170
Views
0
CrossRef citations to date
0
Altmetric
Review

Revision of potential prognostic markers of cholangiocarcinoma for clinical practice

ORCID Icon, , &
Pages 517-530 | Received 15 Jan 2023, Accepted 12 Apr 2023, Published online: 20 Apr 2023

References

  • Vithayathil M, Khan SA. Current epidemiology of cholangiocarcinoma in Western countries. J Hepatol. 2022 Dec;77(6):1690–1698.
  • Petrick JL, Yang B, Altekruse SF, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare. PLoS ONE. 2017;12(10):e0186643. DOI:10.1371/journal.pone.0186643
  • Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011 Jul;54(1):173–184.
  • Cardinale V, Semeraro R, Torrice A, et al. Intra-hepatic and extra-hepatic cholangiocarcinoma: new insight into epidemiology and risk factors. World J Gastrointest Oncol. 2010 Nov 15;2(11):407–416.
  • Vij M, Puri Y, Rammohan A, et al. Pathological, molecular, and clinical characteristics of cholangiocarcinoma: a comprehensive review. World J Gastrointest Oncol. 2022 Mar 15;14(3):607–627.
  • Javle M, Lee S, Azad NS, et al. Temporal changes in cholangiocarcinoma incidence and mortality in the united states from 2001 to 2017. Oncology. 2022 Oct 1;27(10):874–883.
  • Patel T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer. 2002 May 3;2:10.
  • Khan SA, Taylor-Robinson SD, Toledano MB, et al. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol. 2002 Dec;37(6):806–813.
  • Taylor-Robinson SD, Toledano MB, Arora S, et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968-1998. Gut. 2001 Jun;48(6):816–820.
  • Valle JW, Kelley RK, Nervi B, et al. Biliary tract cancer. Lancet. 2021 Jan 30;397(10272):428–444.
  • Sripa B, Kaewkes S, Sithithaworn P, et al. Liver fluke induces cholangiocarcinoma. PLOS Med. 2007 Jul;4(7):e201.
  • El-Serag HB, Engels EA, Landgren O, et al. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: a population-based study of U.S. veterans. Hepatology. 2009 Jan;49(1):116–123.
  • Schottenfeld D, Beebe-Dimmer J. Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin. 2006 Mar;56(2):69–83.
  • Kamsa-Ard S, Santong C, Kamsa-Ard S, et al. Decreasing trends in cholangiocarcinoma incidence and relative survival in khon kaen, thailand: an updated, inclusive, population-based cancer registry analysis for 1989-2018. PLoS ONE. 2021;16(2):e0246490.
  • Rahnemai-Azar AA, Weisbrod A, Dillhoff M, et al. Intrahepatic cholangiocarcinoma: molecular markers for diagnosis and prognosis. Surg Oncol. 2017 Jun;26(2):125–137.
  • Rodrigues PM, Olaizola P, Paiva NA, et al. Pathogenesis of cholangiocarcinoma. Annu Rev Pathol. 2021 Jan 24;16:433–463.
  • Macias RIR, Cardinale V, Kendall TJ, et al. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut. 2022 Aug;71(8):1669–1683.
  • Pavicevic S, Reichelt S, Uluk D, et al. Prognostic and predictive molecular markers in cholangiocarcinoma. Cancers (Basel). 2022 Feb 17;14(4):1026. DOI:10.3390/cancers14041026
  • Sasaki K, Margonis GA, Andreatos N, et al. Serum tumor markers enhance the predictive power of the AJCC and LCSGJ staging systems in resectable intrahepatic cholangiocarcinoma. HPB (Oxford). 2018 Oct;20(10):956–965.
  • Fang T, Wang H, Wang Y, et al. Clinical significance of preoperative serum CEA, CA125, and CA19-9 levels in predicting the resectability of cholangiocarcinoma. Dis Markers. 2019;2019:6016931.
  • Qiang Z, Zhang W, Jin S, et al. Carcinoembryonic antigen, α-fetoprotein, and ki67 as biomarkers and prognostic factors in intrahepatic cholangiocarcinoma: a retrospective cohort study. Ann Hepatol. 2021 Jan;20:100242.
  • Moro A, Mehta R, Sahara K, et al. The impact of preoperative CA19-9 and CEA on outcomes of patients with intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2020 Aug;27(8):2888–2901.
  • He C, Zhang Y, Song Y, et al. Preoperative CEA levels are supplementary to CA19-9 levels in predicting prognosis in patients with resectable intrahepatic cholangiocarcinoma. J Cancer. 2018;9(17):3117–3128.
  • Jiang ZL, Zhang FX, Zhan HL, et al. MiR-181b-5p promotes the progression of cholangiocarcinoma by targeting PARK2 via PTEN/PI3K/AKT signaling pathway. Biochem Genet. 2022 Feb;60(1):223–240.
  • Liu Y, Liu X, Zhou Y, et al. Overexpression of miR-27a predicts poor prognosis and promotes the progression in cholangiocarcinoma. Clin Exp Med. 2021 Feb;21(1):121–128.
  • Lixin S, Wei S, Haibin S, et al. MiR-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma. Mol Carcinog. 2020 Dec;59(12):1371–1381.
  • Loosen SH, Lurje G, Wiltberger G, et al. Serum levels of miR-29, miR-122, miR-155 and miR-192 are elevated in patients with cholangiocarcinoma. PLoS ONE. 2019;14(1):e0210944.
  • Rinn JL, Chang HY. Long noncoding rNAs: molecular modalities to organismal functions. Annu Rev Biochem. 2020 Jun 20;89:283–308.
  • Wu Y, Hayat K, Hu Y, et al. Long non-coding rNAs as molecular biomarkers in cholangiocarcinoma. Front Cell Dev Biol. 2022;10:890605.
  • Yu Y, Chen Q, Zhang X, et al. Long noncoding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression. Cancer Sci. 2020 Jul;111(7):2297–2309.
  • Hu Z, Huang L, Wang W, et al. Long non-coding RNA FOXD2-AS1 promotes proliferation, migration, and invasion in cholangiocarcinoma through regulating miR-760/E2F3 axis. Dig Dis Sci. 2022 Feb;67(2):546–558.
  • Gao K, Chen S, Yang X. HOTTIP enhances gemcitabine and cisplatin resistance through sponging miR-637 in cholangiocarcinoma. Front Oncol. 2021;11:664916.
  • Li J, Jiang X, Li Z, et al. SP1-induced HOXD-AS1 promotes malignant progression of cholangiocarcinoma by regulating miR-520c-3p/MYCN. Aging (Albany NY). 2020 Aug 28;12(16):16304–16325.
  • Gao J, Qin W, Kang P, et al. Up-regulated LINC00261 predicts a poor prognosis and promotes a metastasis by EMT process in cholangiocarcinoma. Pathol Res Pract. 2020 Jan;216(1):152733.
  • Lu M, Qin X, Zhou Y, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021 Jan 12;12(1):72.
  • Li J, Guan C, Hu Z, et al. Yin yang 1-induced LINC00667 up-regulates pyruvate dehydrogenase kinase 1 to promote proliferation, migration and invasion of cholangiocarcinoma cells by sponging miR-200c-3p. Hum Cell. 2021 Jan;34(1):187–200.
  • Zhang B, Zhou M, Zou L, et al. Long non-coding RNA LOXL1-AS1 acts as a ceRNA for miR-324-3p to contribute to cholangiocarcinoma progression via modulation of ATP-binding cassette transporter A1. Biochem Biophys Res Commun. 2019 Jun 11;513(4):827–833.
  • Gu Y, Zhu Z, Pei H, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020 Feb 5;12(3):2333–2346.
  • Xia L, Chen X, Yang J, et al. Long non-coding RNA-PAICC promotes the tumorigenesis of human intrahepatic cholangiocarcinoma by increasing YAP1 transcription. Front Oncol. 2020;10:595533.
  • Sun D, Zhao Y, Wang W, et al. PCAT1 induced by transcription factor YY1 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-216a-3p to up-regulate oncogene BCL3. Biol Chem. 2021 Jan 27;402(2):207–219.
  • Zhang L, Ma D, Li F, et al. Lnc-PKD2-2-3/miR-328/GPAM ceRNA network induces cholangiocarcinoma proliferation, invasion and 5-FU chemoresistance. Front Oncol. 2022;12:871281.
  • Sun ZP, Tan ZG, Peng C, et al. LncRNA SNHG3 facilitates the malignant phenotype of cholangiocarcinoma cells via the miR-3173-5p/ERG axis. J Gastrointest Surg. 2022 Apr;26(4):802–812.
  • Jiao M, Ning S, Chen J, et al. Long noncoding RNA ZEB1AS1 predicts a poor prognosis and promotes cancer progression through the miR200a/ZEB1 signaling pathway in intrahepatic cholangiocarcinoma. Int J Oncol. 2020 Jun;56(6):1455–1467.
  • Li Z, Jiang X, Huang L, et al. Up-regulation of ZFAS1 indicates dismal prognosis for cholangiocarcinoma and promotes proliferation and metastasis by modulating USF1 via miR-296-5p. J Cell Mol Med. 2019 Dec;23(12):8258–8268.
  • Ge X, Wang Y, Nie J, et al. The diagnostic/prognostic potential and molecular functions of long non-coding rNAs in the exosomes derived from the bile of human cholangiocarcinoma. Oncotarget. 2017 Sep 19;8(41):69995–70005.
  • Luo C, Xin H, Zhou Z, et al. Tumor-derived exosomes induce immunosuppressive macrophages to foster intrahepatic cholangiocarcinoma progression. Hepatology. 2022 Oct;76(4):982–999.
  • Pan Y, Shao S, Sun H, et al. Bile-derived exosome noncoding rNAs as potential diagnostic and prognostic biomarkers for cholangiocarcinoma. Front Oncol. 2022;12:985089.
  • Xu Y, Yao Y, Liu Y, et al. Elevation of circular RNA circ_0005230 facilitates cell growth and metastasis via sponging miR-1238 and miR-1299 in cholangiocarcinoma. Aging (Albany NY). 2019 Apr 4;11(7):1907–1917.
  • Chen Q, Wang H, Li Z, et al. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J Hepatol. 2022 Jan;76(1):135–147.
  • Xu Y, Gao P, Wang Z, et al. Circ-LAMP1 contributes to the growth and metastasis of cholangiocarcinoma via miR-556-5p and miR-567 mediated YY1 activation. J Cell Mol Med. 2021 Apr;25(7):3226–3238.
  • Li H, Li J, Wang J, et al. Assessment of liver function for evaluation of long-term outcomes of intrahepatic cholangiocarcinoma: a multi-institutional analysis of 620 patients. Front Oncol. 2020;10:525.
  • Li H, Liu R, Li J, et al. Prognostic significance of gamma-glutamyl transpeptidase to albumin ratio in patients with intrahepatic cholangiocarcinoma after hepatectomy. J Cell Mol Med. 2022 Jun;26(11):3196–3202.
  • Chang TT, Ho CH. Plasma proteome atlas for differentiating tumor stage and post-surgical prognosis of hepatocellular carcinoma and cholangiocarcinoma. PLoS ONE. 2020;15(8):e0238251.
  • Kimawaha P, Jusakul A, Junsawang P, et al. Establishment of a potential serum biomarker panel for the diagnosis and prognosis of cholangiocarcinoma using decision tree algorithms. Diagn (Basel). 2021 Mar 25;11(4):589. DOI:10.3390/diagnostics11040589
  • Tummanatsakun D, Proungvitaya T, Roytrakul S, et al. Serum apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) level as a potential biomarker of cholangiocarcinoma. Biomolecules. 2019 Aug 26;9(9):413. DOI:10.3390/biom9090413
  • Teeravirote K, Luang S, Waraasawapati S, et al. A novel serum glycobiomarker for diagnosis and prognosis of cholangiocarcinoma detected by butea monosperma agglutinin. Molecules. 2021 May 8;26(9):2782. DOI:10.3390/molecules26092782
  • Liu Z, Hu C, Zheng L, et al. BMI1 promotes cholangiocarcinoma progression and correlates with antitumor immunity in an exosome-dependent manner. Cell Mol Life Sci. 2022 Aug 6;79(9):469.
  • Luang S, Teeravirote K, Saentaweesuk W, et al. Carbohydrate antigen 50: values for diagnosis and prognostic prediction of intrahepatic cholangiocarcinoma. Med (Kaunas). 2020 Nov 16;56(11):616. DOI:10.3390/medicina56110616
  • Silsirivanit A, Matsuda A, Kuno A, et al. Multi-serum glycobiomarkers improves the diagnosis and prognostic prediction of cholangiocarcinoma. Clin Chim Acta. 2020 Nov;510:142–149.
  • Loosen SH, Ulmer TF, Labuhn S, et al. Serum levels of CXCL13 are an independent predictor of survival following resection of biliary tract cancer. Cancers (Basel). 2022 Aug 23;14(17):4073. DOI:10.3390/cancers14174073
  • Titapun A, Luvira V, Srisuk T, et al. High levels of serum IgG for opisthorchis viverrini and CD44 expression predict worse prognosis for cholangiocarcinoma patients after curative resection. Int J Gen Med. 2021;14:2191–2204.
  • Liu Z, Zhou K, Zeng J, et al. Liver kinase B1 in exosomes inhibits immune checkpoint programmed death ligand 1 and metastatic progression of intrahepatic cholangiocarcinoma. Oncol Rep. 2022 Sep;48(3):155. DOI:10.3892/or.2022.8367
  • Chua-On D, Proungvitaya T, Tummanatsakun D, et al. Apoptosis-inducing factor, mitochondrion-associated 3 (AIFM3) protein level in the sera as a prognostic marker of cholangiocarcinoma patients. Biomolecules. 2020 Jul 10;10(7):1021. DOI:10.3390/biom10071021
  • Yoh T, Hatano E, Kasai Y, et al. Serum nardilysin, a surrogate marker for epithelial-mesenchymal transition, predicts prognosis of intrahepatic cholangiocarcinoma after surgical resection. Clin Cancer Res. 2019 Jan 15;25(2):619–628.
  • Fabris L, Cadamuro M, Moserle L, et al. Nuclear expression of S100A4 calcium-binding protein increases cholangiocarcinoma invasiveness and metastasization. Hepatology. 2011 Sep 2;54(3):890–899.
  • Lertpanprom M, Silsirivanit A, Tippayawat P, et al. High expression of protein tyrosine phosphatase receptor S (PTPRS) is an independent prognostic marker for cholangiocarcinoma. Front Public Health. 2022;10:835914.
  • Sanmai S, Proungvitaya T, Limpaiboon T, et al. Serum pyruvate dehydrogenase kinase as a prognostic marker for cholangiocarcinoma. Oncol Lett. 2019 Jun;17(6):5275–5282.
  • Gringeri E, Biasiolo A, Di Giunta M, et al. Bile detection of squamous cell carcinoma antigen (SCCA) in extrahepatic cholangiocarcinoma. Dig Liver Dis. 2022 Nov 8;534–540. DOi:10.1016/j.dld.2022.10.010.
  • Loosen SH, Breuer A, Tacke F, et al. Circulating levels of soluble urokinase plasminogen activator receptor predict outcome after resection of biliary tract cancer. JHEP Rep. 2020 Apr;2(2):100080.
  • Watanabe A, Harimoto N, Araki K, et al. Absolute neutrophil count predicts postoperative prognosis in mass-forming intrahepatic cholangiocarcinoma. Anticancer Res. 2019 Feb;39(2):941–947.
  • Chalermwat CSA, Saentaweesuk W, Bhudisawasdi V, et al. Neutrophil-to-lymphocyte ratio: a systemic inflammatory index for primary diagnosis and prognosis of cholangiocarcinoma. Biomed J Sci Tech Res. 2019;13(2):8.
  • Liu J, Xia Y, Xue F, et al. Elevated serum neutrophil-lymphocyte ratio is associated with worse long-term survival in patients with HBV-related intrahepatic cholangiocarcinoma undergoing resection. Front Oncol. 2022;12:1012246.
  • Zhang D, Zeng H, Pan Y, et al. Liver tumor markers, HALP score, and NLR: simple, cost-effective, easily accessible indexes for predicting prognosis in ICC patients after surgery. J Pers Med. 2022 Dec 9;12(12):2401. DOI:10.3390/jpm12122041
  • Wu Y, Zhou D, Zhang G, et al. Preoperative serum platelet-lymphocyte ratio as a prognostic factor in cholangiocarcinoma patients after radical resection: a retrospective analysis of 119 patients. Gastroenterol Res Pract. 2019;2019:8506967.
  • Huh G, Ryu JK, Chun JW, et al. High platelet-to-lymphocyte ratio is associated with poor prognosis in patients with unresectable intrahepatic cholangiocarcinoma receiving gemcitabine plus cisplatin. BMC Cancer. 2020 Sep 23;20(1):907.
  • Liu D, Czigany Z, Heij LR, et al. The value of platelet-to-lymphocyte ratio as a prognostic marker in cholangiocarcinoma: a systematic review and meta-analysis. Cancers (Basel). 2022 Jan 16;14(2):438. DOI:10.3390/cancers14020438
  • Noguchi D, Kuriyama N, Nakagawa Y, et al. The prognostic impact of lymphocyte-to-C-reactive protein score in patients undergoing surgical resection for intrahepatic cholangiocarcinoma: a comparative study of major representative inflammatory/immunonutritional markers. PLoS ONE. 2021;16(1):e0245946.
  • Yugawa K, Itoh S, Yoshizumi T, et al. Lymphocyte-C-reactive protein ratio as a prognostic marker associated with the tumor immune microenvironment in intrahepatic cholangiocarcinoma. Int J Clin Oncol. 2021 Oct;26(10):1901–1910.
  • Kano H, Midorikawa Y, Song P, et al. High C-reactive protein/albumin ratio associated with reduced survival due to advanced stage of intrahepatic cholangiocarcinoma. Biosci Trends. 2020 Sep 21;14(4):304–309.
  • Matsumoto T, Itoh S, Yoshizumi T, et al. C-reactive protein: albumin ratio in patients with resectable intrahepatic cholangiocarcinoma. BJS Open. 2020 Sep 21;4(6):1146–1152.
  • Ma B, Meng H, Shen A, et al. Prognostic value of inflammatory and tumour markers in small-duct subtype intrahepatic cholangiocarcinoma after curative-intent resection. Gastroenterol Res Pract. 2021;2021:6616062.
  • Sellers CM, Uhlig J, Ludwig JM, et al. Inflammatory markers in intrahepatic cholangiocarcinoma: effects of advanced liver disease. Cancer Med. 2019 Oct;8(13):5916–5929.
  • Terasaki F, Sugiura T, Okamura Y, et al. Systemic immune-inflammation index as a prognostic marker for distal cholangiocarcinoma. Surg Today. 2021 Oct;51(10):1602–1609.
  • Zhang Y, Shi SM, Yang H, et al. Systemic inflammation score predicts survival in patients with intrahepatic cholangiocarcinoma undergoing curative resection. J Cancer. 2019;10(2):494–503.
  • Maßmann M, Treckmann J, Markus P, et al. A prognostic systemic inflammation score (SIS) in patients with advanced intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol. 2022 Nov 5. DOI:10.1007/s00432-022-04424-0
  • Lei S, Cao W, Zeng Z, et al. JUND/Linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis. Cell Death Dis. 2022 Nov 18;13(11):967.
  • Liao W, Feng Q, Liu H, et al. Circular rNAs in cholangiocarcinoma. Cancer Lett. 2023 Jan 28;553:215980.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674.
  • Shinke G, Yamada D, Eguchi H, et al. The postoperative peak number of leukocytes after hepatectomy is a significant prognostic factor for cholangiocarcinoma. Mol Clin Oncol. 2019 May;10(5):531–540.
  • Cui H, Li Y, Li S, et al. Prognostic utility of preoperative inflammatory markers in patients with intrahepatic cholangiocarcinoma after hepatic resection: a systematic review and meta-analysis. Cancer Med. 2022 Jun 12;99–110. DOI:10.1002/cam4.4935
  • Mota Reyes C, Teller S, Muckenhuber A, et al. Neoadjuvant therapy remodels the pancreatic cancer microenvironment via depletion of protumorigenic immune cells. Clin Cancer Res. 2020;26(1):220–231.
  • Yeh YC, Lei HJ, Chen MH, et al. C-Reactive protein (CRP) is a promising diagnostic immunohistochemical marker for intrahepatic cholangiocarcinoma and is associated with better prognosis. Am J Surg Pathol. 2017 Dec;41(12):1630–1641.
  • Lin ZY, Liang ZX, Zhuang PL, et al. Intrahepatic cholangiocarcinoma prognostic determination using pre-operative serum C-reactive protein levels. BMC Cancer. 2016 Oct 12;16(1):792.
  • Siyin ST, Liu T, Li W, et al. A prospective follow-up study of the relationship between high-sensitivity C-reactive protein and primary liver cancer. BMC Cancer. 2020 Nov 30;20(1):1168.
  • Lee SC, Kim SJ, Yu MH, et al. Uses of inflammatory markers for differentiation of intrahepatic mass-forming cholangiocarcinoma from liver abscess: case-control study. J Clin Med. 2020 Oct 1;9:(10)3194. DOI:10.3390/jcm9103194
  • Y-J K, Kwon Y-M, Kim KH, et al. High-sensitivity C-Reactive protein levels and cancer mortality. Cancer Epidemiol Biomarkers Prev. 2012;21(11):2076–2086.
  • Liu T, Zhang Q, Song C, et al. C-reactive protein trajectories and the risk of all cancer types: a prospective cohort study. Int J Cancer. 2022 Jul 15;151(2):297–307.
  • Zhang X, Zhou Y, Wu Z, et al. Double-negative α-fetoprotein and carbohydrate antigen 19-9 predict a good prognosis in intrahepatic cholangiocarcinoma: a propensity score matching analysis. Clin Transl Gastroenterol. 2021 Nov 9;12(11):e00425.
  • Vajaria BN, Patel PS. Glycosylation: a hallmark of cancer? Glycoconj J. 2017;34(2):147–156.
  • Indramanee S, Silsirivanit A, Pairojkul C, et al. Aberrant glycosylation in cholangiocarcinoma demonstrated by lectin-histochemistry. Asian Pac J Cancer Prev. 2012;13(Suppl):119–124.
  • Saentaweesuk W, Silsirivanit A, Vaeteewoottacharn K, et al. Clinical significance of GalNAcylated glycans in cholangiocarcinoma: values for diagnosis and prognosis. Clin Chim Acta. 2018 Feb;477:66–71.
  • Cadamuro M, Spagnuolo G, Sambado L, et al. Low-dose paclitaxel reduces S100A4 nuclear import to inhibit invasion and hematogenous metastasis of cholangiocarcinoma. Cancer Res. 2016 Aug 15;76(16):4775–4784.
  • Urman JM, Herranz JM, Uriarte I, et al. Pilot multi-omic analysis of human bile from benign and malignant biliary strictures: a machine-learning approach. Cancers (Basel). 2020 Jun 21;12(6):1644. DOI:10.3390/cancers12061644
  • Alsaleh M, Sithithaworn P, Khuntikeo N, et al. Characterisation of the urinary metabolic profile of liver fluke-associated cholangiocarcinoma. J Clin Exp Hepatol. 2019 Nov;9(6):657–675.
  • Haznadar M, Diehl CM, Parker AL, et al. Urinary metabolites diagnostic and prognostic of intrahepatic cholangiocarcinoma. Cancer Epidemiol Biomarkers Prev. 2019 Oct;28(10):1704–1711.
  • Katsuda T, Kosaka N, Ochiya T. The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics. 2014 Mar;14(4–5):412–425.
  • Lindoso RS, Collino F, Vieyra A. Extracellular vesicles as regulators of tumor fate: crosstalk among cancer stem cells, tumor cells and mesenchymal stem cells. Stem Cell Investig. 2017;4:75.
  • Ogorevc E, Kralj-Iglic V, Veranic P. The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol. 2013 Jul 30;47(3):197–205.
  • Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020 Aug 5;5(1):145.
  • Julich-Haertel H, Urban SK, Krawczyk M, et al. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol. 2017 Aug;67(2):282–292.
  • Lapitz A, Arbelaiz A, O’Rourke CJ, et al. Patients with cholangiocarcinoma present specific RNA profiles in serum and urine extracellular vesicles mirroring the tumor expression: novel liquid biopsy biomarkers for disease diagnosis. Cells. 2020 Mar 14;9(3):721. DOI:10.3390/cells9030721
  • Severino V, Dumonceau JM, Delhaye M, et al. Extracellular vesicles in bile as markers of malignant biliary stenoses. Gastroenterology. 2017 Aug;153(2):495–504 e8.
  • Kitdumrongthum S, Metheetrairut C, Charoensawan V, et al. Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes. Life Sci. 2018 Oct 1;210:65–75.
  • Louis C, Desoteux M, Coulouarn C. Exosomal circRnas: new players in the field of cholangiocarcinoma. Clin Sci (Lond). 2019 Nov 15;133(21):2239–2244.
  • Wang S, Hu Y, Lv X, et al. Circ-0000284 arouses malignant phenotype of cholangiocarcinoma cells and regulates the biological functions of peripheral cells through cellular communication. Clin Sci (Lond). 2019 Sep 30;133(18):1935–1953.
  • Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005 Mar 25;307(5717):1915–1920.
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4;464(7285):59–65.
  • Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020 Jun 26;11(1):3259.
  • Lauka L, Reitano E, Carra MC, et al. Role of the intestinal microbiome in colorectal cancer surgery outcomes. World J Surg Oncol. 2019 Dec 2;17(1):204.
  • Pinato DJ, Howlett S, Ottaviani D, et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol. 2019 Dec 1;5(12):1774–1778.
  • Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018 May 25;360:6391.
  • Sugita T, Amano K, Nakano M, et al. Analysis of the serum bile acid composition for differential diagnosis in patients with liver disease. Gastroenterol Res Pract. 2015;2015:717431.
  • Chng KR, Chan SH, AHQ N, et al. Tissue microbiome profiling identifies an enrichment of specific enteric bacteria in opisthorchis viverrini associated cholangiocarcinoma. EBioMedicine. 2016 Jun;8:195–202.
  • Di Carlo P, Serra N, D’Arpa F, et al. The microbiota of the bilio-pancreatic system: a cohort, STROBE-compliant study. Infect Drug Resist. 2019;12:1513–1527.
  • Jia X, Lu S, Zeng Z, et al. Characterization of gut microbiota, bile acid metabolism, and cytokines in intrahepatic cholangiocarcinoma. Hepatology. 2020 Mar;71(3):893–906.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014 Oct;12(10):661–672.
  • Saltykova IV, Petrov VA, Brindley PJ. Opisthorchiasis and the microbiome. Adv Parasitol. 2018;102:1–23.
  • Boonyanugomol W, Chomvarin C, Sripa B, et al. Helicobacter pylori in thai patients with cholangiocarcinoma and its association with biliary inflammation and proliferation. HPB (Oxford). 2012 Mar;14(3):177–184.
  • Deenonpoe R, Chomvarin C, Pairojkul C, et al. The carcinogenic liver fluke opisthorchis viverrini is a reservoir for species of helicobacter. Asian Pac J Cancer Prev. 2015;16(5):1751–1758.
  • Sripa B, Deenonpoe R, Brindley PJ. Co-infections with liver fluke and helicobacter species: a paradigm change in pathogenesis of opisthorchiasis and cholangiocarcinoma? Parasitol Int. 2017 Aug;66(4):383–389.
  • Saltykova IV, Petrov VA, Logacheva MD, et al. Biliary microbiota, gallstone disease and infection with opisthorchis felineus. PLoS Negl Trop Dis. 2016 Jul;10(7):e0004809.
  • Segura-Lopez FK, Guitron-Cantu A, Torres J. Association between helicobacter spp. infections and hepatobiliary malignancies: a review. World J Gastroenterol. 2015 Feb 7;21(5):1414–1423.
  • Chan-On W, Nairismägi ML, Ong CK, et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet. 2013 Dec;45(12):1474–1478.
  • Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017 Oct;7(10):1116–1135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.