1,242
Views
185
CrossRef citations to date
0
Altmetric
Review

Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms

, , &
Pages 351-366 | Received 30 Sep 2016, Accepted 18 Jan 2017, Published online: 17 Mar 2017

References

  • World Bank. World development indicators database. Washington, DC:World Bank; 2014 Dec 16.
  • Safavieh M, Kanakasabapathy MK, Tarlan F, et al. Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater Sci Eng. 2016;2:278–294.
  • Asghar W, Yuksekkaya M, Shafiee H, et al. Engineering long shelf life multi-layer biologically active surfaces on microfluidic devices for point of care applications. Sci Rep. 2016;6:21163.
  • Mabey D, Peeling RW, Ustianowski A, et al. Tropical infectious diseases: diagnostics for the developing world. Nat Rev Microbiol. 2004;2(3):231–240.
  • Lee WG, Kim Y-G, Chung BG, et al. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev. 2010;62(4–5):449–457.
  • Novak M, Kotanen C, Carrara S, et al. Diagnostic tools and technologies for infectious and non-communicable diseases in low-and-middle-income countries. Health Technol. 2013;3(4):271–281.
  • Chin CD, Chin SY, Laksanasopin T, et al. Low-cost microdevices for point-of-care testing. In: Issadore D, Westervelt RM editors, Point-of-care diagnostics on a chip. Berlin, Heidelberg:Springer; 2013. p. 3–21.
  • Safavieh M, Coarsey C, Esiobu N, et al. Advances in Candida detection platforms for clinical and point-of-care applications. Crit Rev Biotechnol. 2016;1–18.
  • Rappa KL, Rodriguez HF, Hakkarainen GC, et al. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34:578–587.
  • Asghar W, El Assal R, Shafiee H, et al. Preserving human cells for regenerative, reproductive, and transfusion medicine. Biotechnol J. 2014;9(7):895–903.
  • Ilyas A, Asghar W, Ahmed S, et al. Electrophysiological analysis of biopsy samples using elasticity as an inherent cell marker for cancer detection. Anal Methods. 2014;6(18):7166–7174.
  • Asghar W, Velasco V, Kingsley JL, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):1671–1679.
  • López-Marzo AM, Merkoçi A. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab Chip. 2016;16(17):3150–3176.
  • Meredith NA, Quinn C, Cate DM, et al. Paper-based analytical devices for environmental analysis. Analyst. 2016;141(6):1874–1887.
  • Martinez AW, Phillips ST, Carrilho E, et al. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–3707.
  • Shafiee H, Asghar W, Inci F, et al. Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Sci Rep. 2015;5:8719.
  • Delaney JL, Hogan CF, Tian J, et al. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem. 2011;83(4):1300–1306.
  • Free AH, Adams EC, Kercher ML, et al. Simple specific test for urine glucose. Clin Chem. 1957;3(3):163–168.
  • Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–2251.
  • Yetisen AK. Point-of-care diagnostics. In: Holographic sensors. Switzerland: Springer; 2015. p. 1–25.
  • Valcárcel M, López-Lorente ÁI. Gold nanoparticles in analytical chemistry. Amsterdam, Netherlands: Elsevier; 2014.
  • Ngom B, Guo Y, Wang X, et al. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem. 2010;397(3):1113–1135.
  • Rivas L, Medina-Sánchez M, De La Escosura-Muñiz A, et al. Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip. 2014;14(22):4406–4414.
  • Wu Y, Xue P, Hui KM, et al. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2014;52:180–187.
  • Martinez AW, Phillips ST, Whitesides GM, et al. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82(1):3–10.
  • Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trac Trends Anal Chem. 2009;28(8):925–942.
  • Martinez AW, Phillips ST, Butte MJ, et al. Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318–1320.
  • Li XJ, Zhou Y. Microfluidic devices for biomedical applications. Sawston, Cambridge: Elsevier; 2013.
  • Li X, Tian J, Shen W. Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose. 2010;17(3):649–659.
  • Whatman® qualitative filter paper, Grade 1. 2016. [cited 2016 Aug 1]. Available from: http://pubs.rsc.org/en/content/articlehtml/2011/lc/c1lc20479c
  • Apilux A, Dungchai W, Siangproh W, et al. Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem. 2010;82(5):1727–1732.
  • Whatman® qualitative filter paper, Grade 4. [cited 2016 Aug 2]. Available from: http://pubs.rsc.org/en/content/articlehtml/2013/lc/c3lc50976a.
  • Li X, Tian J, Garnier G, et al. Fabrication of paper-based microfluidic sensors by printing. Colloids Surf., B. 2010;76(2):564–570.
  • Lu Y, Shi W, Jiang L, et al. Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay. Electrophoresis. 2009;30(9):1497–1500.
  • Kavruk M, Özalp VC, Öktem HA. Portable bioactive paper-based sensor for quantification of pesticides. J Anal Methods Chem. 2013;2013:1–8.
  • Arena A, Donato N, Saitta G, et al. Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens Actuators B Chem. 2010;145(1):488–494.
  • Martinez AW, Phillips ST, Wiley BJ, et al. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 2008;8(12):2146–2150.
  • Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80(18):6928–6934.
  • Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem. 2008;80(9):3387–3392.
  • Lu Y, Shi W, Qin J, et al. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem. 2010;82(1):329–335.
  • Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–7095.
  • Wang S, Ge L, Song X, et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron. 2012;31(1):212–218.
  • Songjaroen T, Dungchai W, Chailapakul O, et al. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta. 2011;85(5):2587–2593.
  • Dungchai W, Chailapakul O, Henry CS. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst. 2011;136(1):77–82.
  • Li X, Tian J, Nguyen T, et al. Paper-based microfluidic devices by plasma treatment. Anal Chem. 2008;80(23):9131–9134.
  • Asghar W, Ramachandran PP, Adewumi A, et al. Rapid nanomanufacturing of metallic break junctions using focused ion beam scratching and electromigration. J Manuf Sci Eng. 2010;132(3):030911.
  • Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):011301.
  • Ahmed S, Bui M-PN, Abbas A. Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron. 2016;77:249–263.
  • Shafiee H, Kanakasabapathy MK, Juillard F, et al. Printed flexible plastic microchip for viral load measurement through quantitative detection of viruses in plasma and saliva. Sci Rep. 2015;5:9919.
  • Tokel O, Yildiz UH, Inci F, et al. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep. 2015;5:9152.
  • Shafiee H, Jahangir M, Inci F, et al. Acute on‐chip HIV detection through label‐free electrical sensing of viral nano‐lysate. Small. 2013;9(15):2553–2563.
  • Wang S, Tasoglu S, Chen PZ, et al. Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci Rep. 2014;4:3796.
  • Tasoglu S, Khoory JA, Tekin HC, et al. Levitational image cytometry with temporal resolution. Adv Mater. 2015;27(26):3901–3908.
  • Lucio Do Lago C, Da Silva HDT, Neves CA, et al. A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. Anal Chem. 2003;75(15):3853–3858.
  • He Y, Wu Y, Fu J-Z, et al. Fabrication of paper-based microfluidic analysis devices: a review. RSC Adv. 2015;5(95):78109–78127.
  • Kong F-Y, Gu S-X, Li -W-W, et al. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens Bioelectron. 2014;56:77–82.
  • Olkkonen J, Lehtinen K, Erho T. Flexographically printed fluidic structures in paper. Anal Chem. 2010;82(24):10246–10250.
  • Kane RS, Takayama S, Ostuni E, et al. Patterning proteins and cells using soft lithography. Biomaterials. 1999;20(23–24):2363–2376.
  • Kumar A, Whitesides GM. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl Phys Lett. 1993;63(14):2002–2004.
  • Xia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci. 1998;28(1):153–184.
  • Whitesides GM, Ostuni E, Takayama S, et al. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 2001;3(1):335–373.
  • Xiang N, Yi H, Chen K, et al. Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories. J Micromech Microeng. 2013;23(2):025016.
  • Lipomi D, Martinez R, Cademartiri L, et al. 7.11: soft lithographic approaches to nanofabrication. Polym Sci Compr Ref. 2012;10:211–231.
  • Weibel DB, DiLuzio WR, Whitesides GM. Microfabrication meets microbiology. Nat Rev Microbiol. 2007;5(3):209–218.
  • Mahmud MA, Blondeel EJM, Kaddoura M, et al. Creating compact and microscale features in paper-based devices by laser cutting. Analyst. 2016;141(23):6449–6454.
  • Mani V, Paleja B, Larbi K, et al. Microchip-based ultrafast serodiagnostic assay for tuberculosis. Sci Rep. 2016;6:35845.
  • Duarte GRM, Price CW, Augustine BH, et al. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal Chem. 2011;83(13):5182–5189.
  • Oliveira KA, Damasceno D, De Oliveira CR, et al. Dengue diagnosis on laser printed microzones using smartphone-based detection and multivariate image analysis. Anal Methods. 2016;8(35):6506–6511.
  • Silva PBM, Oliveiraa KA, Coltro WKT. Colorimetric detection of glucose in biological fluids using toner-based microzone plates. J Braz Chem Soc. 2016;28(1):197–201.
  • DuVall JA, Le Roux D, Tsuei A-C, et al. A rotationally-driven polyethylene terephthalate microdevice with integrated reagent mixing for multiplexed PCR amplification of DNA. Anal Methods. 2016;8(40):7331–7340.
  • Oliveira KA, De Souza FR, De Oliveira CR, et al. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection. In:Rasooly A, Herold KE editors, Mobile health technologies: methods and protocols. New York:Springer; 2015. p. 85–98.
  • Phillips EA, Shen R, Zhao S, et al. Thermally actuated wax valves for paper-fluidic diagnostics. Lab Chip. 2016;16(21):4230–4236.
  • Zhang Y, Zhou C, Nie J, et al. Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal Chem. 2014;86(4):2005–2012.
  • De Tarso Garcia P, Cardoso TMG, Garcia CD, et al. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Adv. 2014;4(71):37637–37644.
  • Määttänen A, Fors D, Wang S, et al. Paper-based planar reaction arrays for printed diagnostics. Sens Actuators B Chem. 2011;160(1):1404–1412.
  • Cate DM, Adkins JA, Mettakoonpitak J, et al. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87(1):19–41.
  • Liana DD, Raguse B, Gooding JJ, et al. Recent advances in paper-based sensors. Sensors. 2012;12(9):11505–11526.
  • Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–19611.
  • Rodriguez NM, Wong WS, Liu L, et al. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip. 2016;16(4):753–763.
  • Dungchai W, Chailapakul O, Henry CS. Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta. 2010;674(2):227–233.
  • Evans E, Gabriel EFM, Coltro WKT, et al. Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst. 2014;139(9):2127–2132.
  • Wang S, Chinnasamy T, Lifson MA, et al. Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol. 2016;34(11):909–921.
  • Evans E, Gabriel EFM, Benavidez TE, et al. Modification of microfluidic paper-based devices with silica nanoparticles. Analyst. 2014;139(21):5560–5567.
  • Figueredo F, Garcia PT, Cortón E, et al. Enhanced analytical performance of paper microfluidic devices by using Fe3O4 nanoparticles, MWCNT, and graphene oxide. ACS Appl Mater Interfaces. 2016;8(1):11–15.
  • Gabriel EFM, Garcia PT, Cardoso TMG, et al. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst. 2016;141:4749–4756.
  • Dungchai W, Chailapakul O, Henry CS. Electrochemical detection for paper-based microfluidics. Anal Chem. 2009;81(14):5821–5826.
  • Flanagan RJ, Perrett D. RSC chromatography monographs, volume 10: electrochemical detection in HPLC: analysis of drugs and poisons. Cambridge (UK): Royal Society of Chemistry; 2005.
  • Grieshaber D, MacKenzie R, Voeroes J, et al. Electrochemical biosensors-sensor principles and architectures. Sensors. 2008;8(3):1400–1458.
  • Nemiroski A, Christodouleas DC, Hennek JW, et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci. 2014;111(33):11984–11989.
  • Noiphung J, Songjaroen T, Dungchai W, et al. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta. 2013;788:39–45.
  • Parveen S, Aslam MS, Hu L, et al. Electrogenerated chemiluminescence: protocols and applications. Berlin, Heidelberg:Springer; 2013.
  • Yu J, Wang S, Ge L, et al. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron. 2011;26(7):3284–3289.
  • Ge L, Yan J, Song X, et al. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials. 2012;33(4):1024–1031.
  • Parveen S, Aslam MS, Hu L, et al. Applications of electrochemiluminescence. In: Electrogenerated chemiluminescence. Berlin Heidelberg: Springer; 2013. p. 123–152.
  • Yan J, Ge L, Song X, et al. Paper‐based electrochemiluminescent 3D immunodevice for lab‐on‐paper, specific, and sensitive point‐of‐care testing. Chem Eur J. 2012;18(16):4938–4945.
  • Pires NMM, Dong T, Hanke U, et al. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors. 2014;14(8):15458–15479.
  • Terai T, Nagano T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch. 2013;465(3):347–359.
  • Ali MM, Aguirre SD, Xu Y, et al. Detection of DNA using bioactive paper strips. Chem Commun. 2009;(43):6640–6642.
  • Yamada K, Takaki S, Suzuki K, et al. Microfluidic paper-based analytical device for fluorescence detection of lactoferrin in tear fluid. In: Chemical and biological microsystems society. 17th International Conference on MiniaturizedSystems for Chemistry and Life Sciences; 2013 Oct 27-31; Freiburg, German.
  • Islam M, Asghar W, Young-Tae K, et al. Cell elasticity-based microfluidic label-free isolation of metastatic tumor cells. Br J Med Med Res. 2014;4(11):2129.
  • Asghar W, Shafiee H, Chen P, et al. In vitro three-dimensional cancer culture models. In: Bae YH, Mrsny RJ, Park K editors, Cancer targeted drug delivery. New York: Springer; 2013. p. 635–665.
  • Iqbal SM, Asghar W, Vidyala SD. Porous organic nanolayers for coating of solid-state devices.J Nanobiotechnology 2011;9(1):18.
  • Ilyas A, Asghar W, Kim Y-T, et al. Parallel recognition of cancer cells using an addressable array of solid-state micropores. Biosens Bioelectron. 2014;62:343–349.
  • Asghar W, El Assal R, Shafiee H, et al. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today. 2015;18(10):539–553.
  • Ilyas A, Asghar W, Allen PB, et al. Electrical detection of cancer biomarker using aptamers with nanogap break-junctions. Nanotechnology. 2012;23(27):275502.
  • Asghar W, Wan Y, Ilyas A, et al. Electrical fingerprinting, 3D profiling and detection of tumor cells with solid-state micropores. Lab Chip. 2012;12(13):2345–2352.
  • Wang L, Asghar W, Demirci U, et al. Nanostructured substrates for isolation of circulating tumor cells. Nano Today. 2013;8(4):374–387.
  • Wan Y, Tan J, Asghar W, et al. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J Phys Chem B. 2011;115(47):13891–13896.
  • Tasoglu S, Gurkan UA, Wang S, et al. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem Soc Rev. 2013;42(13):5788–5808.
  • Asghar W, Shafiee H, Velasco V, et al. Toxicology study of single-walled carbon nanotubes and reduced graphene oxide in human sperm. Sci Rep. 2016;6:30270.
  • Asghar W, Ilyas A, Billo JA, et al. Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Res Lett. 2011;6(1):1–6.
  • Ramachandran A, Liu Y, Asghar W, et al. Characterization of DNA-nanopore interactions by molecular dynamics. Am J Biomed Sci. 2009;1(4):344–351.
  • Asghar W, Ilyas A, Deshmukh RR, et al. Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores. Nanotechnology. 2011;22(28):285304.
  • Hafeez A, Asghar W, Rafique MM, et al. GPU-based real-time detection and analysis of biological targets using solid-state nanopores. Med Biol Eng Comput. 2012;50(6):605–615.
  • Billo JA, Asghar W, Iqbal SM. An implementation for the detection and analysis of negative peaks in an applied current signal across a silicon nanopore. In: SPIE defense, security, and sensing. International Society for Optics and Photonics; 2011. p. 80312T–80312T-80317.
  • Billo JA, Jones J, Asghar W, et al. Viscosity and surface-free energy effects in thermal shrinking of solid-state nanopores. Appl Phys Lett. 2012;100(23):233107.
  • Marle L, Greenway GM. Microfluidic devices for environmental monitoring. Trac Trends Anal Chem. 2005;24(9):795–802.
  • Skurtys O, Aguilera J. Applications of microfluidic devices in food engineering. Food Biophys. 2008;3(1):1–15.
  • Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–789.
  • Walji N. Characterization of fluid flow in paper-based microfluidic devices.  Ontario, Canada: University of Ontario Institute of Technology; 2015.
  • Hu J, Wang S, Wang L, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–597.
  • Fobel R, Kirby AE, Ng AHC, et al. Paper microfluidics goes digital. Adv Mater. 2014;26(18):2838–2843.
  • Sobieranski AC, Inci F, Tekin HC, et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light: Sci Appl. 2015;4(10):e346.
  • Wang S, Zhao X, Khimji I, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–3418.
  • 6.1B smartphone users globally by 2020, overtaking basic fixed phone subscriptions. [cited 2016 Apr 15] . Available from: http://aip.scitation.org/doi/abs/10.1063/1.4725515.
  • San Park T, Li W, McCracken KE, et al. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip. 2013;13(24):4832–4840.
  • Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip. 2008;8(1):98–106.
  • Li M, Diamandis EP. Technology-driven diagnostics: from smart doctor to smartphone. Crit Rev Clin Lab Sci. 2016;53(4):1–35.
  • Ng AHC, Wheeler AR. Next-generation microfluidic point-of-care diagnostics. Clin Chem. 2015;61(10):1233–1234.
  • Wang S, Lifson MA, Inci F, et al. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings. Expert Rev Mol Diagn. 2016;16(4):449–459. •• Article presents technical challenges associated with POC diagnosticdevices in resource-constrained settings.
  • Pronk JT, Lee SY, Lievense J, et al. How to set up collaborations between academia and industrial biotech companies. Nat Biotechnol. 2015;33(3):237–240.
  • Shah P, Zhu X, Li C-Z. Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn. 2013;13(1):83–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.