646
Views
0
CrossRef citations to date
0
Altmetric
Review

Electrochemical immunoassay for tumor markers based on hydrogels

&
Pages 457-465 | Received 12 Feb 2018, Accepted 01 May 2018, Published online: 08 May 2018

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.
  • Majkić-Singh N. What is a biomarker? From its discovery to clinical application. J Med Biochemistry. 2011;30(3):186–192.
  • Ren J, Cai H, Li Y, et al. Tumor markers for early detection of ovarian cancer. Expert Rev Mol Diagn. 2010;10(6):787–798.
  • Group BDW. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.
  • Sawyers CL. The cancer biomarker problem. Nature. 2008;452(7187):548–552.
  • Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55–62.
  • Labib M, Sargent EH, Kelley SO. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev. 2016;116(16):9001–9090.
  • Zangar RC, Daly DS, White AM. ELISA microarray technology as a high-throughput system for cancer biomarker validation. Expert Rev Mol Diagn. 2006;3(1):37–44.
  • Sankiewicz A, Romanowicz L, Laudanski P, et al. SPR imaging biosensor for determination of laminin-5 as a potential cancer marker in biological material. Anal Bioanal Chem. 2016;408(19):5269–5276.
  • Zeng K, Li HY, Peng YY. Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta. 2017;184(8):2637–2644.
  • Li YR, Wu J, Zhang C, et al. Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Microchim Acta. 2017;184 :2767-2774.
  • Tang LH, Liu Y, Ali MM, et al. Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem. 2012;84(11):4711–4717.
  • Wu D, Liu YX, Wang YG, et al. Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci Rep. 2016;6:20511.
  • Li XJ, Yu SQ, Yan T, et al. A sensitive electrochemiluminescence immunosensor based on Ru(bpy)3(2+) in 3D CuNi oxalate as luminophores and graphene oxide-polyethylenimine as released Ru(bpy)3(2+) initiator. Biosens Bioelectron. 2016;89:1020–1025.
  • Li X, Wang YG, Shi L, et al. A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe. Biosens Bioelectron. 2017;96:113–120.
  • Han QZ, Wang RY, Xing B, et al. Label-free photoelectrochemical immunoassay for CEA detection based on CdS sensitized WO3@BiOI heterostructure nanocomposite. Biosens Bioelectron. 2017;99:493–499.
  • Wang XP, Xu R, Sun X, et al. Using reduced graphene oxide-Ca: cdSenanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens Bioelectron. 2017;96:239–245.
  • Yin S, Zhao LH, Ma ZF. Label-free electrochemical immunosensor for ultrasensitive detection of neuron-specific enolase based on enzyme-free catalytic amplification. Anal Bioanal Chem. 2017;410(4):1279-1286.
  • Ma ZF, Liu N. Design of immunoprobes for electrochemical multiplexed tumor marker detection. Expert Rev Mol Diagn. 2015;15(8):1075–1083.
  • Shan J, Ma ZF. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta. 2017;184:969–979.
  • Luo X, Davis JJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev. 2013;42(13):5944–5962.
  • Wang LY, Rong QF, Ma ZF. Construction of electrochemical immunosensing interface for multiple cancer biomarkers detection. Electroanalysis. 2016;28(8):1692–1699.
  • Liu N, Chen X, Ma ZF. Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron. 2013;48(2):33–38.
  • Lai G, Yan F, Wu J, et al. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem. 2011;83(7):2726–2732.
  • Lu X, Wen Z, Li J. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomater. 2006;27(33):5740–5747.
  • Shan J, Wang LY, Ma ZF. Novel metal-organic nanocomposites: poly(methylene blue)-Au and its application for an ultrasensitive electrochemical immunosensing platform. Sens Actuators B Chem. 2016;237:666–671.
  • Wang LY, Shan J, Feng F, et al. Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199. Anal Chim Acta. 2016;911:108–113.
  • Shan J, Ma ZF. Simultaneous detection of five biomarkers of lung cancer by electrochemical immunoassay. Microchim Acta. 2016;183(11):1–9.
  • Han JM, Ma J, Ma ZF. One-step synthesis of graphene oxide-thionine-Au nanocomposites and its application for electrochemical immunosensing. Biosens Bioelectron. 2013;47(10):243–247.
  • Liu N, Liu ZF, Han HL, et al. Graphene oxide reduced directly by redox probes for multiplexed detection of tumor markers. J Mater Chem B. 2014;2(21):3292–3298.
  • Zhang ZY, Sun T, Chen C, et al. Bifunctional nanocatalyst based on three-dimensional carbon nanotube-graphene hydrogel supported Pd nanoparticles: one-pot synthesis and its catalytic properties. ACS Appl Mater Interfaces. 2014;6(23):21035–21040.
  • Le TH, Kang GS, Hur SH. Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sens Actuators B Chem. 2015;210:618–623.
  • Mateescu A, Wang Y, Dostalek J, et al. Thin hydrogel films for optical biosensor applications. Membranes. 2012;2(1):40–69.
  • Zhao F, Yao D, Guo R, et al. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials. 2015;5(4):2054–2130.
  • Jung IY, Kim JS, Choi BR, et al. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv Healthcare Mater. 2017;6(12):1601475.
  • Song HS, Kwon OS, Kim JH, et al. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron. 2016;89(Pt 1):187–200.
  • Tavakoli J, Tang Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers. 2017;9(8):364.
  • Zhai DY, Liu BR, Shi Y, et al. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano. 2013;7(4):3540–3546.
  • Li LL, Wang YQ, Pan LJ, et al. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 2015;15(2):1146–1151.
  • Zhao Y, Liu BR, Pan LJ, et al. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ Sci. 2013;6(10):2856–2870.
  • Tokarev I, Minko S. Stimuli-responsive hydrogel thin films. Soft Matter. 2009;5(3):511–524.
  • Richter A, Paschew G, Klatt S, et al. Review on hydrogel-based pH sensors and microsensors. Sensors. 2008;8(1):561–581.
  • Tang ZX, Fu YY, Ma ZF. Multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 based on redox hydrogel. Biosens Bioelectron. 2017;91:299–305.
  • Hasanzadeh M, Shadjou N, Guardia MDL. Electrochemical biosensing using hydrogel nanoparticles. Trends Anal Chem. 2014;62:11–19.
  • Li N, Yuan R, Chai YQ, et al. Sensitive immunoassay of human chorionic gonadotrophin based on multi-walled carbon nanotube-chitosan matrix. Bioprocess Biosyst Eng. 2008;31(6):551–558.
  • Liu XG, Peng YH, Qu XJ, et al. Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. J Electroanalytical Chem. 2011;654(1–2):72–78.
  • Xu T, Jia XL, Chen X, et al. Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold. Biosens Bioelectron. 2014;56(3):174–179.
  • Lira LM, Torresi SICD. Conducting polymer-hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks. Electrochem Commun. 2005;7(7):717–723.
  • Nikpour M, Chaouk H, Mau A, et al. Porous conducting membranes based on polypyrrole-PMMA composites. Synth Met. 1999;99(2):121–126.
  • Chen X, Ma ZF. Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites. Biosens Bioelectron. 2014;55(10):343–349.
  • Wang HQ, Ma ZF. A cascade reaction signal-amplified amperometric immunosensor platform for ultrasensitive detection of tumor marker. Sens Actuators B. 2017;254:642–647.
  • Sun ZH, Wang WH, Wen HB, et al. Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta. 2015;899:91–99.
  • Wei H, Wang EK. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80(6):2250–2254.
  • Zheng Y, Wang HQ, Ma ZF. A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125. Microchim Acta. 2017;184(11):4269–4277.
  • Kim MC, Lee D, Jeong SH, et al. Nanodiamond-gold nanocomposites with the peroxidase-like oxidative catalytic activity. ACS Appl Mater Interfaces. 2016;8(50):34317–34326.
  • Song YJ, Qu KG, Zhao C, et al. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–2210.
  • Guo SJ, Dong SJ, Wang EK. Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small. 2009;5(16):1869–1876.
  • Huang JS, Wang DW, Hou HQ, et al. Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater. 2008;18(3):441–448.
  • Zhuo Y, Yuan PX, Yuan R, et al. Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomater. 2008;29(10):1501–1508.
  • He SJ, Wang QY, Yu YY, et al. One-step synthesis of potassium ferricyanide-doped polyaniline nanoparticles for label-free immunosensor. Biosens Bioelectron. 2015;68:462–467.
  • Li WX, Ma ZF. Conductive catalytic redox hydrogel composed of aniline and vinyl-ferrocene for ultrasensitive detection of prostate specific antigen. Sens Actuators B Chem. 2017;248:545–550.
  • Shi WT, Ma ZF. A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane. Biosens Bioelectron. 2011;26(6):3068–3071.
  • Wu FH, Hu ZC, Xu JJ, et al. Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: characterization, direct electrochemistry, redox thermodynamics and biosensing. Electrochim Acta. 2008;53(28):8238–8244.
  • Petersen B, Kirchmair H, Kaliebe H. Label-free amperometric immunobiosensor based on a gold colloid and Prussian blue nanocomposite film modified carbon ionic liquid electrode. Anal Bioanal Chem. 2010;397(8):3553–3561.
  • Wang LY, Liu N, Ma ZF. Novel gold-decorated polyaniline derivatives as redox-active species for simultaneous detection of three biomarkers of lung cancer. J Mater Chem B. 2015;3(14):2867–2872.
  • Cui HF, Ye JS, Zhang WD, et al. Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes. Biosens Bioelectron. 2009;24(6):1723–1729.
  • Rong QF, Feng F, Ma ZF. Metal ions doped chitosan-poly(acrylic acid) nanospheres: synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer. Biosens Bioelectron. 2016;75:148–154.
  • Wang ZF, Liu N, Feng F, et al. Synthesis of cadmium, lead and copper alginate nanobeads as immunosensing probes for the detection of AFP, CEA and PSA. Biosens Bioelectron. 2015;70:98–105.
  • Wang ZF, Liu N, Ma ZF. Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron. 2014;53(4):324–329.
  • Guibal E, Vincent T, Navarro R. Metal ion biosorption on chitosan for the synthesis of advanced materials. J Mater Sci. 2014;49(16):5505–5518.
  • Atta AM, Ismail HS, Elsaaed AM. Application of anionic acrylamide-based hydrogels in the removal of heavy metals from waste water. J Appl Polym Sci. 2012;123(4):2500–2510.
  • Suginta W, Khunkaewla P, Schulte A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev. 2013;113(7):5458–5479.
  • Huang YX, Ding YY, Li T, et al. Redox hydrogel based immunosensing platform for the label-free detection of a cancer biomarker. Anal Methods. 2015;7(2):411–415.
  • He J, Zhang AJ, Zhang YJ, et al. Novel redox hydrogel by in situ gelation of chitosan as a result of template oxidative polymerization of hydroquinone. Macromolecules. 2011;44(7):2245–2252.
  • Zhao LH, Ma ZF. Facile synthesis of polyaniline-polythionine redox hydrogel: conductive, antifouling and enzyme-linked material for ultrasensitive label-free amperometric immunosensor toward carcinoma antigen-125. Anal Chim Acta. 2018;997:60–66.
  • Mendes PM. Stimuli-responsive surfaces for bio-applications. Chem Soc Rev. 2008;37(11):2512–2529.
  • Xiong YT, Li MM, Wang HX, et al. Sialic acid-triggered macroscopic properties switching on a smart polymer surface. Appl Surf Sci. 2017;427:1152–1164.
  • Richter A, Paschew G, Klatt S, et al. Review on hydrogel-based pH sensors and microsensors. Sensors. 2008;8(1):561–581.
  • Kim E, Liu Y, Benyoav H, et al. Fusing sensor paradigms to acquire chemical information: an integrative role for smart biopolymeric hydrogels. Adv Healthcare Mater. 2016;5(20):2595–2616.
  • Jia HY, Yang TT, Zuo YX, et al. Immunosensor for α-fetoprotein based on a glassy carbon electrode modified with electrochemically deposited N-doped graphene, gold nanoparticles and chitosan. Microchim Acta. 2017;184:3747-3753.
  • Sun ZF, Li ZY, He YH, et al. Ferrocenoyl phenylalanine: a new strategy toward supramolecular hydrogels with multistimuli responsive properties. J Am Chem Soc. 2013;135(36):13379–13386.
  • Sui X, Feng X, Hempenius MA, et al. Redox active gels: synthesis, structures and applications. J Mater Chem B. 2013;1(12):1658–1672.
  • Hou Y, Li T, Huang HY, et al. Electrochemical immunosensor for the detection of tumor necrosis factor α based on hydrogel prepared from ferrocene modified amino acid. Sens Actuators B. 2013;182:605–609.
  • Zhou M, Sun ZF, Shen CC, et al. Application of hydrogel prepared from ferrocene functionalized amino acid in the design of novel electrochemical immunosensing platform. Biosens Bioelectron. 2013;49(22):243–248.
  • Riedel T, Riedelováreicheltová Z, Májek P, et al. Complete identification of proteins responsible for human blood plasma fouling on poly(ethylene glycol)-based surfaces. Langmuir. 2013;29(10):3388–3397.
  • Hui N, Sun XT, Niu SY, et al. PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl Mater Interfaces. 2016;9(3):2914–2923.
  • Min C, Yu W, Jiao MX, et al. Mixed self-assembled aptamer and newly designed zwitterionic peptide as antifouling biosensing interface for electrochemical detection of alpha-fetoprotein. ACS Sens. 2017;2(4):490–494.
  • Tang YQ, Cai XQ, Xiang YY, et al. Cross-linked antifouling polysaccharide hydrogel coating as extracellular matrix mimics for wound healing. J Mater Chem B. 2017;5(16):2989–2999.
  • Pan LJ, Yu GH, Zhai DY, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Pnas. 2012;109(24):9287–9292.
  • Wang HQ, Han HL, Ma ZF. Conductive hydrogel composed of 1,3,5-benzenetricarboxylic acid and Fe3+ used as enhanced electrochemical immunosensing substrate for tumor biomarker. Bioelectrochemistry. 2017;114:48–53.
  • Wang HQ, Ma ZF. Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles. Microchim Acta. 2017;184:5247–5253.
  • Amani J, Maleki M, Khoshroo A, et al. An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal Biochem. 2018;548:53–59.
  • Wang B. Fabrication of immunosensor based on Au-silica nanocomposite for neuron-specific enolase detection. Int J Electrochem Sci. 2017;12(8):7607–7615.
  • Zhao LH, Ma ZF. New immunoprobes based on bovine serum albumin-stabilized copper nanoclusters with triple signal amplification for ultrasensitive electrochemical immunosensing for tumor marker. Sens Actuators B. 2016;241:849–854.
  • Wang R, Wang AJ, Liu WD, et al. A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals. Biosens Bioelectron. 2017;102:276–281.
  • Chen SH, Yuan R, Chai YQ, et al. Electrochemical sensing platform based on tris(2,2′-bipyridyl)cobalt(III) and multiwall carbon nanotubes–nafion composite for immunoassay of carcinoma antigen-125. Electrochim Acta. 2009;54(28):7242–7247.
  • Wu LN, Jin C, Dan D, et al. Electrochemical immunoassay for CA125 based on cellulose acetate stabilized antigen/colloidal gold nanoparticles membrane. Electrochim Acta. 2006;51(7):1208–1214.
  • Tang DP, Yuan R, Chai YQ. Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine and gold nanoparticles-modified carbon paste interface. Anal Chim Acta. 2006;564(2):158–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.