel marker for adult T-cell leukemia/lymphoma. Haematologica. 2021;106(2):532–542.
  • Graham SV. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol. 2010;5(10):1493–1506.
  • Bouvard V, Baan R, Straif K, et al. A review of human carcinogens–Part B: biological agents. Lancet Oncol. 2009;10(4):321–322.
  • Pappa KI, Kontostathi G, Lygirou V, et al. Novel structural approaches concerning HPV proteins: insight into targeted therapies for cervical cancer (Review). Oncol Rep. 2018;39(4):1547–1554.
  • Boulet G, Horvath C, Vanden Broeck D, et al. Human papillomavirus: E6 and E7 oncogenes. Int J Biochem Cell Biol. 2007;39(11):2006–2011.
  • Kori M, Arga KY. Pathways involved in viral oncogenesis: new perspectives from virus-host protein interactomics. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165885.
  • Ferris DG, Brown DR, Giuliano AR, et al. Prevalence, incidence, and natural history of HPV infection in adult women ages 24 to 45 participating in a vaccine trial. Papillomavirus Res. 2020;10:100202.
  • Gilbert DC, Wakeham K, Langley RE, et al. Increased risk of second cancers at sites associated with HPV after a prior HPV-associated malignancy, a systematic review and meta-analysis. Br J Cancer. 2019;120(2):256–268.
  • WHO. Human papillomavirus (HPV) and cervical cancer. Jan 24 2019. https://www.who.int/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer.
  • Pan C, Issaeva N, Yarbrough WG. HPV-driven oropharyngeal cancer: current knowledge of molecular biology and mechanisms of carcinogenesis. Cancers Head Neck. 2018;3(1):12.
  • Tulake W, Yuemaier R, Sheng L, et al. Upregulation of stem cell markers ALDH1A1 and OCT4 as potential biomarkers for the early detection of cervical carcinoma. Oncol Lett. 2018;16(5):5525–5534.
  • Wang Z, Jiang C, Pang L, et al. ANXA2 is a potential marker for the diagnosis of human cervical cancer. Biomark Med. 2021;15(1):57–67.
  • Park H, Lee M, Kim DW, et al. Glycogen synthase kinase 3β and cyclin D1 expression in cervical carcinogenesis. Obstet Gynecol Sci. 2016;59(6):470–478.
  • Kori M, Yalcin Arga K, Meyers C. Potential biomarkers and therapeutic targets in cervical cancer: insights from the meta-analysis of transcriptomics data within network biomedicine perspective. PLoS One. 2018;13(7):e0200717.
  • Roslind A, Palle C, Johansen JS, et al. Prognostic utility of serum YKL-40 in patients with cervical cancer. Scand J Clin Lab Invest. 2020;80(8):687–693.
  • Song Z, Lin Y, Ye X, et al. Expression of IL-1α and IL-6 is associated with progression and prognosis of human cervical cancer. Med Sci Monit. 2016;22:4475–4481.
  • Zheng J. Diagnostic value of MCM2 immunocytochemical staining in cervical lesions and its relationship with HPV infection. Int J Clin Exp Pathol. 2015;8(1):875–880.
  • Kim YI, Lee A, Lee BH, et al. Prognostic significance of syndecan-1 expression in cervical cancers. J Gynecol Oncol. 2011;22(3):161–167.
  • Mattoscio D, Casadio C, Fumagalli M, et al. The SUMO conjugating enzyme UBC9 as a biomarker for cervical HPV infections. Ecancermedicalscience. 2015;9:534.
  • Chen KM, Stephen JK, Havard S, et al. IGSF4 methylation as an independent marker of human papillomavirus-positive oropharyngeal squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg. 2015;141(3):257–263.
  • Wuerdemann N, Jain R, Adams A, et al. Cell-free HPV-DNA as a biomarker for oropharyngeal squamous cell carcinoma-a step towards personalized medicine? Cancers (Basel). 2020;12(10):2997.
  • Scapulatempo-Neto C, Veo C, Fregnani JHTG, et al. Characterization of topoisomerase II α and minichromosome maintenance protein 2 expression in anal carcinoma. Oncol Lett. 2017;13(3):1891–1898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.