3,814
Views
25
CrossRef citations to date
0
Altmetric
Editorial

A clinical role for Förster resonance energy transfer in molecular diagnostics of disease

&
Pages 767-771 | Received 19 Apr 2019, Accepted 24 Jul 2019, Published online: 06 Aug 2019

References

  • Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat Struct Biol. 2000;7:730–734.
  • Medintz IL, Hildebrandt N. FRET-Förster resonance energy transfer: from theory to applications. Hoboken (NJ): John Wiley & Sons; 2013.
  • Hildebrandt N, Spillmann CM, Russ Algar W, et al. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev. 2017;117:536–711.
  • Teunissen AJP, Pérez-Medina C, Meijerink A, et al. Investigating supramolecular systems using Förster resonance energy transfer. Chem Soc Rev. 2018;47:7027–7044.
  • Hildebrandt N, Wegner KD, Algar WR. Luminescent terbium complexes: superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord Chem Rev. 2014;273–274:125–138.
  • Qiu X, Wegner KD, Wu YT, et al. Nanobodies and antibodies for duplexed EGFR/HER2 immunoassays using terbium-to-quantum dot FRET. Chem Mater. 2016;28:8256–8267.
  • Wu Y-T, Qiu X, Lindbo S, et al. Quantum dot-based FRET immunoassay for HER2 using ultrasmall affinity proteins. Small. 2018;14:1802266.
  • Navarro E, Serrano-Heras G, Castaño MJ, et al. Real-time PCR detection chemistry. Clin Chim Acta. 2015;439:231–250.
  • Lyon E, Wittwer CT. LightCycler technology in molecular diagnostics. J Mol Diagnostics. 2009;11:93–101.
  • Logan J, Edwards K. An overview of PCR platforms. In Edwards K, Logan J and Saunders N, editors. Real-time PCR an essential guide. Horizon Bioscience. Norfolk (UK); 2004.
  • Qiu X, Xu J, Guo J, et al. Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chem Sci. 2018;9:8046–8055.
  • Guo J, Mingoes C, Qiu X, et al. Simple, amplified, and multiplexed detection of MicroRNAs using time-gated FRET and hybridization chain reaction. Anal Chem. 2019;91:3101–3109.
  • Duan R, Zuo X, Wang S, et al. Lab in a tube: ultrasensitive detection of MicroRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. J Am Chem Soc. 2013;135:4604–4607.
  • Rosler A, Bailey L, Jones S, et al. Rolling circle amplification for scoring single nucleotide polymorphisms. Nucleosides Nucleotides Nucleic Acids. 2001;20:893–894.
  • Ha T, Tinnefeld P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem. 2012;63:595–617.
  • Lerner E, Cordes T, Ingargiola A, et al. Toward dynamic structural biology: two decades of single-molecule förster resonance energy transfer. Science. 2018;359(6373):eaan1133.
  • Hellenkamp B, Schmid S, Doroshenko O, et al. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat Methods. 2018;15:669–676.
  • Wabuyele MB, Farquar H, Stryjewski W, et al. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in k-ras oncogenes. J Am Chem Soc. 2003;125:6937–6945.
  • Zhang C-Y, Yeh H-C, Kuroki MT, et al. Single-quantum-dot-based DNA nanosensor. Nat Mater. 2005;4:826–831.
  • Zhang C, Hu J. Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem. 2010;82:1921–1927.
  • Frutos AG, Pal S, Quesada M, et al. Method for detection of single-base mismatches using bimolecular beacons. J Am Chem Soc. 2002;124:2396–2397.
  • Salisbury CM, Maly DJ, Ellman JA. Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc. 2002;124:14868–14870.
  • Lei Z, Zhang H, Wang Y, et al. Peptide microarray-based metal enhanced fluorescence assay for multiple profiling of matrix metalloproteinases activities. Anal Chem. 2017;89:6749–6757.
  • Chen C, Ao L, Wu YT, et al. Single-nanoparticle cell barcoding by tunable FRET from lanthanides to quantum dots. Angew Chemie Int Ed. 2018;57:13686–13690.
  • Dagher M, Kleinman M, Ng A, et al. Ensemble multicolour FRET model enables barcoding at extreme FRET levels. Nat Nanotechnol. 2018;13:925–932.
  • Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44:4792–4834.
  • Schmolze DB, Standley C, Fogarty KE, et al. Advances in microscopy techniques. Arch Pathol Lab Med. 2011;135:255–263.
  • Hu HY, Gehrig S, Reither G, et al. FRET-based and other fluorescent proteinase probes. Biotechnol J. 2014;9:266–281.
  • Geißler D, Stu S, Lo H, et al. Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing. J Am Chem Soc. 2013;135:1102–1109.
  • [cited 2019 Jul 29]. Available from: https://www.qiagen.com/fr/products/diagnostics-and-clinical-research/oncology/therascreen-solid-tumor/therascreen-egfr-rgq-pcr-kit-v2/#orderinginformation.
  • Belinsky SA, Carraway HE, Bailey VJ, et al. MS-qFRET: A quantum dot-based method for analysis of DNA methylation. Genome Res. 2009;19:1455–1461.
  • Gustafson D, Tyryshkin K, Renwick N. microRNA-guided diagnostics in clinical samples. Best Pract Res Clin Endocrinol Metab. 2016;30(5):563–575.
  • Füzéry AK, Levin J, Chan MM, et al. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10:13.
  • Chen MJ, Wu YS, Lin GF, et al. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein. Anal Chim Acta. 2012;34:100–105.
  • Wegner KD, Jin Z, Linden S, et al. Quantum-dot-based Förster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano. 2013;7:7411–7419.
  • Wei Q, Lee M, Yu X, et al. Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer. Anal Biochem. 2006;358:31–37.
  • Broussard JA, Green KJ. Research techniques made simple: methodology and applications of Förster resonance energy transfer (FRET) microscopy. J Invest Dermatol. 2017;137:e185–e191.
  • Weitsman G, Barber PR, Nguyen LK, et al. HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget. 2014;7:51012–51026.
  • Rotondi M, Valenzano F, Bilancioni E, et al. Prenatal diagnosis of congenital toxoplasmosis by duplex real-time PCR using fluorescence resonance energy transfer hybridization probes. Prenat Diagn. 2001;21:85–88.
  • [cited 2019 Jul 29]. Available from: www.brahms.de/products/prenatal-screening.html.
  • Emmadi R, Boonyaratanakornkit JB, Selvarangan R, et al. Molecular methods and platforms for infectious diseases testing: A review of FDA-approved and cleared assays. J Mol Diagnostics. 2011;13:583–604.
  • Warren DK, Liao RS, Merz LR, et al. Detection of methicillin-resistant staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay. ‎J. Clin. Microbiol. 2004;42:5578–5581.
  • [cited 2019 Jul 29]. Available from: www.procalcitonin.com/pct-assays/quality-matters.html.
  • Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86:3195–3202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.