151
Views
0
CrossRef citations to date
0
Altmetric
Review

Allogeneic transplantation and cellular therapies in cutaneous T-cell lymphoma

& ORCID Icon
Pages 41-58 | Received 21 Jul 2023, Accepted 10 Jan 2024, Published online: 26 Jan 2024

References

  • Willemze R, Meijer CJLM. Classification of cutaneous T-cell lymphoma: from alibert to WHO-EORTC. J Cutan Pathol. 2006;33(Suppl 1):18–26. doi: 10.1111/j.0303-6987.2006.00494.x
  • Kaufman AE, Patel K, Goyal K, et al. Mycosis fungoides: developments in incidence, treatment and survival. J Eur Acad Dermatol Venereol. 2020;34(10):2288–2294. doi: 10.1111/jdv.16325
  • Goyal A, O’Leary D, Goyal K, et al. Increased risk of second primary hematologic and solid malignancies in patients with mycosis fungoides: a surveillance, epidemiology, and end results analysis. J Am Acad Dermatol. 2020;83(2):404–411. doi: 10.1016/j.jaad.2019.07.075
  • Goyal A, O’Leary D, Goyal K, et al. Cutaneous T-cell lymphoma is associated with increased risk of lymphoma, melanoma, lung cancer, and bladder cancer: a systematic review and meta-analysis. J Am Acad Dermatol. 2021;85(6):1418–1428. doi: 10.1016/j.jaad.2020.06.1033
  • Pileri A, Guglielmo A, Grandi V, et al. The microenvironment’s role in mycosis fungoides and Sézary syndrome: from progression to therapeutic implications. Cells. 2021;10(10):2780. doi: 10.3390/cells10102780
  • Tarabadkar ES, Shinohara MM. Skin directed therapy in cutaneous T-Cell lymphoma. Front Oncol. 2019;9. doi: 10.3389/fonc.2019.00260
  • Kartan S, Shalabi D, O’Donnell M, et al. Response to topical corticosteroid monotherapy in mycosis fungoides. J Am Acad Dermatol. 2021;84(3):615–623. doi: 10.1016/j.jaad.2020.05.043
  • Kim EJ, Guitart J, Querfeld C, et al. The PROVe study: US real-world experience with chlormethine/mechlorethamine gel in combination with other therapies for patients with mycosis fungoides cutaneous T-Cell lymphoma. Am J Clin Dermatol. 2021;22(3):407–414. doi: 10.1007/s40257-021-00591-x
  • Hodak E, Pavlovsky L. Phototherapy of mycosis fungoides. Dermatol Clin. 2015;33(4):697–702. doi: 10.1016/j.det.2015.05.005
  • Olsen EA, Hodak E, Anderson T, et al. Guidelines for phototherapy of mycosis fungoides and sézary syndrome: a consensus statement of the United States cutaneous lymphoma consortium. J Am Acad Dermatol. 2016;74(1):27–58. doi: 10.1016/j.jaad.2015.09.033
  • Hoppe RT, Harrison C, Tavallaee M, et al. Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: results of a pooled analysis from 3 phase-II clinical trials. J Am Acad Dermatol. 2015;72(2):286–292. doi: 10.1016/j.jaad.2014.10.014
  • Olsen EA, Bunn PA. Interferon in the treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995;9(5):1089–1107. doi: 10.1016/S0889-8588(18)30060-1
  • Duvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(9):2456–2471. doi: 10.1200/JCO.2001.19.9.2456
  • Alfred A, Taylor PC, Dignan F, et al. The role of extracorporeal photopheresis in the management of cutaneous T‐cell lymphoma, graft‐versus‐host disease and organ transplant rejection: a consensus statement update from the UK photopheresis society. Br J Haematol. 2017;177(2):287–310. doi: 10.1111/bjh.14537
  • Knobler R, Duvic M, Querfeld C, et al. Long-term follow-up and survival of cutaneous T-cell lymphoma patients treated with extracorporeal photopheresis. Photodermatol Photoimmunol Photomed. 2012;28(5):250–257.
  • Duvic M, Hester JP, Lemak NA. Photopheresis therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol. 1996;35(4):573–579. doi: 10.1016/S0190-9622(96)90683-0
  • Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(32):5410–5417. doi: 10.1200/JCO.2008.21.6150
  • Whittaker SJ, Demierre M-F, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(29):4485–4491. doi: 10.1200/JCO.2010.28.9066
  • Duvic M, Olsen EA, Breneman D, et al. Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2009;9(6):412–416. doi: 10.3816/CLM.2009.n.082
  • Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(21):3109–3115. doi: 10.1200/JCO.2006.10.2434
  • Duvic M, Dummer R, Becker JC, et al. Panobinostat activity in both bexarotene-exposed and -naïve patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Cancer Oxf Engl. 2013;49(2):386–394.
  • Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(2):376–388. doi: 10.1200/JCO.2001.19.2.376
  • de Masson A, Guitera P, Brice P, et al. Long-term efficacy and safety of alemtuzumab in advanced primary cutaneous T-cell lymphomas. Br J Dermatol. 2014;170(3):720–724. doi: 10.1111/bjd.12690
  • Kopolovic I, Ostro J, Tsubota H, et al. A systematic review of transfusion-associated graft-versus-host disease. Blood 2015;126(3):406–414. doi: 10.1182/blood-2015-01-620872
  • Khodadoust MS, Mou E, Kim YH. Integrating novel agents into the treatment of advanced mycosis fungoides and Sézary syndrome. Blood. 2023;141(7):695–703. doi: 10.1182/blood.2020008241
  • Goyal A, Hordinsky M, Lazaryan A. Impressive response of CD30-negative, treatment-refractory mycosis fungoides to brentuximab vedotin. Dermatol Ther. 2019;32(2):e12835. doi: 10.1111/dth.12835
  • Kim YH, Prince HM, Whittaker S, et al. Outcomes by CD30 expression in patients with CTCL receiving brentuximab vedotin (BV) vs physician’s choice (PC) in the phase 3 ALCANZA study. J Clin Oncol. 2017;35(15_suppl):7517. doi: 10.1200/JCO.2017.35.15_suppl.7517
  • Prince HM, Kim YH, Horwitz SM, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390(10094):555–566. doi: 10.1016/S0140-6736(17)31266-7
  • Papadavid E, Kapniari E, Pappa V, et al. Multicentric EORTC retrospective study shows efficacy of brentuximab vedotin in patients who have mycosis fungoides and sézary syndrome with variable CD30 positivity*. Br J Dermatol. 2021;185(5):1035–1044. doi: 10.1111/bjd.20588
  • Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J Hematol Oncol. 2014;7(1):24. doi: 10.1186/1756-8722-7-24
  • Kim YH, Bagot M, Pinter-Brown L, et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018;19(9):1192–1204. doi: 10.1016/S1470-2045(18)30379-6
  • Dai J, Almazan TH, Hong EK, et al. Potential association of anti-CCR4 antibody mogamulizumab and graft-vs-host disease in patients with mycosis fungoides and Sézary syndrome. JAMA Dermatol. 2018;154(6):728–728. doi: 10.1001/jamadermatol.2018.0884
  • Hirotsu KE, Neal TM, Khodadoust MS, et al. Clinical characterization of mogamulizumab-associated rash during treatment of mycosis fungoides or Sézary syndrome. JAMA Dermatol. 2021;157(6):700–707. doi: 10.1001/jamadermatol.2021.0877
  • Kim YH, Duvic M, Obitz E, et al. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood. 2007;109(11):4655–4662. doi: 10.1182/blood-2006-12-062877
  • Genmab Prepares to Slash Jobs as Phase III Drug Candidate Zanolimumab Discontinued. https://www.spglobal.com/marketintelligence/en/mi/country-industry-forecasting.html?id=106596282
  • Khodadoust MS, Rook AH, Porcu P, et al. Pembrolizumab in relapsed and refractory mycosis fungoides and Sézary syndrome: a multicenter phase II study. J Clin Oncol. 2020;38(1):20–28. doi: 10.1200/JCO.19.01056
  • Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–580. doi: 10.1038/s41571-019-0218-0
  • Hughes CFM, Khot A, McCormack C, et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sézary syndrome: a comparative study of systemic therapy. Blood. 2015;125(1):71–81.
  • de Sousa Cavalcante L, Monteiro GG. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014;741:8–16. doi:10.1016/j.ejphar.2014.07.041
  • Plunkett W, Gandhi V, Huang P, et al. Fludarabine: pharmacokinetics, mechanisms of action, and rationales for combination therapies. Semin Oncol. 1993;20(5 Suppl 7):2–12.
  • Rahman AM, Yusuf SW, Ewer MS. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int J Nanomedicine. 2007;2(4):567–583.
  • Foss F, Horwitz SM, Coiffier B, et al. Pralatrexate is an effective treatment for relapsed or refractory transformed mycosis fungoides: a subgroup efficacy analysis from the PROPEL study. Clin Lymphoma Myeloma Leuk. 2012;12(4):238–243. doi: 10.1016/j.clml.2012.01.010
  • Foss FM, Parker TL, Girardi M, et al. Effect of leucovorin administration on mucositis and skin reactions in patients with peripheral T-cell lymphoma or cutaneous T-cell lymphoma treated with pralatrexate. Leuk Lymphoma. 2019;60(12):2927–2930. doi: 10.1080/10428194.2019.1612061
  • Querfeld C, Thompson JA, Taylor MH, et al. Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: a multicentre, phase 1 study. Lancet Haematol. 2021;8(11):e808–e817. doi: 10.1016/S2352-3026(21)00271-4
  • Seto AG, Beatty X, Lynch JM, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 2018;183(3):428–444. doi: 10.1111/bjh.15547
  • de Masson A. New biotherapies for the treatment of cutaneous T-cell lymphomas. Presse Méd. 2022;51(1):104110. doi: 10.1016/j.lpm.2022.104110
  • Shimshak S, Sokumbi O, Isaq N, et al. A practical guide to the diagnosis, evaluation, and treatment of cutaneous T-Cell lymphoma. Dermatol Clin. 2023;41(1):209–229. doi: 10.1016/j.det.2022.07.019
  • Quaglino P, Maule M, Prince HM, et al. Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the cutaneous lymphoma international consortium. Ann Oncol Off J Eur Soc Med Oncol. 2017;28(10):2517–2525. doi: 10.1093/annonc/mdx352
  • Iyer A, Hennessey D, O’Keefe S, et al. Branched evolution and genomic intratumor heterogeneity in the pathogenesis of cutaneous T-cell lymphoma. Blood Adv. 2020;4(11):2489–2500.
  • Iyer A, Hennessey D, O’Keefe S, et al. Clonotypic heterogeneity in cutaneous T-cell lymphoma (mycosis fungoides) revealed by comprehensive whole-exome sequencing. Blood Adv. 2019;3(7):1175–1184.
  • Iyer A, Hennessey D, O’Keefe S, et al. Skin colonization by circulating neoplastic clones in cutaneous T-cell lymphoma. Blood. 2019;134(18):1517–1527. doi: 10.1182/blood.2019002516
  • Brumfiel CM, Patel MH, Puri P, et al. How to sequence therapies in mycosis fungoides. Curr Treat Options Oncol. 2021;22(11):101. doi: 10.1007/s11864-021-00899-0
  • Goyal A, O’Leary D, Foss F. Allogeneic stem cell transplant for treatment of mycosis fungoides and Sezary syndrome: a systematic review and meta-analysis. Bone Marrow Transplant. In press. 2024;59(1):41–51. doi: 10.1038/s41409-023-02122-0
  • Brink M, Meeuwes FO, van der Poel MWM, et al. Impact of etoposide and ASCT on survival among patients aged <65 years with stage II to IV PTCL: a population-based cohort study. Blood. 2022;140(9):1009–1019.
  • Wu PA, Kim YH, Lavori PW, et al. A meta-analysis of patients receiving allogeneic or autologous hematopoietic stem cell transplant in mycosis fungoides and Sézary syndrome. Biol Blood Marrow Transplant. 2009;15(8):982–990. doi: 10.1016/j.bbmt.2009.04.017
  • Huang H, Jiang Y, Wang Q, et al. Outcome of allogeneic and autologous hematopoietic cell transplantation for high-risk peripheral T cell lymphomas: a retrospective analysis from a Chinese center. Biol Blood Marrow Transplant. 2017;23(8):1393–1397. doi: 10.1016/j.bbmt.2017.04.021
  • Du J, Yu D, Han X, et al. Comparison of allogeneic stem cell transplant and autologous stem cell transplant in refractory or relapsed peripheral T-Cell lymphoma: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(5):e219807. doi: 10.1001/jamanetworkopen.2021.9807
  • Smith SM, Burns LJ, van Besien K, et al. Hematopoietic cell transplantation for systemic mature T-cell non-hodgkin lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(25):3100–3109. doi: 10.1200/JCO.2012.46.0188
  • Styczyński J, Tridello G, Koster L, et al. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020;55(1):126–136. doi: 10.1038/s41409-019-0624-z
  • Castagna L, Pagliardini T, Bramanti S, et al. Allogeneic stem cell transplantation in poor prognosis peripheral T-cell lymphoma: the impact of different donor type on outcome. Bone Marrow Transplant. 2021;56(4):883–889. doi: 10.1038/s41409-020-01133-5
  • Elliott J, Ahlawat S, Prince HM, et al. Long-term outcomes for allogeneic bone marrow transplantation in Sezary syndrome and mycosis fungoides. Bone Marrow Transplant. 2022;57(11):1724–1726. doi: 10.1038/s41409-022-01787-3
  • Weng W-K, Arai S, Rezvani A, et al. Nonmyeloablative allogeneic transplantation achieves clinical and molecular remission in cutaneous T-cell lymphoma. Blood Adv. 2020;4(18):4474–4482.
  • Domingo-Domenech E, Duarte RF, Boumedil A, et al. Allogeneic hematopoietic stem cell transplantation for advanced mycosis fungoides and Sézary syndrome. An updated experience of the Lymphoma Working Party of The European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2021;56(6):1391–1401. doi: 10.1038/s41409-020-01197-3
  • Duvic M, Donato M, Dabaja B, et al. Total skin electron beam and non-myeloablative allogeneic hematopoietic stem-cell transplantation in advanced mycosis fungoides and Sézary syndrome. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(14):2365–2372.
  • Isufi I, Seropian S, Gowda L, et al. Outcomes for allogeneic stem cell transplantation in refractory mycosis fungoides and primary cutaneous gamma delta T cell lymphomas. Leuk Lymphoma. 2020;61(12):2955–2961.
  • Maciocia PM, Wawrzyniecka PA, Philip B, et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat Med. 2017;23(12):1416–1423. doi: 10.1038/nm.4444
  • Penack O, Peczynski C, Mohty M, et al. How much has allogeneic stem cell transplant–related mortality improved since the 1980s? A retrospective analysis from the EBMT. Blood Adv. 2020;4(24):6283–6290.
  • Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(31):4730–4739. doi: 10.1200/JCO.2009.27.7665
  • Farabi B, Seminario‐Vidal L, Jamgochian M, et al. Updated review on prognostic factors in mycosis fungoides and new skin lymphoma trials. J Cosmet Dermatol. 2022;21(7):2742–2748. doi: 10.1111/jocd.14528
  • Allen PB, McCook‐Veal AA, Switchenko JM, et al. Staging lymph nodes and blood at diagnosis in mycosis fungoides identifies patients at increased risk of progression to advanced stage: a retrospective cohort study. Cancer. 2023;129(4):541–550. doi: 10.1002/cncr.34579
  • Scarisbrick JJ, Prince HM, Vermeer MH, et al. Cutaneous Lymphoma International Consortium Study of outcome in advanced stages of mycosis fungoides and sézary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015;33(32):3766–3773. doi: 10.1200/JCO.2015.61.7142
  • Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sézary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–1722.
  • Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(1):193–209. doi: 10.1002/ajh.26760
  • Talpur R, Singh L, Daulat S, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sézary syndrome from 1982 to 2009. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(18):5051–5060. doi: 10.1158/1078-0432.CCR-12-0604
  • Zackheim HS, Amin S, Kashani-Sabet M, et al. Prognosis in cutaneous T-cell lymphoma by skin stage: long-term survival in 489 patients. J Am Acad Dermatol. 1999;40(3):418–425. doi: 10.1016/S0190-9622(99)70491-3
  • Nikolaou V, Papadavid E, Patsatsi A, et al. Prognostic indicators for mycosis fungoides in a Greek population. Br J Dermatol. 2017;176(5):1321–1330. doi: 10.1111/bjd.15000
  • Diamandidou E, Colome M, Fayad L, et al. Prognostic factor analysis in mycosis fungoides/sézary syndrome. J Am Acad Dermatol. 1999;40(6):914–924. doi: 10.1016/S0190-9622(99)70079-4
  • Scarisbrick JJ, Quaglino P, Prince HM, et al. The PROCLIPI international registry of early-stage mycosis fungoides identifies substantial diagnostic delay in most patients. Br J Dermatol. 2019;181(2):350–357. doi: 10.1111/bjd.17258
  • Wilson LD, Hinds GA, Yu JB. Age, race, sex, stage, and incidence of cutaneous lymphoma. Clin Lymphoma Myeloma Leuk. 2012;12:291–296. doi:10.1016/j.clml.2012.06.010
  • van Doorn R, Van Haselen CW, van Voorst Vader PC, et al. Mycosis fungoides: disease evolution and prognosis of 309 Dutch patients. Arch Dermatol. 2000;136(4):504–510. doi: 10.1001/archderm.136.4.504
  • Fraser-Andrews EA, Mitchell T, Ferreira S, et al. Molecular staging of lymph nodes from 60 patients with mycosis fungoides and Sézary syndrome: correlation with histopathology and outcome suggests prognostic relevance in mycosis fungoides. Br J Dermatol. 2006;155(4):756–762. doi: 10.1111/j.1365-2133.2006.07428.x
  • Bakels V, Van Oostveen JW, Gordijn RLJ, et al. Diagnostic value of T-cell receptor beta gene rearrangement analysis on peripheral blood lymphocytes of patients with erythroderma. J Invest Dermatol. 1991;97(5):782–786. doi: 10.1111/1523-1747.ep12486767
  • Calvani J, de Masson A, de Margerie‐Mellon C, et al. Image-guided lymph node core-needle biopsy predicts survival in mycosis fungoides and Sézary syndrome. Br J Dermatol. 2021;185(2):419–427. doi: 10.1111/bjd.19796
  • Hodak E, Sherman S, Papadavid E, et al. Should we be imaging lymph nodes at initial diagnosis of early-stage mycosis fungoides? Results from the PROspective Cutaneous Lymphoma International Prognostic Index (PROCLIPI) international study. Br J Dermatol. 2021;184(3):524–531. doi: 10.1111/bjd.19303
  • Bahalı AG, Su O, Cengiz FP, et al. Prognostic factors of patients with mycosis fungoides. Postepy Dermatol Alergol. 2020;37(5):796–799. doi: 10.5114/ada.2020.100491
  • Ferraris AM, Giuntini P, Gaetani GF. Serum lactic dehydrogenase as a prognostic tool for non-Hodgkin lymphomas. Blood. 1979;54(4):928–932. doi: 10.1182/blood.V54.4.928.928
  • Vidulich KA, Talpur R, Bassett RL, et al. Overall survival in erythrodermic cutaneous T-cell lymphoma: an analysis of prognostic factors in a cohort of patients with erythrodermic cutaneous T-cell lymphoma. Int J Dermatol. 2009;48(3):243–252. doi: 10.1111/j.1365-4632.2009.03771.x
  • Diamandidou E, Colome-Grimmer M, Fayad L, et al. Transformation of mycosis fungoides/Sezary syndrome: clinical characteristics and prognosis. Blood. 1998;92(4):1150–1159. doi: 10.1182/blood.V92.4.1150
  • Pulitzer M, Myskowski PL, Horwitz SM, et al. Mycosis fungoides with large cell transformation: clinicopathological features and prognostic factors. Pathology. 2014;46(7):610–616. doi: 10.1097/PAT.0000000000000166
  • Bontoux C, de Masson A, Thonnart N, et al. Large-cell transformation is an independent poor prognostic factor in Sézary syndrome: analysis of 117 cases. Br J Dermatol. 2022;187(5):815–817. doi: 10.1111/bjd.21738
  • Wobser M, Roth S, Appenzeller S, et al. Targeted deep sequencing of mycosis fungoides reveals intracellular signaling pathways associated with aggressiveness and large cell transformation. Cancers (Basel). 2021;13(21):5512. doi: 10.3390/cancers13215512
  • Smoller BR, Bishop K, Glusac E, et al. Reassessment of histologic parameters in the diagnosis of mycosis fungoides. Am J Surg Pathol. 1995;19(12):1423–1430. doi: 10.1097/00000478-199512000-00009
  • Charli-Joseph Y, Kashani-Sabet M, McCalmont TH, et al. Association of a proposed new staging system for folliculotropic mycosis fungoides with prognostic variables in a US cohort. JAMA Dermatol. 2021;157(2):157–165. doi: 10.1001/jamadermatol.2020.4372
  • van Santen S, Roach REJ, van Doorn R, et al. Clinical Staging and prognostic factors in folliculotropic mycosis fungoides. JAMA Dermatol. 2016;152(9):992–1000. doi: 10.1001/jamadermatol.2016.1597
  • de Masson A, O’Malley JT, Elco CP, et al. High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides. Sci Transl Med. 2018;10(440):eaar5894. doi: 10.1126/scitranslmed.aar5894
  • Espinosa ML, Nguyen MT, Aguirre AS, et al. Progression of cutaneous T-cell lymphoma after dupilumab: case review of 7 patients. J Am Acad Dermatol. 2020;83(1):197–199. doi: 10.1016/j.jaad.2020.03.050
  • Martinez-Escala ME, Posligua AL, Wickless H, et al. Progression of undiagnosed cutaneous lymphoma after anti–tumor necrosis factor-alpha therapy. J Am Acad Dermatol. 2018;78(6):1068–1076.
  • Campbell JJ, Clark RA, Watanabe R, et al. Sézary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–771. doi: 10.1182/blood-2009-11-251926
  • Hosing C, Bassett R, Dabaja B, et al. Allogeneic stem-cell transplantation in patients with cutaneous lymphoma: updated results from a single institution. Ann Oncol. 2015;26(12):2490–2495. doi: 10.1093/annonc/mdv473
  • Cengiz Seval G, Sahin U, Bozdag SC, et al. Allogeneic hematopoietic stem cell transplantation for heavily pretreated patients with mycosis fungoides and Sezary syndrome. Dermatol Ther. 2022;35(5):e15447. doi: 10.1111/dth.15447
  • de Masson A, Beylot-Barry M, Ram-Wolff C, et al. Allogeneic transplantation in advanced cutaneous T-cell lymphomas (CUTALLO): a propensity score matched controlled prospective study. The Lancet. 2023;401(10392):1941–1950.
  • Duarte RF, Canals C, Onida F, et al. Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sézary syndrome: a retrospective analysis of the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(29):4492–4499. doi: 10.1200/JCO.2010.29.3241
  • Lechowicz MJ, Lazarus HM, Carreras J, et al. Allogeneic hematopoietic cell transplantation for mycosis fungoides and Sezary syndrome. Bone Marrow Transplant. 2014;49(11):1360–1365. doi: 10.1038/bmt.2014.161
  • Zain J, Palmer JM, Delioukina M, et al. Allogeneic hematopoietic cell transplant for peripheral T-cell non-hodgkin lymphoma results in long-term disease control. Leuk Lymphoma. 2011;52(8):1463–1473. doi: 10.3109/10428194.2011.574754
  • Mori T, Shiratori S, Suzumiya J, et al. Outcome of allogeneic hematopoietic stem cell transplantation for mycosis fungoides and sézary syndrome. Hematol Oncol. 2020;38(3):266–271. doi: 10.1002/hon.2719
  • Bacigalupo A, Ballen K, Rizzo D, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2009;15(12):1628–1633. doi: 10.1016/j.bbmt.2009.07.004
  • Savani M, Ahn KW, Chen Y, et al. Impact of conditioning regimen intensity on the outcomes of peripheral T-cell lymphoma, anaplastic large cell lymphoma and angioimmunoblastic T-cell lymphoma patients undergoing allogeneic transplant. Br J Haematol. 2022;197(2):212–222. doi: 10.1111/bjh.18052
  • Bagshaw MA, Schneidman HM, Farber EM, et al. Electron beam therapy of mycosis fungoides. Calif Med. 1961;95(5):292–297.
  • Elsayad K, Weishaupt C, Moustakis C, et al. Ultra-hypofractionated low-dose total skin electron beam in advanced stage mycosis fungoides and Sézary syndrome. Int J Radiat Oncol Biol Phys. 2023;S0360-3016(23):00215–8. doi: 10.1016/j.ijrobp.2023.02.052
  • Grandi V, Simontacchi G, Grassi T, et al. Short-term efficacy and safety of total skin electron beam therapy in mycosis fungoides: systematic review and meta-analysis. Dermatol Ther. 2022;35(11):e15840. doi: 10.1111/dth.15840
  • Smits K, Quint KD, Vermeer MH, et al. Total skin electron beam therapy for cutaneous T-cell lymphomas in the Netherlands: a retrospective analysis of treatment outcomes and selection for high or low dose schedule. Clin Transl Radiat Oncol. 2022;33:77–82. doi: 10.1016/j.ctro.2021.12.001
  • Sabloff M, Tisseverasinghe S, Babadagli ME, et al. Total body irradiation for hematopoietic stem cell transplantation: what can we agree on? Curr Oncol Tor Ont. 2021;28(1):903–917. doi: 10.3390/curroncol28010089
  • Whittaker S, Hoppe R, Prince HM. How I treat mycosis fungoides and Sézary syndrome. Blood. 2016;127(25):3142–3153. doi: 10.1182/blood-2015-12-611830
  • Jones GW, Kacinski BM, Wilson LD, et al. Total skin electron radiation in the management of mycosis fungoides: consensus of the European organization for research and treatment of cancer (EORTC) cutaneous lymphoma project group. J Am Acad Dermatol. 2002;47(3):364–370. doi: 10.1067/mjd.2002.123482
  • Nunes NS, Kanakry CG. Mechanisms of graft-versus-host disease prevention by post-transplantation cyclophosphamide: an evolving understanding. Front Immunol. 2019;10:2668. doi:10.3389/fimmu.2019.02668
  • Ros-Soto J, Snowden JA, Szydlo R, et al. Outcomes after donor lymphocyte infusion in patients with hematological malignancies: donor characteristics matter. Transplant Cell Ther. 2022;28(4):183.e1–.183.e8.
  • Brudno JN, Lam N, Vanasse D, et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med. 2020;26(2):270–280. doi: 10.1038/s41591-019-0737-3
  • Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncology. 2018;23(8):943–947. doi: 10.1634/theoncologist.2018-0028
  • Polgárová K, Otáhal P, Šálek C, et al. Chimeric antigen receptor based cellular therapy for treatment of T-Cell malignancies. Front Oncol. 2022;12:876758. doi: 10.3389/fonc.2022.876758
  • To V, Evtimov VJ, Jenkin G, et al. CAR-T cell development for Cutaneous T cell Lymphoma: current limitations and potential treatment strategies. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.968395
  • Sun S, Hao H, Yang G, et al. Immunotherapy with CAR-Modified T cells: toxicities and overcoming strategies. J Immunol Res. 2018;2018:2386187. doi: 10.1155/2018/2386187
  • Ruella M, Xu J, Barrett DM, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24(10):1499–1503. doi: 10.1038/s41591-018-0201-9
  • Hoppe RT, Medeiros LJ, Warnke RA, et al. CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol. 1995;32(3):448–453. doi: 10.1016/0190-9622(95)90067-5
  • Mamonkin M, Rouce RH, Tashiro H, et al. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126(8):983–992. doi: 10.1182/blood-2015-02-629527
  • Agarwal S, Hanauer JDS, Frank AM, et al. In vivo generation of CAR T cells selectively in human CD4+ lymphocytes. Mol Ther J Am Soc Gene Ther. 2020;28(8):1783–1794. doi: 10.1016/j.ymthe.2020.05.005
  • Ma G, Shen J, Pinz K, et al. Targeting T cell malignancies using CD4CAR T-Cells and implementing a natural safety switch. Stem Cell Rev Rep. 2019;15(3):443–447. doi: 10.1007/s12015-019-09876-5
  • Grover NS, Savoldo B. Challenges of driving CD30-directed CAR-T cells to the clinic. BMC Cancer. 2019;19(1):203. doi: 10.1186/s12885-019-5415-9
  • Vega F, Luthra R, Medeiros LJ, et al. Clonal heterogeneity in mycosis fungoides and its relationship to clinical course. Blood. 2002;100(9):3369–3373. doi: 10.1182/blood.V100.9.3369
  • Herling M, Khoury JD, Washington LT, et al. A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood. 2004;104(2):328–335. doi: 10.1182/blood-2004-01-0002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.