96
Views
0
CrossRef citations to date
0
Altmetric
Review

Racial and socioeconomic disparities in triple-negative breast cancer treatment

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 107-116 | Received 09 Aug 2023, Accepted 29 Feb 2024, Published online: 11 Mar 2024

References

  • Cho B, Han Y, Lian M, et al. Evaluation of racial/ethnic differences in treatment and mortality among women with triple-negative breast cancer. JAMA Oncol. 2021;7(7):1016–1023. doi: 10.1001/jamaoncol.2021.1254
  • Ramos Chaves M, Boléo-Tomé C, Monteiro-Grillo I, et al. The diversity of nutritional status in cancer: new insights. Oncology. 2010;15(5):523–530. doi: 10.1634/theoncologist.2009-0283
  • Robertson FM, Bondy M, Yang W, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–375. doi: 10.3322/caac.20082
  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi: 10.3322/caac.21763
  • Brugioni E, Cathcart-Rake E, Metsker J, et al. Germline BRCA-Mutated HER2-negative advanced breast cancer: overcoming challenges in genetic testing and clinical considerations when using talazoparib. Clin Breast Cancer. 2023;23(5):469–477. doi: 10.1016/j.clbc.2023.04.006
  • Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5–23. doi: 10.1016/j.molonc.2010.11.003
  • Fougner C, Bergholtz H, Norum JH, et al. Re-definition of claudin-low as a breast cancer phenotype. Nat Commun. 2020;11(1):1787. doi: 10.1038/s41467-020-15574-5
  • Prat A, Adamo B, Cheang MCU, et al. Molecular characterization of basal‐like and non‐basal‐like triple‐negative breast cancer. Oncology. 2013;18(2):123–133. doi: 10.1634/theoncologist.2012-0397
  • Prat A, Karginova O, Parker JS, et al. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat. 2013;142(2):237–255. doi: 10.1007/s10549-013-2743-3
  • Russnes HG, Lingjærde OC, Børresen-Dale A-L, et al. Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am J Pathol. 2017;187(10):2152–2162. doi: 10.1016/j.ajpath.2017.04.022
  • Mrklić I, Pogorelić Z, Ćapkun V, et al. Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem. 2013;115(4):344–348. doi: 10.1016/j.acthis.2012.09.006
  • Miyashita M, Ishida T, Ishida K, et al. Histopathological subclassification of triple negative breast cancer using prognostic scoring system: five variables as candidates. Virchows Arch. 2011;458(1):65–72. doi: 10.1007/s00428-010-1009-2
  • Tang P, Tse GM. Immunohistochemical surrogates for molecular classification of breast carcinoma: a 2015 update. Arch Pathol Lab Med. 2016;140(8):806–814. doi: 10.5858/arpa.2015-0133-RA
  • Bhargava R, Striebel J, Beriwal S, et al. Prevalence, morphologic features and proliferation indices of breast carcinoma molecular classes using immunohistochemical surrogate markers. Int J Clin Exp Pathol. 2009;2:444.
  • Kanapathy Pillai SK, Tay A, Nair S, et al. Triple-negative breast cancer is associated with EGFR, CK5/6 and c-KIT expression in Malaysian women. BMC Clin Pathol. 2012;12(1):1–8. doi: 10.1186/1472-6890-12-18
  • Sánchez-Muñoz A, Navarro-Perez V, Plata-Fernández Y, et al. Proliferation determined by ki-67 defines different pathologic response to neoadjuvant trastuzumab-based chemotherapy in HER2-positive breast cancer. Clin Breast Cancer. 2015;15(5):343–347. doi: 10.1016/j.clbc.2015.01.005
  • He X, Chen Z, Fu T, et al. Ki-67 is a valuable prognostic predictor of lymphoma but its utility varies in lymphoma subtypes: evidence from a systematic meta-analysis. BMC Cancer. 2014;14(1):1–13. doi: 10.1186/1471-2407-14-153
  • Salehi F, Agur A, Scheithauer BW, et al. Ki-67 in pituitary neoplasms: a review—part I. Neurosurgery. 2009;65(3):429–437. doi: 10.1227/01.NEU.0000349930.66434.82
  • Dai X, Li T, Bai Z, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5:2929.
  • Sabatier R, Finetti P, Guille A, et al. Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Mol Cancer. 2014;13(1):1–14. doi: 10.1186/1476-4598-13-228
  • Molyneux G, Geyer FC, Magnay F-A, et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell. 2010;7(3):403–417. doi: 10.1016/j.stem.2010.07.010
  • Kumar B, Prasad M, Bhat-Nakshatri P, et al. Normal breast-derived epithelial cells with luminal and intrinsic subtype-enriched gene expression document interindividual differences in their differentiation cascade. Cancer Res. 2018;78(13_Supplement):5107–5107. doi: 10.1158/1538-7445.AM2018-5107
  • Van Laere SJ, Van den Eynden GG, Van der Auwera I, et al. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat. 2006;95:243–255. doi: 10.1007/s10549-005-9015-9
  • Eroles P, Bosch A, Pérez-Fidalgo JA, et al. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38(6):698–707. doi: 10.1016/j.ctrv.2011.11.005
  • Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9:S73–S81. doi: 10.3816/CBC.2009.s.008
  • Joensuu K, Leidenius M, Kero M, et al. ER, PR, HER2, ki-67 and CK5 in early and late relapsing breast cancer—reduced CK5 expression in metastases. Breast Cancer Basic Clin Res. 2013;7:BCBCR–S10701. doi: 10.4137/BCBCR.S10701
  • Inic Z, Zegarac M, Inic M, et al. Difference between luminal a and luminal B subtypes according to ki-67, tumor size, and progesterone receptor negativity providing prognostic information. Clin Med Insights Oncol. 2014;8:CMO–S18006. doi: 10.4137/CMO.S18006
  • Pellegrino B, Hlavata Z, Migali C, et al. Luminal breast cancer: risk of recurrence and tumor-associated immune suppression. Mol Diagn Ther. 2021;25(4):409–424. doi: 10.1007/s40291-021-00525-7
  • Liu D Luminal B breast cancer: what is it? [Internet]. City Hope-Cancer Cent. 2022. Available from: https://www.cancercenter.com/cancer-types/breast-cancer/types/breast-cancer-molecular-types/luminal-b
  • Frigerio A, Sardanelli F, Podo F, et al. Radiological screening of breast cancer: evolution. Breast Cancer Innov Res Manag. Springer. 2017;171–203.
  • Aysola K, Desai A, Welch C, et al. Triple negative breast cancer–an overview. Hered Genet Curr Res. 2013;2013:1–3.
  • Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology (Williston Park). 2008;22(11):1233–9; discussion 1239–1243.
  • Penault-Llorca F, Viale G. Pathological and molecular diagnosis of triple-negative breast cancer: a clinical perspective. Ann Oncol. 2012;23:vi19–vi22. doi: 10.1093/annonc/mds190
  • Palma G, Frasci G, Chirico A, et al. Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget. 2015;6(29):26560. doi: 10.18632/oncotarget.5306
  • Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res. 2015;17(1):1–11. doi: 10.1186/s13058-015-0560-9
  • Jhan J-R, Andrechek ER. Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics. 2017;18(17):1595–1609. doi: 10.2217/pgs-2017-0117
  • Choupani E, Gomari MM, Zanganeh S, et al. Newly developed targeted therapies against the androgen receptor in triple-negative breast cancer: a review. Pharmacol Rev. 2023;75(2):309–327. doi: 10.1124/pharmrev.122.000665
  • Islam R, Lam KW. Recent progress in small molecule agents for the targeted therapy of triple-negative breast cancer. Eur J Med Chem. 2020;207:112812. doi: 10.1016/j.ejmech.2020.112812
  • Mooney SM, Talebian V, Jolly MK, et al. The GRHL2/ZEB feedback loop—a key axis in the regulation of EMT in breast cancer. J Cell Biochem. 2017;118(9):2559–2570. doi: 10.1002/jcb.25974
  • Howard FM, Olopade OI. Epidemiology of triple-negative breast cancer: a review. Cancer J. 2021;27(1):8–16. doi: 10.1097/PPO.0000000000000500
  • Thike AA, Cheok PY, Jara-Lazaro AR, et al. Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Mod Pathol. 2010;23(1):123–133. doi: 10.1038/modpathol.2009.145
  • Voutilainen S, Heikkilä P, Sampo M, et al. Expression of markers of stem cell characteristics, epithelial-mesenchymal transition, basal-like phenotype, proliferation, and androgen receptor in metaplastic breast cancer and their prognostic impact. Acta Oncol (Madr). 2021;60(9):1233–1239. doi: 10.1080/0284186X.2021.1950927
  • Pintens S, Neven P, Drijkoningen M, et al. Triple negative breast cancer: a study from the point of view of basal CK5/6 and HER-1. J Clin Pathol. 2009;62(7):624–628. doi: 10.1136/jcp.2008.061358
  • Haupt B, Ro JY, Schwartz MR. Basal-like breast carcinoma: a phenotypically distinct entity. Arch Pathol Lab Med. 2010;134(1):130–133. doi: 10.5858/134.1.130
  • Choccalingam C, Rao L, Rao S. Clinico-pathological characteristics of triple negative and non triple negative high grade breast carcinomas with and without basal marker (CK5/6 and EGFR) expression at a rural tertiary hospital in India. Breast Cancer Basic Clin Res. 2012;6:BCBCR–S8611. doi: 10.4137/BCBCR.S8611
  • Comen E, Davids M, Kirchhoff T, et al. Relative contributions of BRCA1 and BRCA2 mutations to “triple-negative” breast cancer in Ashkenazi women. Breast Cancer Res Treat. 2011;129(1):185–190. doi: 10.1007/s10549-011-1433-2
  • Muendlein A, Rohde BH, Gasser K, et al. Evaluation of BRCA1/2 mutational status among German and Austrian women with triple-negative breast cancer. J Cancer Res Clin Oncol. 2015;141(11):2005–2012. doi: 10.1007/s00432-015-1986-2
  • MD Anderson Cancer Center. Your breast cancer risk: how it’s affected by race [internet]. MD Anderson. 2019 [cited 2023 Oct 3]. Available from: https://www.mdanderson.org/publications/focused-on-health/your-breast-cancer-risk–how-it-s-affected-by-race-.h11-1592991.html
  • American Cancer Society. Breast cancer facts & figures: 2017-2018 [Internet]. 2017 [cited 2023 Oct 3]. Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf
  • Connor CS, Touijer AK, Krishnan L, et al. Local recurrence following breast conservation therapy in African-American women with invasive breast cancer. Am J Surg. 2000;179(1):22–26. doi: 10.1016/S0002-9610(99)00258-5
  • Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):524–541. doi: 10.3322/caac.21754
  • Hunter CP, Redmond CK, Chen VW, et al. Breast cancer: factors associated with stage at diagnosis in black and white women. JNCI J Natl Cancer Inst. 1993;85(14):1129–1137. doi: 10.1093/jnci/85.14.1129
  • Howlader N, Noone AM, Krapcho M. SEER cancer statistics review, 1975–2014. Bethesda, MD: National Cancer Institute; 2017 Apr. https://seer.cancer.gov/csr/1975_2014/
  • Klawiter M. The biopolitics of breast cancer: changing cultures of disease and activism. Minneapolis, Minnesota, USA: University of Minnesota Press; 2008.
  • du Terrail JO, Leopold A, Joly C, et al. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nat Med. 2023;29(1):135–146. doi: 10.1038/s41591-022-02155-w
  • Colditz GA, Bohlke K. Priorities for the primary prevention of breast cancer. CA Cancer J Clin. 2014;64(3):186–194. doi: 10.3322/caac.21225
  • Ball S, Arevalo M, Juarez E, et al. Breast cancer chemoprevention: an update on current practice and opportunities for primary care physicians. Prev Med. 2019;129:105834. doi: 10.1016/j.ypmed.2019.105834
  • Prasad V, Diener-West M, et al. Primary chemoprevention of breast cancer: are the adverse effects too burdensome? CMAJ. 2015;187(9):E276–E278. doi: 10.1503/cmaj.141627
  • Korfage IJ, Fuhrel-Forbis A, Ubel PA, et al. Informed choice about breast cancer prevention: randomized controlled trial of an online decision aid intervention. Breast Cancer Res. 2013;15(5):1–9. doi: 10.1186/bcr3468
  • Jones T, Guzman A, Silverman T, et al. Perceptions of racially and ethnically diverse women at high risk of breast cancer regarding the use of a web-based decision aid for chemoprevention: qualitative study nested within a randomized controlled trial. J Med Internet Res. 2021;23(6):e23839. doi: 10.2196/23839
  • Elledge RM, Clark GM, Chamness GC, et al. Tumor biologic factors and breast cancer prognosis among white, Hispanic, and black women in the United States. JNCI J Natl Cancer Inst. 1994;86(9):705–712. doi: 10.1093/jnci/86.9.705
  • Harlan LC, Coates RJ, Block G, et al. Estrogen receptor status and dietary intakes in breast cancer patients. Epidemiology. 1993;4(1):25–31. doi: 10.1097/00001648-199301000-00006
  • Society AC. Cancer Facts & Figures for African American/Black People 2022-2024. Atlanta: American Cancer Society, Inc.; 2022.
  • Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA. 2006;295(21):2492–2502. doi: 10.1001/jama.295.21.2492
  • Eley JW, Hill HA, Chen VW, et al. Racial differences in survival from breast cancer: results of the national cancer institute black/white cancer survival study. JAMA. 1994;272(12):947–954. doi: 10.1001/jama.1994.03520120057031
  • Optenberg SA, Thompson IM, Friedrichs P, et al. Race, treatment, and long-term survival from prostate cancer in an equal-access medical care delivery system. JAMA. 1995;274(20):1599–1605. doi: 10.1001/jama.1995.03530200035033
  • BCRF. Understanding Breast Cancer Racial Disparities [Internet]. 2023 [cited 2024 Jan 31]. Available from: https://www.bcrf.org/blog/understanding-breast-cancer-racial-disparities/
  • Van Ryn M, Burke J. The effect of patient race and socio-economic status on physicians’ perceptions of patients. Soc Sci Med. 2000;50(6):813–828. doi: 10.1016/S0277-9536(99)00338-X
  • Zhang X, Yeung KT. Metastatic Triple-Negative Breast Cancer. Curr Breast Cancer Rep. 2023;15(3):288–297. doi: 10.1007/s12609-023-00493-3
  • Andreopoulou E, Kelly CM, McDaid HM. Therapeutic advances and new directions for triple-negative breast cancer. Breast Care. 2017;12(1):20–27. doi: 10.1159/000455821
  • Aldrighetti CM, Niemierko A, Van Allen E, et al. Racial and ethnic disparities among participants in precision oncology clinical studies. JAMA Netw Open. 2021;4(11):e2133205. doi: 10.1001/jamanetworkopen.2021.33205
  • Pan J-W, Zabidi MMA, Ng P-S, et al. The molecular landscape of Asian breast cancers reveals clinically relevant population-specific differences. Nat Commun. 2020;11(1):6433. doi: 10.1038/s41467-020-20173-5
  • Serrano-Gomez SJ, Fejerman L, Zabaleta J. Breast cancer in latinas: a focus on intrinsic subtypes distribution. Cancer Epidemiol Biomarkers Prev. 2018;27(1):3–10. doi: 10.1158/1055-9965.EPI-17-0420
  • Stringer-Reasor EM, May JE, Olariu E, et al. An open-label, pilot study of veliparib and lapatinib in patients with metastatic, triple-negative breast cancer. Breast Cancer Res. 2021;23(1):1–12. doi: 10.1186/s13058-021-01408-9
  • Reeder-Hayes K, Hinton SP, Meng K, et al. Disparities in use of human epidermal growth hormone receptor 2–targeted therapy for early-stage breast cancer. J Clin Oncol. 2016;34(17):2003. doi: 10.1200/JCO.2015.65.8716
  • Yedjou CG, Sims JN, Miele L, et al. Health and racial disparity in breast cancer. Breast cancer metastasis drug resist challenges. Prog. 2019;31–49.
  • Masuda H, Harano K, Miura S, et al. Changes in triple-negative breast cancer molecular subtypes in patients without pathologic complete response after neoadjuvant systemic chemotherapy. JCO Precis Oncol. 2022;6(6):e2000368. doi: 10.1200/PO.20.00368
  • Li X, Krishnamurti U, Bhattarai S, et al. Biomarkers predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. Am J Clin Pathol. 2016;145(6):871–878. doi: 10.1093/ajcp/aqw045
  • Drisis S, Metens T, Ignatiadis M, et al. Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy. Eur Radiol. 2016;26(5):1474–1484. doi: 10.1007/s00330-015-3948-0
  • Ma SJ, Serra LM, Yu B, et al. Racial/Ethnic differences and trends in pathologic complete response following neoadjuvant chemotherapy for breast cancer. Cancers (Basel). 2022;14(3):534. doi: 10.3390/cancers14030534
  • Meng M, Wang H, Zaorsky NG, et al. Risk‐adapted stereotactic body radiation therapy for central and ultra‐central early‐stage inoperable non‐small cell lung cancer. Cancer Sci. 2019;110(11):3553–3564. doi: 10.1111/cas.14185
  • Killelea BK, Yang VQ, Wang S-Y, et al. Racial differences in the use and outcome of neoadjuvant chemotherapy for breast cancer: results from the national cancer data base. J Clin Oncol. 2015;33(36):4267–4276. doi: 10.1200/JCO.2015.63.7801
  • Warner ET, V BK, Strand C, et al. Impact of race, ethnicity, and BMI on achievement of pathologic complete response following neoadjuvant chemotherapy for breast cancer: a pooled analysis of four prospective alliance clinical trials (A151426). Breast Cancer Res Treat. 2016;159(1):109–118. doi: 10.1007/s10549-016-3918-5
  • Dawood S, Broglio K, Kau S-W, et al. Triple receptor–negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J Clin Oncol. 2009;27(2):220. doi: 10.1200/JCO.2008.17.9952
  • Chavez‐MacGregor M, Litton J, Chen H, et al. Pathologic complete response in breast cancer patients receiving anthracycline‐and taxane‐based neoadjuvant chemotherapy: evaluating the effect of race/ethnicity. Cancer. 2010;116(17):4168–4177. doi: 10.1002/cncr.25296
  • Toi M, Lee SJ, Lee ES, et al. Abstract S1-07: a phase III trial of adjuvant capecitabine in breast cancer patients with HER2-negative pathologic residual invasive disease after neoadjuvant chemotherapy (CREATE-X, JBCRG-04). Cancer Res. 2016;76(4_Supplement):S1–7. doi: 10.1158/1538-7445.SABCS15-S1-07
  • Zujewski JA, Rubinstein L. CREATE-X a role for capecitabine in early-stage breast cancer: an analysis of available data. NPJ Breast Cancer. 2017;3(1):27. doi: 10.1038/s41523-017-0029-3
  • Nandini D, Jennifer A, Pradip D. Therapeutic strategies for metastatic triple-negative breast cancers: from negative to positive. Pharmaceuticals. 2021;14(5):455. doi: 10.3390/ph14050455
  • Pilié PG, Gay CM, Byers LA, et al. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. 2019;25(13):3759–3771. doi: 10.1158/1078-0432.CCR-18-0968
  • Tarantino P, Corti C, Schmid P, et al. Immunotherapy for early triple negative breast cancer: research agenda for the next decade. NPJ Breast Cancer. 2022;8(1):23. doi: 10.1038/s41523-022-00386-1
  • Schmid P, Salgado R, Park YH, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol. 2020;31(5):569–581. doi: 10.1016/j.annonc.2020.01.072
  • Adams E, Wildiers H, Neven P, et al. Sacituzumab govitecan and trastuzumab deruxtecan: two new antibody–drug conjugates in the breast cancer treatment landscape. ESMO Open. 2021;6(4):100204. doi: 10.1016/j.esmoop.2021.100204
  • Goldenberg DM, Sharkey RM. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin Biol Ther. 2020;20(8):871–885. doi: 10.1080/14712598.2020.1757067
  • Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–690. doi: 10.1038/nrclinonc.2016.66
  • Deng M, Chen H, Zhu X, et al. Prevalence and clinical outcomes of germline mutations in BRCA1/2 and PALB2 genes in 2769 unselected breast cancer patients in China. Int J Cancer. 2019;145(6):1517–1528. doi: 10.1002/ijc.32184
  • Engel C, Rhiem K, Hahnen E, et al. Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history. BMC Cancer. 2018;18(1):1–6. doi: 10.1186/s12885-018-4029-y
  • Latif F, Bint Abdul Jabbar H, Malik H, et al. Atezolizumab and pembrolizumab in triple-negative breast cancer: a meta-analysis. Expert Rev Anticancer Ther. 2022;22(2):229–235. doi: 10.1080/14737140.2022.2023011
  • Clegg LX, Li FP, Hankey BF, et al. Cancer survival among US whites and minorities: a SEER (surveillance, epidemiology, and end results) program population-based study. Arch Intern Med. 2002;162(17):1985–1993. doi: 10.1001/archinte.162.17.1985
  • Compton MT, Shim RS. The social determinants of mental health. Focus (Madison). 2015;13(4):419–425. doi: 10.1176/appi.focus.20150017
  • Alhusen JL, Bower KM, Epstein E, et al. Racial discrimination and adverse birth outcomes: an integrative review. J Midwifery Womens Health. 2016;61(6):707–720. doi: 10.1111/jmwh.12490
  • Zhang W, Bai Y, Sun C, et al. Racial and regional disparities of triple negative breast cancer incidence rates in the United States: an analysis of 2011–2019 NPCR and SEER incidence data. Front Public Health. 2022;10:1058722. doi: 10.3389/fpubh.2022.1058722
  • Benefield HC, Reeder-Hayes KE, Nichols HB, et al. Outcomes of hormone-receptor positive, HER2-negative breast cancers by race and tumor biological features. JNCI Cancer Spectr. 2021;5(1):kaa072. doi: 10.1093/jncics/pkaa072
  • Wang F, Zheng W, Bailey CE, et al. Racial/Ethnic disparities in all-cause mortality among patients diagnosed with triple-negative breast cancer. Cancer Res. 2021;81(4):1163–1170. doi: 10.1158/0008-5472.CAN-20-3094
  • Goel N, Kim DY, Guo JA, et al. Racial differences in genomic profiles of breast cancer. JAMA Netw Open. 2022;5(3):e220573. doi: 10.1001/jamanetworkopen.2022.0573
  • Cohen SY, Stoll CR, Anandarajah A, et al. Modifiable risk factors in women at high risk of breast cancer: a systematic review. Breast Cancer Res. 2023;25(1):1–20. doi: 10.1186/s13058-023-01636-1
  • Stern MC, Fejerman L, Das R, et al. Variability in cancer risk and outcomes within US latinos by national origin and genetic ancestry. Curr Epidemiol Reports. 2016;3(3):181–190. doi: 10.1007/s40471-016-0083-7
  • Soto AA, Bernal AM, Mesias JA. Abstract P4-03-06: clinical and socioeconomic disparities in treatment and survival between Hispanic and non-Hispanic Black women with non-metastatic triple-negative breast cancer. Cancer Res. 2023;83(5_Supplement):4–3. doi: 10.1158/1538-7445.SABCS22-P4-03-06
  • Hossain F, Danos D, Prakash O, et al. Neighborhood social determinants of triple negative breast cancer. Front Public Health. 2019;7:18. doi: 10.3389/fpubh.2019.00018
  • Wynn TA, Taylor-Jones MM, Johnson RE, et al. Using community-based participatory approaches to mobilize communities for policy change. Fam Community Heal. 2011;34(Supplement S1):S102–S114. doi: 10.1097/FCH.0b013e318202ee72
  • AACR. Overcoming disparities through policy | AACR cancer disparities progress report 2020 [internet]. [cited 2023 Aug 9]. Available from: https://cancerprogressreport.aacr.org/disparities/chd20-contents/chd20-overcoming-cancer-health-disparities-through-science-based-public-policy/
  • NCI launches largest-ever study of breast cancer genetics in black women - NCI [Internet]. [cited 2023 Aug 9]. Available from: https://www.cancer.gov/news-events/press-releases/2016/breast-cancer-genetics-black-women
  • National Breast and Cervical Cancer Early Detection Program | CDC [Internet]. [cited 2023 Aug 9]. Available from: https://www.cdc.gov/cancer/nbccedp/index.htm
  • All of us research program | National Institutes of Health (NIH) [Internet]. [cited 2023 Aug 9]. Available from: https://allofus.nih.gov/
  • Status of state Medicaid expansion decisions: interactive map | KFF [Internet]. [cited 2023 Aug 9]. Available from: https://www.kff.org/medicaid/issue-brief/status-of-state-medicaid-expansion-decisions-interactive-map/
  • System-wide changes can help reduce cancer disparities - NCI [Internet]. [cited 2023 Aug 9]. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2021/black-white-cancer-disparities-survival-accure
  • Vives N, Farre A, Ibanez-Sanz G, et al. Text messaging as a tool to improve cancer screening programs (M-TICS study): a randomized controlled trial protocol. PLoS One. 2021;16(1):e0245806. doi: 10.1371/journal.pone.0245806
  • Schliemann D, Tan MM, Hoe WMK, et al. mHealth interventions to improve cancer screening and early detection: scoping review of reviews. J Med Internet Res. 2022;24(8):e36316. doi: 10.2196/36316

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.