91
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: a systematic review

, , , &
Pages 263-282 | Received 01 Nov 2023, Accepted 26 Mar 2024, Published online: 02 Apr 2024

References

  • Sankaranarayanan R, Ferlay J. Worldwide burden of gynecological cancer. Handb dis burdens qual life Meas. New york: Springer; 2010. p. 803–823.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  • Hull R, Mbele M, Makhafola T, et al. Cervical cancer in low and middle‑income countries (review). Oncol Lett. 2020;20(3):2058. doi: 10.3892/ol.2020.11754
  • Guimarães YM, Godoy LR, Longatto-Filho A, et al. Management of early-stage cervical cancer: a literature review. Cancers (Basel). 2022;14(3):575. doi: 10.3390/cancers14030575
  • Landoni F, Maneo A, Cormio G, et al. Class II versus class III radical hysterectomy in stage IB–IIA cervical cancer: a prospective randomized study. Gynecol Oncol. 2001;80(1):3–12. doi: 10.1006/gyno.2000.6010
  • Shrivastava S, Mahantshetty U, Engineer R, et al. Cisplatin chemoradiotherapy vs radiotherapy in FIGO stage IIIB squamous cell carcinoma of the uterine cervix: a randomized clinical trial. JAMA Oncol. 2018;4(4):506–513. doi: 10.1001/jamaoncol.2017.5179
  • Fachini AMD, Zuliani AC, Sarian LO, et al. Long-term outcomes of concomitant cisplatin plus radiotherapy versus radiotherapy alone in patients with stage IIIB squamous cervical cancer: a randomized controlled trial. Gynecol Oncol. 2021;160(2):379–383. doi: 10.1016/j.ygyno.2020.11.029
  • Chopra S, Mangaj A, Sharma A, et al. Management of oligo-metastatic and oligo-recurrent cervical cancer: a pattern of care survey within the EMBRACE research network. Radiother Oncol. 2021;155:151–159. doi: 10.1016/j.radonc.2020.10.037
  • Pang SS, Murphy M, Markham MJ. Current management of locally advanced and metastatic cervical cancer in the United States. JCO Oncol Pract. 2022;18(6):417–422. doi: 10.1200/OP.21.00795
  • Gadducci A, Sartori E, Maggino T, et al. The clinical outcome of patients with stage Ia1 and Ia2 squamous cell carcinoma of the uterine cervix: a cooperation task force (CTF) study. Eur J Gynaecol Oncol. 2003;6(24):513–516.
  • D’Augè TG, Giannini A, Bogani G, et al. Prevention, screening, treatment and follow-up of gynecological cancers: state of art and future perspectives. Clin Exp Obstet Gynecol. 2023;50(8):160. doi: 10.31083/j.ceog5008160
  • D’oria O, Corrado G, Laganà AS, et al. New advances in cervical cancer: from bench to bedside. Int J Environ Res Public Health. 2022;19(12):7094. doi: 10.3390/ijerph19127094
  • Rose PG, Bundy BN, Watkins EB, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340(15):1144–1153. doi: 10.1056/NEJM199904153401502
  • Keys HM, Bundy BN, Stehman FB, et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med. 1999;340(15):1154–1161. doi: 10.1056/NEJM199904153401503
  • Tewari KS, Sill MW, Long HJ, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–743. doi: 10.1056/NEJMoa1309748
  • Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N Engl J Med. 2021;385(20):1856–1867. doi: 10.1056/NEJMoa2112435
  • Coleman RL, Lorusso D, Gennigens C, et al. Efficacy and safety of tisotumabvedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22(5):609–619. doi: 10.1016/S1470-2045(21)00056-5
  • Vistad I, Fosså SD, Dahl AA. A critical review of patient-rated quality of life studies of long-term survivors of cervical cancer. Gynecol Oncol. 2006;102(3):563–572. doi: 10.1016/j.ygyno.2006.03.050
  • Mishra N, Singh N, Sachdeva M, et al. Sexual dysfunction in cervical cancer survivors: a scoping review. Womens Health Rep (New Rochelle, NY). 2021;2(1):594–607. doi: 10.1089/whr.2021.0035
  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–726. doi: 10.1038/nrc3599
  • Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther. 2010;7(2):61–75. doi: 10.1016/j.pdpdt.2010.02.001
  • Aniogo EC, PlackalAdimuriyil George B, Abrahamse H. The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int. 2019;19(1):91. doi: 10.1186/s12935-019-0815-0
  • Aniogo EC, George BPA, Abrahamse H. Phthalocyanine induced phototherapy coupled with doxorubicin; a promising novel treatment for breast cancer. Expert Rev Anticancer Ther. 2017;17(8):693–702. doi: 10.1080/14737140.2017.1347505
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281. doi: 10.3322/caac.20114
  • Sobhani N, Samadani AA. Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically. J Egypt Natl Canc Inst. 2021;33(1):34. doi: 10.1186/s43046-021-00093-1
  • Hameed S, Bhattarai P, Liang X, et al. Self-assembly of porphyrin-grafted lipid into nanoparticles encapsulating doxorubicin for synergistic chemo-photodynamic therapy and fluorescence imaging. Theranostics. 2018;8(19):5501–5518. doi: 10.7150/thno.27721
  • Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present and future. Chem Rec. 2017;17(8):775–802. doi: 10.1002/tcr.201600121
  • Mehta G, Muthusamy S, Maiya BG, et al. Porphyrin–cholic acid–chlorambucil triads: synthesis and light-induced nuclease activity. J Chem Soc Perkin Trans. 1996;(20):2421–2423. doi: 10.1039/P19960002421
  • El-Hussein A, Manoto SL, Ombinda-Lemboumba S, et al. A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer Agents Med Chem. 2021;21(2):149–161. doi: 10.2174/18715206MTA1uNjQp3
  • Crescenzi E, Chiaviello A, Canti G, et al. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non–small cell lung cancer cells (H1299). Mol Cancer Ther. 2006;5(3):776–785. doi: 10.1158/1535-7163.MCT-05-0425
  • Chen YS, Peng YB, Yao M, et al. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth. Biochem Biophys Res Commun. 2017;487(3):567–572. doi: 10.1016/j.bbrc.2017.04.089
  • Kimura M, Miyajima K, Kojika M, et al. Photodynamic therapy (PDT) with chemotherapy for advanced lung cancer with airway stenosis. Int J Mol Sci. 2015;16(10):25466–25475. doi: 10.3390/ijms161025466
  • Canti G, Nicolin A, Cubeddu R, et al. Antitumor efficacy of the combination of photodynamic therapy and chemotherapy in murine tumors. Cancer Lett. 1998;125(1–2):39–44. doi: 10.1016/S0304-3835(97)00502-8
  • Wentrup R, Winkelmann N, Mitroshkin A, et al. Photodynamic therapy plus chemotherapy compared with photodynamic therapy alone in Hilar Nonresectable Cholangiocarcinoma. Gut Liver. 2016;10(3):470–475. doi: 10.5009/gnl15175
  • Crescenzi E, Varriale L, Iovino M, et al. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol Cancer Ther. 2004;3(5):537–544. doi: 10.1158/1535-7163.537.3.5
  • Khdair A, Chen D, Patil Y, et al. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release. 2010;141(2):137–144. doi: 10.1016/j.jconrel.2009.09.004
  • Cabral ÁS, Leonel ECR, Candido NM, et al. Combined photodynamic therapy with chloroaluminum phthalocyanine and doxorubicin nanoemulsions in breast cancer model. J Photochem Photobiol B Biol. 2021;218:112181. doi: 10.1016/j.jphotobiol.2021.112181
  • Zhen S, Yi X, Zhao Z, et al. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials. 2019;218:119330. doi: 10.1016/j.biomaterials.2019.119330
  • Pan Q, Tian J, Zhu H, et al. Tumor-targeting polycaprolactone nanoparticles with codelivery of paclitaxel and IR780 for combinational therapy of drug-resistant ovarian cancer. ACS Biomater Sci Eng. 2020;6(4):2175–2185. doi: 10.1021/acsbiomaterials.0c00163
  • Wang X, Meng G, Zhang S, et al. A reactive 1O2 - responsive combined treatment system of photodynamic and chemotherapy for cancer. Sci Rep. 2016;6(1):1–9. doi: 10.1038/srep29911
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71
  • Carobeli LR, Santos ABC, Martins LBM, et al. Photodynamic therapy combined with chemotherapy for treatment of cervical cancer: a protocol for systematic review [Internet]. 2023 [cited 2024 Feb 7]. Available from: https://osf.io/wphn5
  • Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):1–10. doi: 10.1186/s13643-016-0384-4
  • Faggion CM. Guidelines for reporting pre-clinical in vitro studies on dental materials. J Evid Based Dent Pract. 2012;12(4):182–189. doi: 10.1016/j.jebdp.2012.10.001
  • Hooijmans CR, Rovers MM, De Vries RBM, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):43. doi: 10.1186/1471-2288-14-43
  • McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12(1):55–61. doi: 10.1002/jrsm.1411
  • Deng X, Chen Y, Cheng Z, et al. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale. 2016;8(12):6837–6850. doi: 10.1039/C5NR08253F
  • Habiba K, Encarnacion-Rosado J, Garcia-Pabon K, et al. Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites. Int J Nanomedicine. 2015;11:107–119. doi: 10.2147/IJN.S95440
  • Bano S, Nazir S, Munir S, et al. “Smart” nickel oxide based core-shell nanoparticles for combined chemo and photodynamic cancer therapy. Int J Nanomedicine. 2016;11:3159–3366. doi: 10.2147/IJN.S106533
  • Liu B, Li C, Chen G, et al. Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/Chemotherapy triggered by 808 nm laser. Adv Sci. 2017;4(8):1600540. doi: 10.1002/advs.201600540
  • Yao X, Chen XX, He C, et al. Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and photodynamic therapy. J Mater Chem B. 2015;3(23):4707–4714. doi: 10.1039/C5TB00256G
  • Pei Q, Hu X, Zheng X, et al. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano. 2018;12(2):1630–1641. doi: 10.1021/acsnano.7b08219
  • Liu LH, Qiu WX, Li B, et al. A red light activatable multifunctional prodrug for image-guided photodynamic therapy and cascaded chemotherapy. Adv Funct Mater. 2016;26(34):6257–6269. doi: 10.1002/adfm.201602541
  • Liu L, Wang R, Wang C, et al. Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy. Biomater Sci. 2018;6(5):997–1001. doi: 10.1039/C7BM01114H
  • Fan W, Shen B, Bu W, et al. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials. 2014;35(32):8992–9002. doi: 10.1016/j.biomaterials.2014.07.024
  • Zheng T, Wang W, Wu F, et al. Zwitterionic polymer-gated Au@TiO2 core-shell nanoparticles for imaging-guided combined cancer therapy. Theranostics. 2019;9(17):5035–5048. doi: 10.7150/thno.35418
  • Zhang T, Fu L, Zheng X, et al. Two-photon excited organic nanoparticles for chemo-photodynamic therapy. Dye Pigment. 2019;167:195–203. doi: 10.1016/j.dyepig.2019.04.038
  • De Freitas LM, Soares CP, Fontana CR. Synergistic effect of photodynamic therapy and cisplatin: a novel approach for cervical cancer. J Photochem Photobiol B Biol. 2014;140:365–373. doi: 10.1016/j.jphotobiol.2014.08.021
  • Wei XQ, Ma HQ, Liu AH, et al. Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on hela cells. Asian Pac J Cancer Prev. 2013;14(5):3023–3028. doi: 10.7314/APJCP.2013.14.5.3023
  • Cao W, Zeng XX, Liu G, et al. Porphine functionalized nanoparticles of star-shaped poly(ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 1000 succinate biodegradable copolymer for chemophotodynamic therapy on cervical cancer. Acta Biomater. 2015;26:145–148. doi: 10.1016/j.actbio.2015.08.016
  • de Freitas LM, Serafim RB, de Sousa JF, et al. Photodynamic therapy combined to cisplatin potentiates cell death responses of cervical cancer cells. BMC Cancer. 2017;17:1–12.
  • Vivero-Escoto JL, Elnagheeb M. Mesoporous silica nanoparticles loaded with cisplatin and phthalocyanine for combination chemotherapy and photodynamic therapy in vitro. Nanomaterials. 2015;5(4):2302–2316. doi: 10.3390/nano5042302
  • Dong J, Zhang Y, Guo P, et al. Gqds/hMSN nanoplatform: singlet oxygen generation for photodynamic therapy. J Drug Deliv Sci Technol. 2021;61:102127. doi: 10.1016/j.jddst.2020.102127
  • Zhang HX, Lin HH, Su D, et al. Enzyme-activated multifunctional prodrug combining site-specific chemotherapy with light-triggered photodynamic therapy. Mol Pharm. 2022;19(2):630–641. doi: 10.1021/acs.molpharmaceut.1c00761
  • Wang T, Zhu D, Liu G, et al. DTX-loaded star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and photodynamic combination therapy. RSC Adv. 2015;5(62):50617–50627. doi: 10.1039/C5RA09042C
  • Li N, Xiang MH, Liu JW, et al. DNA polymer nanoparticles programmed via Supersandwich Hybridization for Imaging and therapy of cancer cells. Anal Chem. 2018;90(21):12951–12958. doi: 10.1021/acs.analchem.8b03253
  • Benito-Miguel M, Blanco MD, Gómez C. Assessment of sequential combination of 5-fluorouracil-loaded-chitosan-nanoparticles and ALA-photodynamic therapy on HeLa cell line. Photodiagnosis Photodyn Ther. 2015;12(3):466–475. doi: 10.1016/j.pdpdt.2015.05.001
  • Fang J, Wang Q, Yang G, et al. Albumin-MnO2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma. Colloids Surf B Biointerfaces. 2019;179:250–259.
  • Dong C, Liu Z, Wang S, et al. A protein–polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy. ACS Appl Mater Interfaces. 2016;8(48):32688–32698. doi: 10.1021/acsami.6b11803.
  • Floyd J, Mirza I, Sachs B, et al. Hepatotoxicity of chemotherapy. Semin Oncol. 2006;33(1):50–67. doi: 10.1053/j.seminoncol.2005.11.002
  • Han C, Zhang CC, Ma T, et al. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater. 2018;77:268–281. doi: 10.1016/j.actbio.2018.07.018
  • Fu D, Calvo JA, Samson LD. SERIES: genomic instability in cancer balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 2012;12:104. doi: 10.1038/nrc3185
  • Puyo S, Montaudon D, Pourquier P. From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol. 2014;89(1):43–61. doi: 10.1016/j.critrevonc.2013.07.006
  • Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925. doi: 10.1016/j.bioorg.2019.102925
  • Kirveliene V, Grazeliene G, Dabkeviciene D, et al. Schedule-dependent interaction between doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and in vivo. Cancer Chemother Pharmacol. 2006;57(1):65–72. doi: 10.1007/s00280-005-0006-7
  • Zimmermann A, Walt H, Haller U, et al. Effects of chlorin-mediated photodynamic therapy combined with fluoropyrimidines in vitro and in a patient. Cancer Chemother Pharmacol. 2003;51(2):147–154. doi: 10.1007/s00280-002-0549-9
  • Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025
  • de Brito RV, Mancini MW, Palumbo MDN, et al. The rationale for “laser-induced thermal therapy (LITT) and intratumoral cisplatin” approach for cancer treatment. Int J Mol Sci. 2022;23(11):5934. doi: 10.3390/ijms23115934
  • Dowdy SC, Boardman CH, Wilson TO, et al. Multimodal therapy including neoadjuvant methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) for stage IIB to IV cervical cancer. Am J Obstet Gynecol. 2002;186(6):1167–1173. doi: 10.1067/mob.2002.123820
  • Ge R, Ahn JC, Shin JI, et al. An in vitro and in vivo study of combination therapy with Photogem®-mediated photodynamic therapy and cisplatin on mouse cancer cells (CT-26). Photomed Laser Surg. 2011;29(3):155–160. doi: 10.1089/pho.2009.2750
  • Saris CP, Van de Vaart PJM, Rietbroek RC, et al. In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis. 1996;17(12):2763–2769. doi: 10.1093/carcin/17.12.2763
  • Aghajanzadeh M, Zamani M, Kouchi FR, et al. Synergic antitumor effect of photodynamic therapy and chemotherapy mediated by nano drug delivery systems. Pharmaceutics. 2022;14(2):322. doi: 10.3390/pharmaceutics14020322
  • Mariño-Ocampo N, Dibona-Villanueva L, Escobar-Álvarez E, et al. Recent photosensitizer developments, delivery strategies and combination-based approaches for photodynamic therapy †. Photochem Photobiol. 2023;99(2):469–497. doi: 10.1111/php.13749
  • Jain R, Mohanty S, Sarode I, et al. Multifunctional photoactive nanomaterials for photodynamic therapy against tumor: recent advancements and perspectives. Pharmaceutics. 2023;15(1):109. doi: 10.3390/pharmaceutics15010109
  • Edis Z, Wang J, Waqas MK, et al. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomedicine. 2021;16:1313–1330. doi: 10.2147/IJN.S289443
  • Teplensky MH, Fantham M, Li P, et al. Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J Am Chem Soc. 2017;139(22):7522–7532. doi: 10.1021/jacs.7b01451
  • Lajunen T, Kontturi LS, Viitala L, et al. Indocyanine green-loaded liposomes for light-triggered drug release. Mol Pharm. 2016;13(6):2095–2107. doi: 10.1021/acs.molpharmaceut.6b00207
  • Wang H, Gauthier M, Kelly JR, et al. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angew Chem Int Ed Engl. 2016;55(18):5452–5456. doi: 10.1002/anie.201509601
  • Awino JK, Gudipati S, Hartmann AK, et al. Nucleic Acid Nanocapsules for Enzyme-Triggered Drug Release. J Am Chem Soc. 2017;139(18):6278–6281. doi: 10.1021/jacs.6b13087
  • Yang H, Wang Q, Huang S, et al. Smart pH/Redox dual-responsive nanogels for on-demand intracellular anticancer drug release. ACS Appl Mater Interfaces. 2016;8(12):7729–7738. doi: 10.1021/acsami.6b01602
  • Couleaud P, Morosini V, Frochot C, et al. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale. 2010;2(7):1083–1095. doi: 10.1039/c0nr00096e
  • Vivero-Escoto JL, Slowing II, Lin VSY, et al. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6(18):1952–1967. doi: 10.1002/smll.200901789
  • Postiglione I, Chiaviello A, Palumbo G. Enhancing photodynamyc therapy efficacy by combination therapy: dated, Current and oncoming strategies. Cancers (Basel). 2011;3(2):2597–2629. doi: 10.3390/cancers3022597
  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10(4):853–858. doi: 10.4103/0973-1482.139267
  • Batlle AM. Porphyrins, porphyrias, cancer and photodynamic therapy – a model for carcinogenesis. J Photochem Photobiol B. 1993;20(1):5–22. doi: 10.1016/1011-1344(93)80127-U
  • Imran M, Ramzan M, Qureshi AK, et al. Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors (Basel). 2018;8(4):95. doi: 10.3390/bios8040095
  • Ge J, Lan M, Zhou B, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5(1):1–8. doi: 10.1038/ncomms5596
  • Zhao X, Yang L, Li X, et al. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug. Bioconjug Chem. 2015;26(1):128–136. doi: 10.1021/bc5005137
  • Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev. 2009;109(7):2859. doi: 10.1021/cr900208x
  • Walko CM, Lindley C. Capecitabine: A review. Clin Ther. 2005;27(1):23–44. doi: 10.1016/j.clinthera.2005.01.005
  • LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Topoisomerase Inhibitors. [Updated 2020 Sep 12;cited 2024 Feb 07]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548372/
  • Liang X, Wu Q, Luan S, et al. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem. 2019;171:129–168. doi: 10.1016/j.ejmech.2019.03.034
  • Pratt SE, Durland-Busbice S, Shepard RL, et al. Human carboxylesterase-2 hydrolyzes the prodrug of gemcitabine (LY2334737) and confers prodrug sensitivity to cancer cells. Clin Cancer Res. 2013;19(5):1159–1168. doi: 10.1158/1078-0432.CCR-12-1184
  • Göksel M, Durmuş M, Biyiklioglu Z. Synthesis and photodynamic activities of novel silicon(IV) phthalocyanines axially substituted with water soluble groups against HeLa cancer cell line. Dalton Trans. 2021;50(7):2570–2584. doi: 10.1039/D0DT03858J
  • Avdoshina DV, Kondrashova AS, Belikova MG, et al. Murine models of chronic viral infections and associated cancers. Mol Biol. 2022;56:649. doi: 10.1134/S0026893322050028
  • Hu K, Wang W, Liu X, et al. Comparison of treatment outcomes between squamous cell carcinoma and adenocarcinoma of cervix after definitive radiotherapy or concurrent chemoradiotherapy. Radiat Oncol. 2018;13(1):1–7. doi: 10.1186/s13014-018-1197-5
  • Xie X, Song K, Cui B, et al. A comparison of the prognosis between adenocarcinoma and squamous cell carcinoma in stage IB–IIA cervical cancer. Int J Clin Oncol. 2018;23(3):522–531. doi: 10.1007/s10147-017-1225-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.