1,175
Views
5
CrossRef citations to date
0
Altmetric
Review

Selecting heart failure patients for metabolic interventions

, , , &
Pages 141-152 | Received 23 Aug 2016, Accepted 28 Nov 2016, Published online: 28 Dec 2016

References

  • Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.
  • Udelson JE, Stevenson LW. The future of heart failure diagnosis, therapy, and management. Circulation. 2016;133:2671–2686.
  • Mozaffarian D, Benjamin EJ, Go AS, et al. Executive summary: heart disease and stroke statistics–2016 update: a report from the American heart association. Circulation. 2016;133:447–454.
  • McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.
  • Gheorghiade M, Larson CJ, Shah SJ, et al. Developing new treatments for heart failure: focus on the heart. Circ Heart Fail. 2016;9:e002727.
  • Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.
  • Westenbrink BD, Edwards AG, McCulloch AD, et al. The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opin Ther Targets. 2013;17:889–903.
  • Mudd JO, Kass DA. Tackling heart failure in the twenty-first century. Nature. 2008;451:919–928.
  • Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet Lond Engl. 2011;378:704–712.
  • Westenbrink BD, Ling H, Divakaruni AS, et al. Mitochondrial reprogramming induced by CaMKIIδ mediates hypertrophy decompensation. Circ Res. 2015;116:e28–e39.
  • Neubauer S. The failing heart–an engine out of fuel. N Engl J Med. 2007;356:1140–1151.
  • Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res. 1998;37:279–289.
  • Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet Lond Engl. 2016;387:1178–1186.
  • Herrmann G, Decherd G. The chemical nature of heart failure. Ann Intern Med. 1939;12:1233–1244.
  • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–1129.
  • Ardehali H, Sabbah HN, Burke MA, et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail. 2012;14:120–129.
  • Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64:1388–1400.
  • Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev. 2015;20:227–249.
  • Sorokina N, O’Donnell JM, McKinney RD, et al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation. 2007;115:2033–2041.
  • Schroeder MA, Lau AZ, Chen AP, et al. Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail. 2013;15:130–140.
  • Alexander D, Lombardi R, Rodriguez G, et al. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur J Clin Invest. 2011;41:527–538.
  • Fillmore N, Lopaschuk GD. Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta. 2013;1833:857–865.
  • Kim J, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–185.
  • Aubert G, Martin OJ, Horton JL, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133:698–705.
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–495.
  • Kohlhaas M, Maack C. Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure. Trends Cardiovasc Med. 2011;21:69–73.
  • Ide T, Tsutsui H, Hayashidani S, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88:529–535.
  • Galougahi KK, Liu -C-C, Gentile C, et al. Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction. J Am Heart Assoc. 2014;3:e000731.
  • Lijnen PJ, van Pelt JF, Fagard RH. Downregulation of manganese superoxide dismutase by angiotensin II in cardiac fibroblasts of rats: association with oxidative stress in myocardium. Am J Hypertens. 2010;23:1128–1135.
  • Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta. 2010;1797:897–906.
  • Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–271.
  • Casademont J, Miró O. Electron transport chain defects in heart failure. Heart Fail Rev. 2002;7:131–139.
  • Aimo A, Borrelli C, Vergaro G, et al. Targeting mitochondrial dysfunction in chronic heart failure: current evidence and potential approaches. Curr Pharm Des. 2016 ;22:4807-4822.
  • Joiner M-LA, Koval OM, Li J, et al. CaMKII determines mitochondrial stress responses in heart. Nature. 2012;491:269–273.
  • Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–255.
  • Dai D-F, Chen T, Szeto H, et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011;58:73–82.
  • Yancey DM, Guichard JL, Ahmed MI, et al. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physiol. 2015;308:H651–H663.
  • Long Q, Yang K, Yang Q. Regulation of mitochondrial ATP synthase in cardiac pathophysiology. Am J Cardiovasc Dis. 2015;5:19–32.
  • García-Bermúdez J, Sánchez-Aragó M, Soldevilla B, et al. PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its capacity to bind and inhibit the mitochondrial H(+)-ATP synthase. Cell Rep. 2015;12:2143–2155.
  • Wang S-B, Murray CI, Chung HS, et al. Redox regulation of mitochondrial ATP synthase. Trends Cardiovasc Med. 2013;23:14–18.
  • Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–1274.
  • Carley AN, Taegtmeyer H, Lewandowski ED. Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Circ Res. 2014;114:717–729.
  • Cornelissen VA, Defoor JGM, Stevens A, et al. Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: a randomized controlled trial. Clin Rehabil. 2010;24:988–999.
  • Carvalho APPF, Rassi S, Fontana KE, et al. Influence of creatine supplementation on the functional capacity of patients with heart failure. Arq Bras Cardiol. 2012;99:623–629.
  • Lygate CA, Aksentijevic D, Dawson D, et al. Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res. 2013;112:945–955.
  • Aquilani R, Opasich C, Gualco A, et al. Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur J Heart Fail. 2008;10:1127–1135.
  • Ahmad T, Kelly JP, McGarrah RW, et al. Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol. 2016;67:291–299.
  • Hunter WG, Kelly JP, McGarrah RW, et al. Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc. 2016;5:e003190.
  • Obrzut S, Tiongson J, Jamshidi N, et al. Assessment of metabolic phenotypes in patients with non-ischemic dilated cardiomyopathy undergoing cardiac resynchronization therapy. J Cardiovasc Transl Res. 2010;3:643–651.
  • Ho E, Karimi Galougahi K, Liu -C-C, et al. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013;1:483–491.
  • Tang WHW, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64:1908–1914.
  • Roul D, Recchia FA. Metabolic alterations induce oxidative stress in diabetic and failing hearts: different pathways, same outcome. Antioxid Redox Signal. 2015;22:1502–1514.
  • Sun A, Zou Y, Wang P, et al. Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc. 2014;3:e000779.
  • Landar A, Zmijewski JW, Dickinson DA, et al. Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. Am J Physiol Heart Circ Physiol. 2006;290:H1777–87.
  • Srivastava S, Chandrasekar B, Bhatnagar A, et al. Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase. Am J Physiol Heart Circ Physiol. 2002;283:H2612–9.
  • Salonen JT, Nyyssönen K, Salonen R, et al. Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation. 1997;95:840–845.
  • Banne AF, Amiri A, Pero RW. Reduced level of serum thiols in patients with a diagnosis of active disease. J Anti-Aging Med. 2003;6:327–334.
  • Chung HS, Wang S-B, Venkatraman V, et al. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res. 2013;112:382–392.
  • Patel RS, Ghasemzadeh N, Eapen DJ, et al. Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation. 2016;133:361–369.
  • Turell L, Radi R, Alvarez B. The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med. 2013;65:244–253.
  • Belch JJ, Bridges AB, Scott N, et al. Oxygen free radicals and congestive heart failure. Br Heart J. 1991;65:245–248.
  • Kundi H, Ates I, Kiziltunc E, et al. A novel oxidative stress marker in acute myocardial infarction; thiol/disulphide homeostasis. Am J Emerg Med. 2015;33:1567–1571.
  • Go Y-M, Jones DP. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med. 2011;50:495–509.
  • Koning AM, Meijers WC, Pasch A, et al. Serum free thiols in chronic heart failure. Pharmacol Res. 2016;111:452–458.
  • Massion PB, Feron O, Dessy C, et al. Nitric oxide and cardiac function: ten years after, and continuing. Circ Res. 2003;93:388–398.
  • Silberman GA, Fan T-HM, Liu H, et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation. 2010;121:519–528.
  • Figueira TR, Barros MH, Camargo AA, et al. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal. 2013;18:2029–2074.
  • Winlaw DS, Smythe GA, Keogh AM, et al. Increased nitric oxide production in heart failure. Lancet Lond Engl. 1994;344:373–374.
  • Osorio JC, Xu X, Vogel T, et al. Plasma nitrate accumulation during the development of pacing-induced dilated cardiac myopathy in conscious dogs is due to renal impairment. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2001;5:7–17.
  • Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res. 2014;114:730–737.
  • Parenica J, Kala P, Pavkova MG, et al. Natriuretic peptides, nitrite/nitrate and superoxide dismutase have additional value on top of the GRACE score in prediction of one-year mortality and rehospitalisation for heart failure in STEMI patients - Multiple biomarkers prospective cohort study. Int J Cardiol. 2016;211:96–104.
  • van den Berg E, Pasch A, Westendorp WH, et al. Urinary sulfur metabolites associate with a favorable cardiovascular risk profile and survival benefit in renal transplant recipients. J Am Soc Nephrol JASN. 2014;25(6):1303–1312.
  • Papadimitriou L, Smith-Jones PM, Sarwar CMS, et al. Utility of positron emission tomography for drug development for heart failure. Am Heart J. 2016;175:142–152.
  • Nakatani K, Watabe T, Masuda D, et al. Myocardial energy provision is preserved by increased utilization of glucose and ketone bodies in CD36 knockout mice. Metabolism. 2015;64:1165–1174.
  • Cannon MV, Silljé HHW, Sijbesma JWA, et al. Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization. EMBO Mol Med. 2015;7:1229–1243.
  • Dávila-Román VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40:271–277.
  • Slart RHJA, Tio RA, van der Vleuten PA, et al. Myocardial perfusion reserve and contractile pattern after beta-blocker therapy in patients with idiopathic dilated cardiomyopathy. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2010;17:479–485.
  • Nielsen R, Jorsal A, Iversen P, et al. Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2016. DOI: 10.1007/s12350-016-0622-0.
  • van Campen CMC, Visser FC, van der Weerdt AP, et al. FDG PET as a predictor of response to resynchronisation therapy in patients with ischaemic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2007;34:309–315.
  • Winter JL, Castro PF, Quintana JC, et al. Effects of trimetazidine in nonischemic heart failure: a randomized study. J Card Fail. 2014;20:149–154.
  • Handley MG, Medina RA, Nagel E, et al. PET imaging of cardiac hypoxia: opportunities and challenges. J Mol Cell Cardiol. 2011;51:640–650.
  • Scherer DJ, Psaltis PJ. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with (18)F positron emission tomography. Cardiovasc Diagn Ther. 2016;6:354–367.
  • Medina RA, Mariotti E, Pavlovic D, et al. 64Cu-CTS: a promising radiopharmaceutical for the identification of low-grade cardiac hypoxia by PET. J Nucl Med Off Publ Soc Nucl Med. 2015;56:921–926.
  • Carroll VN, Truillet C, Shen B, et al. (11)C.Ascorbic and (11)C.dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun Camb Engl. 2016;52:4888–4890.
  • Huang X, Gao Y, Qin J, et al. The role of miR-34a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats. Lesnefsky EJ, editor. Plos ONE. 2014;9:e113305.
  • Bizino MB, Hammer S, Lamb HJ. Metabolic imaging of the human heart: clinical application of magnetic resonance spectroscopy. Heart Br Card Soc. 2014;100:881–890.
  • Levelt E, Rodgers CT, Clarke WT, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J. 2015. DOI: 10.1093/eurheartj/ehv42.
  • Fragasso G, Perseghin G, De Cobelli F, et al. Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J. 2006;27:942–948.
  • Dass S, Holloway CJ, Cochlin LE, et al. No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail. 2015;8:1088–1093.
  • Schroeder MA, Clarke K, Neubauer S, et al. Hyperpolarized magnetic resonance: a novel technique for the in vivo assessment of cardiovascular disease. Circulation. 2011;124:1580–1594.
  • Westenbrink BD, Dorn GW. Imaging the cardiac diet. Eur J Heart Fail. 2013;15:123–124.
  • Josan S, Park JM, Hurd R, et al. In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized 1-13C. and 2-13C.pyruvate. NMR Biomed. 2013;26:1680–1687.
  • Bersin RM, Wolfe C, Kwasman M, et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol. 1994;23:1617–1624.
  • Wilson JR, Mancini DM, Ferraro N, et al. Effect of dichloroacetate on the exercise performance of patients with heart failure. J Am Coll Cardiol. 1988;12:1464–1469.
  • Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet Lond Engl. 2009;373:2125–2135.
  • Holubarsch CJF, Rohrbach M, Karrasch M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci Lond Engl. 1979;2007(113):205–212.
  • Goszcz K, Deakin SJ, Duthie GG, et al. Antioxidants in cardiovascular therapy: panacea or false hope? front. Cardiovasc Med. 2015;2:29.
  • Aitio M-L. N-acetylcysteine – passe-partout or much ado about nothing? Br J Clin Pharmacol. 2006;61:5–15.
  • Ye Y, Li J, Yuan Z. Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. Plos One. 2013;8:e56803.
  • Tamariz L, Hare JM. Xanthine oxidase inhibitors in heart failure: where do we go from here? Circulation. 2015;131:1741–1744.
  • Atkuri KR, Mantovani JJ, Herzenberg LA, et al. N-Acetylcysteine–a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7:355–359.
  • Dröge W. Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol. 2002;37:1333–1345.
  • Chatzianastasiou A, Bibli S-I, Andreadou I, et al. Cardioprotection by H2S donors: nitric oxide-dependent and -independent mechanisms. J Pharmacol Exp Ther. 2016;358:431–440.
  • Gibson CM, Giugliano RP, Kloner RA, et al. EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J. 2016;37:1296–1303.