256
Views
21
CrossRef citations to date
0
Altmetric
Review

The clinical use of parvovirus B19 assays: recent advances

ORCID Icon
Pages 821-832 | Received 16 Jun 2018, Accepted 19 Jul 2018, Published online: 26 Jul 2018

References

  • Cotmore SF, Agbandje-McKenna M, Chiorini JA, et al. The family parvoviridae. Arch Virol. 2014;159:1239–1247.
  • Gallinella G. Parvovirus B19 achievements and challenges. ISRN Virology. 2013. DOI:10.5402/2013/898730.
  • Qiu J, Soderlund-Venermo M, Young NS. Human parvoviruses. Clin Microbiol Rev. 2017;30:43–113.
  • Leisi R, Ruprecht N, Kempf C, et al. Parvovirus B19 uptake is a highly selective process controlled by VP1u, a novel determinant of viral tropism. J Virol. 2013;87:13161–13167.
  • Leisi R, Von Nordheim M, Ros C, et al. The VP1u receptor restricts parvovirus B19 uptake to permissive erythroid cells. Viruses. 2016;8:265.
  • Luo Y, Qiu J. Human parvovirus B19: a mechanistic overview of infection and DNA replication. Future Virol. 2015;10:155–167.
  • Bua G, Manaresi E, Bonvicini F, et al. Parvovirus B19 replication and expression in differentiating erythroid progenitor cells. PLoS One. 2016;11:e0148547.
  • Ganaie SS, Qiu J. Recent advances in replication and infection of human parvovirus B19. Front Cell Infect Microbiol. 2018;8:166.
  • Ganaie SS, Zou W, Xu P, et al. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathog. 2017;13:e1006370.
  • Xu P, Zhou Z, Xiong M, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog. 2017;13:e1006266.
  • Adamson-Small LA, Ignatovich IV, Laemmerhirt MG, et al. Persistent parvovirus B19 infection in non-erythroid tissues: possible role in the inflammatory and disease process. Virus Res. 2014;190:8–16.
  • Bua G, Gallinella G. How does parvovirus B19 DNA achieve lifelong persistence in human cells? Future Virology. 2017;12:549–553.
  • De Cao E, Zagheni E, Manfredi P, et al. The relative importance of frequency of contacts and duration of exposure for the spread of directly transmitted infections. Biostatistics. 2014;15:470–483.
  • Abrams S, Hens N. Modeling individual heterogeneity in the acquisition of recurrent infections: an application to parvovirus B19. Biostatistics. 2015;16:129–142.
  • Goeyvaerts N, Hens N, Aerts M, et al. Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19. Biostatistics. 2011;12:283–302.
  • Bonvicini F, Bua G, Gallinella G. Parvovirus B19 infection in pregnancy-awareness and opportunities. Curr Opin Virol. 2017;27:8–14.
  • Bascietto F, Liberati M, Murgano D, et al. Outcomes associated with fetal Parvovirus B19 infection: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018; Doi:10.1002/uog.19092.
  • Ornoy A, Ergaz Z. Parvovirus B19 infection during pregnancy and risks to the fetus. Birth Defects Res. 2017;109:311–323.
  • Marano G, Vaglio S, Pupella S, et al. Human Parvovirus B19 and blood product safety: a tale of twenty years of improvements. Blood Transfus. 2015;13:184–196.
  • Juhl D, Hennig H. Parvovirus B19: what is the relevance in transfusion medicine? Front Med (Lausanne). 2018;5:4.
  • Kerr JR. A review of blood diseases and cytopenias associated with human parvovirus B19 infection. Rev Med Virol. 2015;25:224–240.
  • Ganzel C, Constantin R. Parvovirus B19 diagnosed by bone marrow biopsy. Blood. 2015;125:3351.
  • Rogers HJ, Feasel P. Acute parvovirus B19 infection detected in bone marrow biopsy. Blood. 2015;126:1630.
  • Means RT Jr. Pure red cell aplasia. Blood. 2016;128:2504–2509.
  • Tsitsikas DA, Gallinella G, Patel S, et al. Bone marrow necrosis and fat embolism syndrome in sickle cell disease: increased susceptibility of patients with non-SS genotypes and a possible association with human parvovirus B19 infection. Blood Rev. 2014;28:23–30.
  • Verdonschot J, Hazebroek M, Merken J, et al. Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: review of the literature. Eur J Heart Fail. 2016;18:1430–1441.
  • Kerr JR. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease. J Clin Pathol. 2016;69:279–291.
  • Thammasri K, Rauhamaki S, Wang L, et al. Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells. PLoS One. 2013;8:e67179.
  • Juhl D, Gorg S, Hennig H. Persistence of Parvovirus B19 (B19V) DNA and humoral immune response in B19V-infected blood donors. Vox Sang. 2014;107:226–232.
  • Bonjoch X, Obispo F, Alemany C, et al. Characterization of markers of the progression of human parvovirus B19 infection in virus DNA-positive plasma samples. Transfus Med Hemother. 2015;42:233–238.
  • Moustafa A, Xie C, Kirkness E, et al. The blood DNA virome in 8,000 humans. PLoS Pathog. 2017;13:e1006292.
  • Jain A, Jain P, Prakash S, et al. 3b of human parvovirus B19 detected from hospitalized children with solid malignancies in a North Indian tertiary care hospital. J Med Virol. 2016;88:1922–1929.
  • Jain A, Jain P, Kumar A, et al. Incidence and progression of Parvovirus B19 infection and molecular changes in circulating B19V strains in children with haematological malignancy: A follow up study. Infect Genet Evol. 2018;57:177–184.
  • Rahiala J, Koskenvuo M, Norja P, et al. Human parvoviruses B19, PARV4 and bocavirus in pediatric patients with allogeneic hematopoietic SCT. Bone Marrow Transplant. 2013;48:1308–1312.
  • Ohrmalm L, Gustafson I, Lindblom A, et al. Human parvovirus B19 in pediatric and adult recipients of allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2013;48:1366–1367.
  • Eid AJ, Chen SF, Practice A. Human parvovirus B19 in solid organ transplantation. Am J Transplant. 2013;13(Suppl 4):201–205.
  • Plentz A, Wurdinger M, Kudlich M, et al. DNAemia of parvovirus B19 (genotypes 1-3) in adult transplant recipients is not associated with anaemia. J Clin Virol. 2013;58:443–448.
  • Porignaux R, Vuiblet V, Barbe C, et al. Frequent occurrence of parvovirus B19 DNAemia in the first year after kidney transplantation. J Med Virol. 2013;85:1115–1121.
  • Wurdinger M, Modrow S, Plentz A. Impact of parvovirus B19 Viremia in liver transplanted children on anemia: a retrospective study. Viruses. 2017;9:149.
  • Molenaar-de Backer MW, Russcher A, Kroes AC, et al. Detection of parvovirus B19 DNA in blood: viruses or DNA remnants?. J Clin Virol. 2016;84:19–23.
  • Reber U, Moser O, Dilloo D, et al. On the utility of the benzonase treatment for correct laboratory diagnosis of parvovirus B19 infection. J Clin Virol. 2017;95:10–11.
  • Pankuweit S, Stein A, Karatolios K, et al. Viral genomes in the pericardial fluid and in peri- and epicardial biopsies from a German cohort of patients with large to moderate pericardial effusions. Heart Fail Rev. 2013;18:329–336.
  • Pankuweit S, Klingel K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev. 2013;18:683–702.
  • Maisch B, Pankuweit S. Standard and etiology-directed evidence-based therapies in myocarditis: state of the art and future perspectives. Heart Fail Rev. 2013;18:761–795.
  • Soderlund-Venermo M. Clinical significance of parvovirus B19 DNA in cutaneous biopsies. Br J Dermatol. 2017;177:900–901.
  • Santonja C, Santos-Briz A, Palmedo G, et al. Detection of human parvovirus B19 DNA in 22% of 1815 cutaneous biopsies of a wide variety of dermatological conditions suggests viral persistence after primary infection and casts doubts on its pathogenic significance. Br J Dermatol. 2017;177:1060–1065.
  • Lecuit M, Eloit M. The human virome: new tools and concepts. Trends Microbiol. 2013;21:510–515.
  • Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157:142–150.
  • Rascovan N, Duraisamy R, Desnues C. Metagenomics and the human virome in asymptomatic individuals. Annu Rev Microbiol. 2016;70:125–141.
  • Toppinen M, Perdomo MF, Palo JU, et al. Bones hold the key to DNA virus history and epidemiology. Sci Rep. 2015;5:17226.
  • Pyoria L, Toppinen M, Mantyla E, et al. Extinct type of human parvovirus B19 persists in tonsillar B cells. Nat Commun. 2017;8:14930.
  • Janovitz T, Wong S, Young NS, et al. Parvovirus B19 integration into human CD36+ erythroid progenitor cells. Virology. 2017;511:40–48.
  • Molina KM, Garcia X, Denfield SW, et al. Parvovirus B19 myocarditis causes significant morbidity and mortality in children. Pediatr Cardiol. 2013;34:390–397.
  • Bock CT, Duchting A, Utta F, et al. Molecular phenotypes of human parvovirus B19 in patients with myocarditis. World J Cardiol. 2014;6:183–195.
  • Niccoli G, Severino A, Pieroni M, et al. Parvovirus B19 at the culprit coronary stenosis predicts outcome after stenting. Eur J Clin Invest. 2014;44:209–218.
  • Greulich S, Kindermann I, Schumm J, et al. Predictors of outcome in patients with parvovirus B19 positive endomyocardial biopsy. Clin Res Cardiol. 2016;105:37–52.
  • Kuhl U, Lassner D, Dorner A, et al. A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression. Basic Res Cardiol. 2013;108:372.
  • Bachelier K, Biehl S, Schwarz V, et al. Parvovirus B19-induced vascular damage in the heart is associated with elevated circulating endothelial microparticles. PLoS One. 2017;12:e0176311.
  • Puccetti C, Contoli M, Bonvicini F, et al. Parvovirus B19 in pregnancy: possible consequences of vertical transmission. Prenat Diagn. 2012;32:897–902.
  • Lindenburg IT, van Kamp IL, Oepkes D. Intrauterine blood transfusion: current indications and associated risks. Fetal Diagn Ther. 2014;36:263–271.
  • Lassen J, Bager P, Wohlfahrt J, et al. Parvovirus B19 infection in pregnancy and subsequent morbidity and mortality in offspring. Int J Epidemiol. 2013;42:1070–1076.
  • Lindenburg IT, van Klink JM, Smits-Wintjens VE, et al. Long-term neurodevelopmental and cardiovascular outcome after intrauterine transfusions for fetal anaemia: a review. Prenat Diagn. 2013;33:815–822.
  • Crane J, Mundle W, Boucoiran I. Maternal Fetal medicine C. parvovirus B19 infection in pregnancy. J Obstet Gynaecol Can. 2014;36:1107–1116.
  • Poliquin V, Yudin MH, Murphy KE, et al. Antepartum screening for maternal infection and immune status: is it time to broaden our routine? J Obstet Gynaecol Can. 2015;37:1118–1121.
  • Watt AP, Brown M, Pathiraja M, et al. The lack of routine surveillance of Parvovirus B19 infection in pregnancy prevents an accurate understanding of this regular cause of fetal loss and the risks posed by occupational exposure. J Med Microbiol. 2013;62:86–92.
  • Barlinn R, Rollag H, Trogstad L, et al. High incidence of maternal parvovirus B19 infection in a large unselected population-based pregnancy cohort in Norway. J Clin Virol. 2017;94:57–62.
  • Bonvicini F, Manaresi E, Gallinella G, et al. Diagnosis of fetal parvovirus B19 infection: value of virological assays in fetal specimens. BJOG. 2009;116:813–817.
  • Bonvicini F, Puccetti C, Salfi NC, et al. Gestational and fetal outcomes in B19 maternal infection: a problem of diagnosis. J Clin Microbiol. 2011;49:3514–3518.
  • Hellmund A, Geipel A, Berg C, et al. Early intrauterine transfusion in fetuses with severe anemia caused by parvovirus B19 infection. Fetal Diagn Ther. 2018;43:129–137.
  • Baylis SA, Ma L, Padley DJ, et al. Collaborative study to establish a World Health Organization International genotype panel for parvovirus B19 DNA nucleic acid amplification technology (NAT)-based assays. Vox Sang. 2012;102:204–211.
  • Gallinella G, Venturoli S, Manaresi E, et al. B19 virus genome diversity: epidemiological and clinical correlations. J Clin Virol. 2003;28:1–13.
  • Hubschen JM, Mihneva Z, Mentis AF, et al. Phylogenetic analysis of human parvovirus B19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b. J Clin Microbiol. 2009;47:3735–3738.
  • Corcoran C, Hardie D, Yeats J, et al. Genetic variants of human parvovirus B19 in South Africa: cocirculation of three genotypes and identification of a novel subtype of genotype 1. J Clin Microbiol. 2010;48:137–142.
  • Eis-Hubinger AM, Reber U, Edelmann A, et al. B19 genotype 2 in blood donations. Transfusion. 2014;54:1682–1684.
  • Trosemeier JH, Branting A, Lukashov VV, et al. Genome sequences of parvovirus b19 reference strains. Genome Announc. 2014;2:e00830-14.
  • Stamenkovic GG, Cirkovic VS, Siljic MM, et al. Substitution rate and natural selection in parvovirus B19. Sci Rep. 2016;6:35759.
  • Manaresi E, Conti I, Bua G, et al. B19 synthetic genome: sequence features and functional competence. Virology. 2017;508:54–62.
  • Bonvicini F, Manaresi E, Bua G, et al. Keeping pace with parvovirus B19 genetic variability: a multiplex genotype-specific quantitative PCR assay. J Clin Microbiol. 2013;51:3753–3759.
  • Maple PA, Hedman L, Dhanilall P, et al. Identification of past and recent parvovirus B19 infection in immunocompetent individuals by quantitative PCR and enzyme immunoassays: a dual-laboratory study. J Clin Microbiol. 2014;52:947–956.
  • Toppinen M, Norja P, Aaltonen LM, et al. A new quantitative PCR for human parvovirus B19 genotypes. J Virol Methods. 2015;218:40–45.
  • Molenaar-de Backer MW, de Waal M, Sjerps MC, et al. Validation of new real-time polymerase chain reaction assays for detection of hepatitis A virus RNA and parvovirus B19 DNA. Transfusion. 2016;56:440–448.
  • Pisani G, Cristiano K, Fabi S, et al. A significantly lower potency observed for the 3rd WHO International standard for parvovirus B19V DNA with the cobas TaqScreen DPX test. Vox Sang. 2016;111:115–119.
  • Muller MM, Fraile MI, Hourfar MK, et al. Evaluation of two, commercial, multi-dye, nucleic acid amplification technology tests, for HBV/HCV/HIV-1/HIV-2 and B19V/HAV, for screening blood and plasma for further manufacture. Vox Sang. 2013;104:19–29.
  • Bonvicini F, Mirasoli M, Manaresi E, et al. Single-cell chemiluminescence imaging of parvovirus B19 life cycle. Virus Res. 2013;178:517–521.
  • Manaresi E, Bua G, Bonvicini F, et al. A flow-FISH assay for the quantitative analysis of parvovirus B19 infected cells. J Virol Methods. 2015;223:50–54.
  • Sakata H, Matsubayashi K, Ihara H, et al. Impact of chemiluminescent enzyme immunoassay screening for human parvovirus B19 antigen in Japanese blood donors. Transfusion. 2013;53:2556–2566.
  • Weseslindtner L, Aberle JH, Hedman L, et al. The Chemokine CXCL-10 is a marker of infection stage in individuals with DNAemia due to parvovirus B19. J Infect Dis. 2017;215:214–220.
  • Gallinella G, Zuffi E, Gentilomi G, et al. Relevance of B19 markers in serum samples for a diagnosis of parvovirus B19-correlated diseases. J Med Virol. 2003;71:135–139.
  • Kerr S, O’Keeffe G, Kilty C, et al. Undenatured parvovirus B19 antigens are essential for the accurate detection of parvovirus B19 IgG. J Med Virol. 1999;57:179–185.
  • Manaresi E, Gallinella G, Zerbini M, et al. IgG immune response to B19 parvovirus VP1 and VP2 linear epitopes by immunoblot assay. J Med Virol. 1999;57:174–178.
  • Musiani M, Manaresi E, Gallinella G, et al. Immunoreactivity against linear epitopes of parvovirus B19 structural proteins. Immunodominance of the Amino-Terminal Half of the Unique Region of VP1. J Med Virol. 2000;60:347–352.
  • Manaresi E, Zuffi E, Gallinella G, et al. Differential IgM response to conformational and linear epitopes of parvovirus B19 VP1 and VP2 structural proteins. J Med Virol. 2001;64:67–73.
  • Soderlund M, Brown CS, Cohen BJ, et al. Accurate serodiagnosis of B19 parvovirus infections by measurement of IgG avidity. J Infect Dis. 1995;171:710–713.
  • Soderlund M, Brown CS, Spaan WJ, et al. Epitope type-specific IgG responses to capsid proteins VP1 and VP2 of human parvovirus B19. J Infect Dis. 1995;172:1431–1436.
  • Yliharsila M, Alaranta S, Lahdenpera S, et al. Array-in-well serodiagnostic assay utilizing upconverting phosphor label technology. J Virol Methods. 2015;222:224–230.
  • Wang Y, Hedman L, Perdomo MF, et al. Microsphere-based antibody assays for human parvovirus B19V, CMV and Tgondii. BMC Infect Dis. 2016;16:8.
  • de Ory F, Minguito T, Echevarria JE, et al. Comparative evaluation of tests for detection of parvovirus B19 IgG and IgM. APMIS. 2014;122:223–229.
  • Mirasoli M, Bonvicini F, Dolci LS, et al. Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes. Anal Bioanal Chem. 2013;405:1139–1143.
  • Mirasoli M, Bonvicini F, Lovecchio N, et al. On-chip LAMP-BART reaction for viral DNA real-time bioluminescence detection. Sensors and Actuators B-Chemical. 2018;262:1024–1033.
  • Nguyen Y, Renois F, Leveque N, et al. Virus detection and semiquantitation in explanted heart tissues of idiopathic dilated cardiomyopathy adult patients by use of PCR coupled with mass spectrometry analysis. J Clin Microbiol. 2013;51:2288–2294.
  • Legoff J, Feghoul L, Mercier-Delarue S, et al. Broad-range PCR-electrospray ionization mass spectrometry for detection and typing of adenovirus and other opportunistic viruses in stem cell transplant patients. J Clin Microbiol. 2013;51:4186–4192.
  • Takizawa K, Nakashima T, Mizukami T, et al. Degenerate polymerase chain reaction strategy with DNA microarray for detection of multiple and various subtypes of virus during blood screening. Transfusion. 2013;53:2545–2555.
  • Leveque N, Legoff J, Mengelle C, et al. Virological diagnosis of central nervous system infections by use of PCR coupled with mass spectrometry analysis of cerebrospinal fluid samples. J Clin Microbiol. 2014;52:212–217.
  • Metzgar D, Lovari R, Ray K, et al. Analytical characterization of an assay designed to detect and identify diverse agents of disseminated viral infection. J Clin Virol. 2014;59:177–183.
  • Ngoi CN, Siqueira J, Li L, et al. The plasma virome of febrile adult Kenyans shows frequent parvovirus B19 infections and a novel arbovirus (Kadipiro virus). J Gen Virol. 2016;97:3359–3367.
  • Bogdanovic G, Pou C, Barrientos-Somarribas M, et al. Virome characterisation from Guthrie cards in children who later developed acute lymphoblastic leukaemia. Br J Cancer. 2016;115:1008–1014.
  • Pan W, Ngo TTM, Camunas-Soler J, et al. Simultaneously monitoring immune response and microbial infections during pregnancy through plasma cfRNA sequencing. Clin Chem. 2017;63:1695–1704.
  • Somasekar S, Lee D, Rule J, et al. Viral surveillance in serum samples from patients with acute liver failure by metagenomic next-generation sequencing. Clin Infect Dis. 2017;65:1477–1485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.