354
Views
11
CrossRef citations to date
0
Altmetric
Review

Diagnostic approaches for Crimean-Congo hemorrhagic fever virus

Pages 531-536 | Received 17 Mar 2019, Accepted 02 May 2019, Published online: 10 May 2019

References

  • Maes P, Adkins S, Alkhovsky SV, et al. Taxonomy of the order Bunyavirales: second update 2018. Arch Virol. 2019; 164:927-941. DOI:10.1007/s00705-018-04127-3(2019)
  • Burt FJ, Leman PA, Abbott JC, et al. Serodiagnosis of Crimean-Congo haemorrhagic fever. Epidemiol Infect. 1994;113:551–562.
  • Papa A, Bino S, Papadimitriou E, et al. Suspected Crimean Congo haemorrhagic fever cases in Albania. Scand J Infect Dis. 2008;40:978–980.
  • Papa A, Bino S, Velo E, et al. Cytokine levels in Crimean-Congo hemorrhagic fever. J Clin Virol. 2006;36:272–276.
  • Ergonul O, Tuncbilek S, Baykam N, et al. Evaluation of serum levels of interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha in patients with Crimean-Congo hemorrhagic fever. J Infect Dis. 2006;193:941–944.
  • Papa A, Tsergouli K, Caglayik DY, et al. Cytokines as biomarkers of Crimean-Congo hemorrhagic fever. J Med Virol. 2016;88:21–27.
  • Papa A, Drosten C, Bino S, et al. Viral load and Crimean-Congo hemorrhagic fever. Emerg Infect Dis. 2007;13:805–806.
  • Duh D, Saksida A, Petrovec M, et al. Viral load as predictor of Crimean-Congo hemorrhagic fever outcome. Emerg Infect Dis. 2007;13:1769–1772.
  • Cevik MA, Erbay A, Bodur H, et al. Viral load as a predictor of outcome in Crimean-Congo hemorrhagic fever. Clin Infect Dis. 2007;45:e96–100.
  • Papa A, Yagci Caglayik D, Christova I, et al. Crimean-Congo hemorrhagic fever: CXCL10 correlates with the viral load. J Med Virol. 2015;87:899–903.
  • Sidira P, Maltezou HC, Haidich AB, et al. Seroepidemiological study of Crimean-Congo haemorrhagic fever in Greece, 2009-2010. Clin Microbiol Infect. 2012;18:E16–19.
  • Midilli K, Gargili A, Ergonul O, et al. The first clinical case due to AP92 like strain of Crimean-Congo Hemorrhagic Fever virus and a field survey. BMC Infect Dis. 2009;9:90.
  • Sherifi K, Cadar D, Muji S, et al. Crimean-Congo hemorrhagic fever virus clades V and VI (Europe 1 and 2) in ticks in Kosovo, 2012. PLoS Negl Trop Dis. 2014;8:e3168.
  • Oestereich L, Rieger T, Ludtke A, et al. Efficacy of favipiravir alone and in combination with Ribavirin in a lethal, immunocompetent mouse model of lassa fever. J Infect Dis. 2016;213:934–938.
  • Oestereich L, Ludtke A, Wurr S, et al. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res. 2014;105:17–21.
  • Mehand MS, Al-Shorbaji F, Millett P, et al. The WHO R&D blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018;159:63–67.
  • Shepherd AJ, Swanepoel R, Leman PA, et al. Comparison of methods for isolation and titration of Crimean-Congo hemorrhagic fever virus. J Clin Microbiol. 1986;24:654–656.
  • Suda Y, Chamberlain J, Dowall SD, et al. The development of a novel diagnostic assay that utilizes a pseudotyped vesicular stomatitis virus for the detection of neutralizing activity against crimean-congo hemorrhagic fever virus. Jpn J Infect Dis. 2018;71:205–208.
  • Berber E, Canakoglu N, Yoruk MD, et al. Application of the pseudo-plaque assay for detection and titration of Crimean-Congo hemorrhagic fever virus. J Virol Methods. 2013;187:26–31.
  • Ackermann-Gaumann R, Siegrist D, Zust R, et al. Standardized focus assay protocol for biosafety level four viruses. J Virol Methods. 2019;264:51–54.
  • Negredo A, de la Calle-Prieto F, Palencia-Herrejon E, et al. G. Crimean congo hemorrhagic fever@madrid working, autochthonous crimean-congo hemorrhagic fever in Spain. N Engl J Med. 2017;377:154–161.
  • Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean-Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996;55:190–196.
  • Koehler JW, Delp KL, Hall AT, et al. Sequence optimized real-time reverse transcription polymerase chain reaction assay for detection of crimean-congo hemorrhagic fever virus. Am J Trop Med Hyg. 2018;98:211–215.
  • Kondiah K, Swanepoel R, Paweska JT, et al. A simple-probe real-time PCR assay for genotyping reassorted and non-reassorted isolates of Crimean-Congo hemorrhagic fever virus in southern Africa. J Virol Methods. 2010;169:34–38.
  • Drosten C, Gottig S, Schilling S, et al. Rapid detection and quantification of RNA of ebola and marburg viruses, lassa virus, Crimean-Congo hemorrhagic fever virus, Rift valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40:2323–2330.
  • Yapar M, Aydogan H, Pahsa A, et al. Rapid and quantitative detection of Crimean-Congo hemorrhagic fever virus by one-step real-time reverse transcriptase-PCR. Jpn J Infect Dis. 2005;58:358–362.
  • Jaaskelainen AJ, Kallio-Kokko H, Ozkul A, et al. Development and evaluation of a real-time RT-qPCR for detection of Crimean-Congo hemorrhagic fever virus representing different genotypes. Vector Borne Zoonotic Dis. 2014;14:870–872.
  • Zahraei B, Hashemzadeh MS, Najarasl M, et al. Novel, in-house, SYBR green based one-step rRT-PCR: rapid and accurate diagnosis of Crimean-Congo hemorrhagic fever virus in suspected patients from Iran. Jundishapur J Microbiol. 2016;9:e29246.
  • Duh D, Saksida A, Petrovec M, et al. Novel one-step real-time RT-PCR assay for rapid and specific diagnosis of Crimean-Congo hemorrhagic fever encountered in the Balkans. J Virol Methods. 2006;133:175–179.
  • Wolfel R, Paweska JT, Petersen N, et al. Virus detection and monitoring of viral load in Crimean-Congo hemorrhagic fever virus patients. Emerg Infect Dis. 2007;13:1097–1100.
  • Wolfel R, Paweska JT, Petersen N, et al. Low-density macroarray for rapid detection and identification of Crimean-Congo hemorrhagic fever virus. J Clin Microbiol. 2009;47:1025–1030.
  • Ke R, Zorzet A, Göransson J, et al. Colorimetric nucleic acid testing assay for RNA virus detection based on circle-to-circle amplification of padlock probes. J Clin Microbiol. 2011;49:4279–4285.
  • Bonney LC, Watson RJ, Afrough B, et al. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo haemorrhagic fever virus infection. PLoS Negl Trop Dis. 2017;11:e0006013.
  • Osman HA, Eltom KH, Musa NO, et al. Development and evaluation of loop-mediated isothermal amplification assay for detection of Crimean Congo hemorrhagic fever virus in Sudan. J Virol Methods. S0166-0934(13)00072-4[pii]. doi:10.1016/j.jviromet.2013.03.004(2013)
  • Thomas S, Thomson G, Dowall S, et al. Review of Crimean Congo hemorrhagic fever infection in Kosova in 2008 and 2009: prolonged viremias and virus detected in urine by PCR. Vector Borne Zoonotic Dis. 2012;12:800–804.
  • Ergunay K, Kocak Tufan Z, Bulut C, et al. Antibody responses and viral load in patients with Crimean-Congo hemorrhagic fever: a comprehensive analysis during the early stages of the infection. Diagn Microbiol Infect Dis. 2014;79:31–36.
  • Hasanoglu I, Guner R, Carhan A, et al. Dynamics of viral load in Crimean Congo hemorrhagic fever. J Med Virol. 2018;90:639–643.
  • Papa A, Papadopoulou E, Tsioka K, et al. Isolation and whole-genome sequencing of a Crimean-Congo hemorrhagic fever virus strain, Greece. Ticks Tick Borne Dis. 2018;9:788–791.
  • Dincer E, Brinkmann A, Hekimoglu O, et al. Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia, Turkey. Parasit Vectors. 2017;10:335.
  • Papa A, Korukluoglu G, Bino S, et al., Phylogenetic analysis if whole genome CCHFV strains belonging to lineages Europe 1 and Europe 2. 2nd International Conference on Crimean-Congo Hemorrhagic Fever; 2017; Thessaloniki, Greece.
  • Carroll SA, Bird BH, Rollin PE, et al. Ancient common ancestry of Crimean-Congo hemorrhagic fever virus. Mol Phylogenet Evol. DOI S1055-7903(10)00008-4 [pii]. doi:10.1016/j.ympev.2010.01.006(2010)
  • Anagnostou V, Papa A. Evolution of Crimean-Congo hemorrhagic fever virus. Infect Genet Evol. 2009;9:948–954.
  • Burt FJ, Paweska JT, Ashkettle B, et al. Genetic relationship in southern African Crimean-Congo haemorrhagic fever virus isolates: evidence for occurrence of reassortment. Epidemiol Infect. DOI S0950268808001878[pii]. doi:10.1017/S0950268808001878(2009)1-7
  • Hewson R, Gmyl A, Gmyl L, et al. Evidence of segment reassortment in Crimean-Congo haemorrhagic fever virus. J Gen Virol. 2004;85:3059–3070.
  • Emmerich P, Jakupi X, von Possel R, et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo. Infect Genet Evol. 2018;65:6–11.
  • Goedhals D, Bester PA, Paweska JT, et al. Next-generation sequencing of southern African Crimean-Congo haemorrhagic fever virus isolates reveals a high frequency of M segment reassortment. Epidemiol Infect. 2014;142:1952–1962.
  • Papa A, Sidira P, Larichev V, et al. Crimean-Congo hemorrhagic fever virus, Greece. Emerg Infect Dis. 2014;20:288–290.
  • Shepherd AJ, Swanepoel R, Leman PA. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989;11(Suppl 4):S801–806.
  • Garcia S, Chinikar S, Coudrier D, et al. Evaluation of a Crimean-Congo hemorrhagic fever virus recombinant antigen expressed by Semliki forest suicide virus for IgM and IgG antibody detection in human and animal sera collected in Iran. J Clin Virol. 2006;35:154–159.
  • Saijo M, Tang Q, Shimayi B, et al. Recombinant nucleoprotein-based serological diagnosis of Crimean-Congo hemorrhagic fever virus infections. J Med Virol. 2005;75:295–299.
  • Emmerich P, Mika A, von Possel R, et al. Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)-Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in mu-capture and IgG immune complex (IC) ELISA tests. PLoS Negl Trop Dis. 2018;12:e0006366.
  • Rackow A, Ehmen C, von Possel R, et al. Immunoglobulin-like domain of HsFcmuR as a capture molecule for detection of Crimean-Congo hemorrhagic fever virus- and Zika virus-specific IgM antibodies. Clin Chem. 2019;65:451–461.
  • Burt FJ, Swanepoel R, Shieh WJ, et al. Immunohistochemical and in situ localization of Crimean-Congo hemorrhagic fever (CCHF) virus in human tissues and implications for CCHF pathogenesis. Arch Pathol Lab Med. 1997;121:839–846.
  • Escadafal C, Olschlager S, Avsic-Zupanc T, et al. First international external quality assessment of molecular detection of Crimean-Congo hemorrhagic fever virus. PLoS Negl Trop Dis. 2012;6:e1706.
  • Bartolini B, Gruber CE, Koopmans M, et al. Laboratory management of Crimean-Congo haemorrhagic fever virus infections: perspectives from two European networks. Euro Surveill. 2019;24:pii=1800093.
  • Vanhomwegen J, Alves MJ, Zupanc TA, et al. Diagnostic assays for crimean-congo hemorrhagic fever. Emerg Infect Dis. 2012;18:1958–1965.
  • Haddock E, Feldmann F, Hawman DW, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol. 2018;3:556–562.
  • Garrison AR, Shoemaker CJ, Golden JW, et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis. 2017;11:e0005908.
  • Bente DA, Alimonti JB, Shieh WJ, et al. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol. 2010;84:11089–11100.
  • Bereczky S, Lindegren G, Karlberg H, et al. Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J Gen Virol. 2010;91:1473–1477.
  • Dowall SD, Graham VA, Rayner E, et al. Protective effects of a modified vaccinia ankara-based vaccine candidate against Crimean-Congo haemorrhagic fever virus require both cellular and humoral responses. PLoS One. 2016;11:e0156637.
  • Buttigieg KR, Dowall SD, Findlay-Wilson S, et al. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS One. 2014;9:e91516.
  • Zivcec M, Metcalfe MG, Albarino CG, et al. Assessment of inhibitors of pathogenic Crimean-Congo hemorrhagic fever virus strains using virus-like particles. PLoS Negl Trop Dis. 2015;9:e0004259.
  • Devignot S, Bergeron E, Nichol S, et al. A virus-like particle system identifies the endonuclease domain of Crimean-Congo hemorrhagic fever virus. J Virol. 2015;89:5957–5967.
  • Leblebicioglu H, Sunbul M, Barut S, et al. Crimean Congo Hemorrhagic fever research network of Turkey, multi-center prospective evaluation of discharge criteria for hospitalized patients with Crimean-Congo hemorrhagic fever. Antiviral Res. 2016;133:9–13.
  • Spengler JR, Bente DA, Bray M, et al. Second international conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res. 2018;150:137–147.
  • Sigfrid L, Eckerle I, Papa A, et al. Strengthening preparedness for (re-) emerging arboviruses in Europe. Clin Microbiol Infect. 2018;24:219–220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.