440
Views
1
CrossRef citations to date
0
Altmetric
Drug Profile

Pemigatinib in cholangiocarcinoma with a FGFR2 rearrangement or fusion

, &
Pages 1265-1274 | Received 23 Aug 2022, Accepted 17 Nov 2022, Published online: 23 Nov 2022

References

  • Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: epidemiology and risk factors. Liver Int. 2019;39(S1):19–31.
  • Lendvai G, Szekerczés T, Illyés I, et al. Cholangiocarcinoma: classification, histopathology and molecular carcinogenesis. Pathol Oncol Res. 2020;26(1):3–15.
  • Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215–1229.
  • Banales JM, Cardinale V, Carpino G, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study Of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13(5):261–280.
  • Mukkamalla SKR, Naseri HM, Kim BM, et al. Trends in incidence and factors affecting survival of patients with cholangiocarcinoma in the United States. J Natl Compr Canc Netw. 2018;16(4):370–376.
  • Gad MM, Saad AM, Faisaluddin M, et al. Epidemiology of cholangiocarcinoma; United States incidence and mortality trends. Clin Res Hepatol Gastroenterol. 2020;44(6):885–893.
  • Jaiswal M, LaRusso NF, Burgart LJ, et al. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism - PubMed. Cancer Res. 2000;60(1):184–190.
  • Yoon JH, Higuchi H, Werneburg NW, et al. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology. 2002;122(4):985–993.
  • Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54(1):173–184.
  • Petrick JL, Yang B, Altekruse SF, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-medicare. PLoS One. 2017;12(10):e0186643.
  • Valle J, Wasan H, Palmer DH, et al. Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. N Engl J Med. 2010;362(14):1273–1281.
  • D-Y O, He AR, Qin S, et al. A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with Gemcitabine plus Cisplatin (GemCis) in Patients (Pts) with Advanced Biliary Tract Cancer (BTC): TOPAZ-1 [ABSTRACT]. J Clin Oncol. 2022;40(4_suppl):378
  • Marin JJG, Prete MG, Lamarca A, et al. Current and novel therapeutic opportunities for systemic therapy in biliary cancer. Br J Cancer. 2020;123(7):1047–1059.
  • Chakrabarti S, Kamgar M, Mahipal A. Targeted therapies in advanced biliary tract cancer: an evolving paradigm. Cancers (Basel). 2020;12(8):1–21.
  • Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(6):796–807.
  • Yarlagadda B, Kamatham V, Ritter A, et al. Trastuzumab and pertuzumab in circulating tumor DNA ERBB2-amplified HER2-positive refractory cholangiocarcinoma. NPJ Precis Oncol. 2019;3(1). DOI:10.1038/s41698-019-0091-4
  • Subbiah V, Lassen U, Élez E, et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020;21(9):1234–1243.
  • Golan T, Raitses-Gurevich M, Kelley RK, et al. Overall survival and clinical characteristics of BRCA-associated cholangiocarcinoma: a multicenter retrospective study. Oncologist. 2017;22(7):804–810.
  • Gu Y, Sai Y, Wang J, et al. Preclinical pharmacokinetics, disposition, and translational pharmacokinetic/pharmacodynamic modeling of savolitinib, a novel selective cmet inhibitor. Eur J Pharm Sci. 2019;136:104938.
  • Zhang Z, Oyesanya RA, Campbell DJW, et al. Preclinical assessment of simultaneous targeting of epidermal growth factor receptor (ErbB1) and ErbB2 as a strategy for cholangiocarcinoma therapy. Hepatology. 2010;52(3):975–986.
  • Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271–282.
  • Riener MO, Bawohl M, Clavien PA, et al. Rare PIK3CA hotspot mutations in carcinomas of the biliary tract. Genes Chromosomes Cancer. 2008;47(5):363–367.
  • Tella SH, Kommalapati A, Borad MJ, et al. Second-line therapies in advanced biliary tract cancers. Lancet Oncol. 2020;21(1):e29–41.
  • Mahipal A, Tella SH, Kommalapati A, et al. FGFR2 genomic aberrations: achilles heel in the management of advanced cholangiocarcinoma. Cancer Treat Rev. 2019;78:1–7.
  • Belov AA, Mohammadi M. Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb Perspect Biol. 2013;5(6):a015958–a015958.
  • Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–129.
  • Zheng J, Zhang W, Li L, et al. Signaling pathway and small-molecule drug discovery of FGFR: a comprehensive review. Front Chem. 2022;10. DOI:10.3389/fchem.2022.860985
  • Schlessinger J. Cell signaling by receptor tyrosine kinases: from basic concepts to clinical applications. Eur J Cancer Suppl. 2006;4(6):3–26.
  • Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol. 2014;6(3):a008912–a008912.
  • Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20(11):563–569.
  • Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. WIREs Dev Biol. 2015;4(3):215–266.
  • Harmer NJ, Ilag LL, Mulloy B, et al. Towards a resolution of the stoichiometry of the Fibroblast Growth Factor (FGF)-FGF receptor-heparin complex. J Mol Biol. 2004;339(4):821–834.
  • Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 2005;16(2):107–137.
  • Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol. 2007;194(1):1–10.
  • Peters KG, Marie J, Wilson E, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature. 1992;358(6388):678–681.
  • Kouhara H, Hadari YR, Spivak-Kroizman T, et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997;89(5):693–702.
  • Thien CBF, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol. 2001;24(4):294–307.
  • Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60(C):1–41.
  • Kommalapati A, Tella SH, Borad M, et al. Fgfr inhibitors in oncology: insight on the management of toxicities in clinical practice. Cancers (Basel). 2021;13(12):13.
  • Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol Off J Eur Soc Med Oncol. 2014;25(3):552–563.
  • Touat M, Ileana E, Postel-Vinay S, et al. Targeting FGFR signaling in cancer. Clin Cancer Res. 2015;21(12):2684–2694.
  • Gartside MG, Chen H, Ibrahimi OA, et al. Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res. 2009;7(1):41–54.
  • Fillmore CM, Gupta PB, Rudnick JA, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A. 2010;107(50):21737–21742.
  • Zhang L, Kharbanda S, Hanfelt J, et al. Both autocrine and paracrine effects of transfected acidic fibroblast growth factor are involved in the estrogen-independent and antiestrogen-resistant growth of MCF-7 breast cancer cells . Cancer Res. 1998;58(2):352–361.
  • Korc M, Friesel R. The Role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets. 2009;9(5):639–651.
  • Minisola S, Peacock M, Fukumoto S, et al. Tumour-induced osteomalacia. Nat Rev Dis Prim. 2017;3. DOI:10.1038/nrdp.2017.44
  • Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59(4):1427–1434.
  • Ross JS, Wang K, Gay L, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19(3):235–242.
  • Graham RP, Barr Fritcher EG, Pestova E, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol. 2014;45(8):1630–1638.
  • Katoh M. FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med. 2016;38(1):3–15.
  • Wu YM, Su F, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3(6):636–647.
  • Gu TL, Deng X, Huang F, et al. Survey of tyrosine kinase signaling reveals ros kinase fusions in human cholangiocarcinoma. PLoS One. 2011;6(1):e15640.
  • Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7(10):1116–1135.
  • Borad MJ, Champion MD, Egan JB, et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 2014;10(2):e1004135.
  • De Luca A, Abate RE, Rachiglio AM, et al. FGFR fusions in cancer: from diagnostic approaches to therapeutic intervention. Int J Mol Sci. 2020;21(18):1–18.
  • Lamarca A, Kapacee Z, Breeze M, et al. Molecular profiling in daily clinical practice: practicalities in advanced cholangiocarcinoma and other biliary tract cancers. J Clin Med. 2020;9(9):1–18.
  • Berchuck JE, Facchinetti F, DiToro DF, et al. The clinical landscape of cell-free DNA alterations in 1671 patients with advanced biliary tract cancer. Ann Oncol Off J Eur Soc Med Oncol. 2022. DOI:10.1016/j.annonc.2022.09.150.
  • Rizzato M, Brignola S, Munari G, et al. Prognostic impact of FGFR2/3 alterations in patients with biliary tract cancers receiving systemic chemotherapy: the BITCOIN study. Eur J Cancer. 2022;166:165–175.
  • Liu PCC, Koblish H, Wu L, et al. INCB054828 (Pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS One. 2020;15(4):e0231877.
  • Wu L, Zhang C, He C, et al. Discovery of pemigatinib: a potent and selective Fibroblast Growth Factor Receptor (FGFR) inhibitor. J Med Chem. 2021;64(15):10666–10679.
  • Lin Q, Chen X, Qu L, et al. Characterization of pemigatinib as a selective and potent FGFR inhibitor. Res Sq. 2022.
  • Subbiah V, Iannotti NO, Gutierrez M, et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann Oncol Off J Eur Soc Med Oncol. 2022;33(5):522–533.
  • Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671–684.
  • Shi G, Huang X, Wen T, et al. Pemigatinib in Chinese patients with advanced/metastatic or surgically unresectable cholangiocarcinoma including FGFR2 fusion or rearrangement: updated data from an open-label, single-arm, multicenter phase ii study (CIBI375A201 Study). J Clin Oncol. 2022;40(16_suppl):e16183–e16183.
  • Bekaii-Saab TS, Valle JW, Van CE, et al. FIGHT-302: phase III study of first-line (1L) Pemigatinib (PEM) versus Gemcitabine (GEM) plus Cisplatin (CIS) for Cholangiocarcinoma (CCA) with FGFR2 fusions or rearrangements [ABSTRACT]. J Clin Oncol. 2020;38(4_suppl): TPS592–TPS592.
  • Javle M, Lowery M, Shroff RT, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol. 2018;36(3):276–282.
  • Goyal L, Meric-Bernstam F, Hollebecque A, et al. Updated results of the FOENIX-CCA2 trial: efficacy and safety of futibatinib in intrahepatic cholangiocarcinoma (ICCA) harboring FGFR2 fusions/rearrangements [ABSTRACT]. J Clin Oncol. 2022;40(16_suppl):4009.
  • Mazzaferro V, El-Rayes BF, Droz Dit Busset M, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer. 2019;120(2):165–171.
  • Guagnano V, Kauffmann A, Wöhrle S, et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2012;2(12):1118–1133.
  • Yu J, Mahipal A, Kim R. Targeted therapy for advanced or metastatic cholangiocarcinoma: focus on the clinical potential of infigratinib. Onco Targets Ther. 2021;14:5145–5160.
  • Nogova L, Sequist LV, Garcia JMP, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase i, dose-escalation and dose-expansion study. J Clin Oncol. 2017;35(2):157–165.
  • Kalyukina M, Yosaatmadja Y, Middleditch MJ, et al. Tas-120 cancer target binding: defining reactivity and revealing the first fibroblast growth factor receptor 1 (FGFR1) irreversible structure. ChemMedChem. 2019;14(4):494–500.
  • Bahleda R, Meric-Bernstam F, Goyal L, et al. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1-4 inhibitor in patients with advanced solid tumors. Ann Oncol Off J Eur Soc Med Oncol. 2020;31(10):1405–1412.
  • Meric-Bernstam F, Bahleda R, Hierro C, et al. Futibatinib, an irreversible FGFR1-4 inhibitor, in patients with advanced solid tumors harboring FGF/ FGFR aberrations: a phase i dose-expansion study. Cancer Discov. 2022;12(2):402–415.
  • Goyal L, Meric-Bernstam F, Hollebecque A, et al. Updated Results of the FOENIX-CCA2 Trial: Efficacy and Safety of Futibatinib in Intrahepatic Cholangiocarcinoma (ICCA) Harboring FGFR2 Fusions/Rearrangements [ABSTRACT]. J Clin Oncol. 2022;40(16_suppl):4009–4009.
  • Borad MJ, Bridgewater JA, Morizane C, et al. A Phase III study of futibatinib (Tas-120) versus Gemcitabine-Cisplatin (Gem-Cis) Chemotherapy as First-Line (1L) Treatment for Patients (Pts) with Advanced (Adv) Cholangiocarcinoma (CCA) Harboring Fibroblast Growth Factor Receptor 2 (FGFR2) Gene Rearrangements (FOENIX-CCA3) [ABSTRACT]. J Clin Oncol. 2020;38(4_suppl): TPS600–TPS600.
  • Hall TG, Yu Y, Eathiraj S, et al. Preclinical activity of ARQ 087, a novel inhibitor targeting FGFR dysregulation. PLoS One. 2016;11(9):e0162594.
  • Papadopoulos KP, El-Rayes BF, Tolcher AW, et al. A Phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumours. Br J Cancer. 2017;117(11):1592–1599.
  • Abdul-Karim RM, Chaudhry A, Patrikidou A, et al. Derazantinib (DZB) in combination with Atezolizumab (AZB) in patients with solid tumors: results from the dose-finding phase Ib substudy of FIDES-02 [ABSTRACT]. J Clin Oncol. 2021;39(6_suppl):437.
  • Tabernero J, Bahleda R, Dienstmann R, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2015;33(30):3401–3408.
  • Gozgit JM, Wong MJ, Moran L, et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther. 2012;11(3):690–699.
  • Ahn DH, Uson Junior PLS, Masci P, et al. A pilot study of pan-FGFR inhibitor ponatinib in patients with FGFR-altered advanced cholangiocarcinoma. Invest New Drugs. 2022;40(1):134–141.
  • Gile JJ, F-S O, Mahipal A, et al. FGFR inhibitor toxicity and efficacy in cholangiocarcinoma: multicenter single-institution cohort experience. JCO Precis Oncol. 2021;5(5):1228–1240.
  • Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res. 2014;2. DOI:10.1038/boneres.2014.3
  • Lacouture ME, Sibaud V, Anadkat MJ, et al. Dermatologic adverse events associated with selective fibroblast growth factor receptor inhibitors: overview, prevention, and management guidelines. Oncologist. 2021;26(2):e316–26.
  • Stjepanovic N, Velazquez-Martin JP, Bedard PL. Ocular toxicities of MEK inhibitors and other targeted therapies. Ann Oncol Off J Eur Soc Med Oncol. 2016;27(6):998–1005.
  • Mahipal A, Tella SH, Kommalapati A, et al. Prevention and treatment of FGFR inhibitor-associated toxicities. Crit Rev Oncol Hematol. 2020;155:103091.
  • Bertolini F, Marighetti P, Martin-Padura I, et al. Anti-VEGF and beyond: shaping a new generation of anti-angiogenic therapies for cancer. Drug Discov Today. 2011;16(23–24):1052–1060.
  • Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008;68(12):4774–4782.
  • Ueno M, Ikeda M, Sasaki T, et al. Phase 2 study of lenvatinib monotherapy as second-line treatment in unresectable biliary tract cancer: primary analysis results. BMC Cancer. 2020;20(1):1105.
  • Chakrabarti S, Finnes HD, Mahipal A. Fibroblast Growth Factor Receptor (FGFR) inhibitors in cholangiocarcinoma: current status, insight on resistance mechanisms and toxicity management. Expert Opin Drug Metab Toxicol. 2022;18(1):85–98.
  • Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 2017;7(3):252–263.
  • Zhou Y, Wu C, Lu G, et al. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer. 2020;11(8):2000–2007.
  • Goyal L, Shi L, Liu LY, et al. Tas-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discov. 2019;9(8):1064–1079.
  • Tan L, Wang J, Tanizaki J, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A. 2014;111(45):E4869–77.
  • Hollebecque A, Borad M, Goyal L, et al. Efficacy of RLY-4008, a highly selective FGFR2 inhibitor in patients (Pts) with an FGFR2-fusion or rearrangement (f/r), FGFR inhibitor (FGFRi)-NaIve cholangiocarcinoma (CCA): refocus trial. Ann Oncol. 2022;33(57):S1381.
  • Krook MA, Lenyo A, Wilberding M, et al. Efficacy of FGFR inhibitors and combination therapies for acquired resistance in FGFR2-Fusion cholangiocarcinoma. Mol Cancer Ther. 2020;19(3):847–857.
  • Scheller T, Hellerbrand C, Moser C, et al. MTOR inhibition improves fibroblast growth factor receptor targeting in hepatocellular carcinoma. Br J Cancer. 2015;112(5):841–850.
  • Yu Y, Hall T, Eathiraj S, et al. In-vitro and in-vivo combined effect of ARQ 092, an AKT inhibitor, with ARQ 087, a FGFR Inhibitor. Anticancer Drugs. 2017;28(5):503–513.
  • Piha-Paul SAA, Xu B, Janku F, et al. Phase I study of TT-00420, a multiple kinase inhibitor, as a single agent in advanced solid tumors. J Clin Oncol. 2021;39(15_suppl):3090.
  • Miao H, Geng Y, Li Y, et al. Novel protein kinase inhibitor TT-00420 inhibits gallbladder cancer by inhibiting JNK/JUN-mediated signaling pathway. Cell Oncol. 2022;2022:1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.