628
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular characterisation of emerging pathogens of unexplained infectious disease syndromes

, ORCID Icon &
Pages 839-848 | Received 29 May 2019, Accepted 30 Jul 2019, Published online: 06 Aug 2019

References

  • Gottlieb MS, Schroff R, Schanker HM, et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med. 1981;305(24):1425–1431.
  • Masur H, Michelis MA, Greene JB, et al. An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med. 1981;305(24):1431–1438.
  • Centers for Disease Control (CDC). Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men–New York city and California. MMWR Morb Mortal Wkly Rep. 1981;30(25):305–308.
  • Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–871.
  • Centers for Disease Control. Immunodeficiency among female sexual partners of males with acquired immune deficiency syndrome (AIDS) - New York. MMWR Morb Mortal Wkly Rep. 1983;31(52):697–698.
  • Jaffe HW, Bregman DJ, Selik RM. Acquired immune deficiency syndrome in the United States: the first 1,000 cases. J Infect Dis. 1983;148(2):339–345.
  • Shannon KM, Ammann AJ. Acquired immune deficiency syndrome in childhood. J Pediatr. 1985;106(2):332–342.
  • Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311–1315.
  • Fox GE, Magrum LJ, Balch WE, et al. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A. 1977;74(10):4537–4541.
  • Woese CR. Bacterial evolution. Microbiol Rev. 1987;51(2):221–271.
  • Woo PC, Lau SKP, Teng JLL, et al. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14(10):908–934.
  • Woo PC, Tam DMW, Leung K-W, et al. Streptococcus sinensis sp. nov., a novel species isolated from a patient with infective endocarditis. J Clin Microbiol. 2002;40(3):805–810.
  • Lau SK, McNabb A, Woo GKS, et al. Catabacter hongkongensis gen. nov., sp. nov., isolated from blood cultures of patients from Hong Kong and Canada. J Clin Microbiol. 2007;45(2):395–401.
  • Lau SK, Curreem SOT, Lin CCN, et al. Streptococcus hongkongensis sp. nov., isolated from a patient with an infected puncture wound and from a marine flatfish. Int J Syst Evol Microbiol. 2013;63(Pt 7):2570–2576.
  • Snel B, Bork P, Huynen MA. Genome phylogeny based on gene content. Nat Genet. 1999;21(1):108–110.
  • Qian Q, Tang YW, Kolbert CP, et al. Direct identification of bacteria from positive blood cultures by amplification and sequencing of the 16S rRNA gene: evaluation of BACTEC 9240 instrument true-positive and false-positive results. J Clin Microbiol. 2001;39(10):3578–3582.
  • Miller RJ, Chow B, Pillai D, et al. Development and evaluation of a novel fast broad-range 16S ribosomal DNA PCR and sequencing assay for diagnosis of bacterial infective endocarditis: multi-year experience in a large Canadian healthcare zone and a literature review. BMC Infect Dis. 2016;16:146.
  • Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761.
  • Drancourt M, Bollet C, Carlioz A, et al. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol. 2000;38(10):3623.
  • Mignard S, Flandrois JP. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods. 2006;67(3):574–581.
  • Woo PC, Woo GKS, Lau SKP, et al. Single gene target bacterial identification. groEL gene sequencing for discriminating clinical isolates of Burkholderia pseudomallei and Burkholderia thailandensis. Diagn Microbiol Infect Dis. 2002;44(2):143–149.
  • Zeaiter Z, Fournier P-E, Ogata H, et al. Phylogenetic classification of Bartonella species by comparing groEL sequences. Int J Syst Evol Microbiol. 2002;52(Pt 1):165–171.
  • La Scola B, Gundi VAKB, Khamis A, et al. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol. 2006;44(3):827–832.
  • Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol. 1997;26(5):1005–1011.
  • Volokhov DV, Simonyan V, Davidson MK, et al. RNA polymerase beta subunit (rpoB) gene and the 16S-23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae. Mol Phylogenet Evol. 2012;62(1):515–528.
  • Adekambi T, Drancourt M, Raoult D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 2009;17(1):37–45.
  • Adekambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003;41(12):5699–5708.
  • Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis. 1998;79(1):3–29.
  • Drancourt M, Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol. 2002;40(4):1333–1338.
  • Pham HN, Ohkusu K, Mishima N, et al. Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagn Microbiol Infect Dis. 2007;58(2):153–161.
  • Kawasaki S, Fratamico PM, Wesley IV, et al. Species-specific identification of Campylobacters by PCR-restriction fragment length polymorphism and PCR targeting of the gyrase B gene. Appl Environ Microbiol. 2008;74(8):2529–2533.
  • Heikens E, Fleer A, Paauw A, et al. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol. 2005;43(5):2286–2290.
  • Poyart C, Quesne G, Coulon S, et al. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol. 1998;36(1):41–47.
  • Poyart C, Quesnes G, Trieu-Cuot P. Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol. 2000;38(1):415–418.
  • Roth A, Fischer M, Hamid ME, et al. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol. 1998;36(1):139–147.
  • Man SM, Kaakoush NO, Octavia S, et al. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the Campylobacter genus. Appl Environ Microbiol. 2010;76(10):3071–3081.
  • Neblett Fanfair R, Benedict K, Bos J, et al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med. 2012;367(23):2214–2225.
  • Kauffman CA, Pappas PG, Patterson TF. Fungal infections associated with contaminated methylprednisolone injections. N Engl J Med. 2012;368(26):2495–2500.
  • Schwartz IS, Sanche S, Wiederhold NP, et al. Emergomyces canadensis, a dimorphic fungus causing fatal systemic human disease in North America. Emerg Infect Dis. 2018;24(4):758–761.
  • Gast KB, van der Hoeven A, de Boer MGJ, et al. Two cases of Emergomyces pasteurianus infection in immunocompromised patients in the Netherlands. Med Mycol Case Rep. 2019;24:5–8.
  • Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241–6246.
  • Woo PC, Lau SKP, Ngan AHY, et al. Lichtheimia hongkongensis sp. nov., a novel Lichtheimia spp. associated with rhinocerebral, gastrointestinal, and cutaneous mucormycosis. Diagn Microbiol Infect Dis. 2010;66(3):274–284.
  • Woo PC, Ngan AHY, Tsang CCC, et al. Clinical spectrum of exophiala infections and a novel exophiala species, exophiala hongkongensis. J Clin Microbiol. 2013;51(1):260–267.
  • Tsang CC, Chan JFW, Trendell-Smith NJ, et al. Subcutaneous phaeohyphomycosis in a patient with IgG4-related sclerosing disease caused by a novel ascomycete, Hongkongmyces pedis gen. et sp. nov.: first report of human infection associated with the family Lindgomycetaceae. Med Mycol. 2014;52(7):736–747.
  • Tsang CC, Chan JFW, Pong W-M, et al. Cutaneous hyalohyphomycosis due to Parengyodontium album gen. et comb. nov. Med Mycol. 2016;54(7):699–713.
  • Dannaoui E, Schwarz P, Slany M, et al. Molecular detection and identification of zygomycetes species from paraffin-embedded tissues in a murine model of disseminated zygomycosis: a collaborative European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Fungal Infection Study Group (EFISG) evaluation. J Clin Microbiol. 2010;48(6):2043–2046.
  • Zeng X, Kong F, Halliday C, et al. Reverse line blot hybridization assay for identification of medically important fungi from culture and clinical specimens. J Clin Microbiol. 2007;45(9):2872–2880.
  • Zhao Z, Li L, Wan Z, et al. Simultaneous detection and identification of Aspergillus and mucorales species in tissues collected from patients with fungal rhinosinusitis. J Clin Microbiol. 2011;49(4):1501–1507.
  • Xafranski H, Melo AS, Machado AM, et al. A quick and low-cost PCR-based assay for Candida spp. identification in positive blood culture bottles. BMC Infect Dis. 2013;13:467.
  • van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med. 2004;10(4):368–373.
  • Woo PCY, Lau SKP, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884.
  • Lau SKP, Yip CCY, Tsoi H-W, et al. Clinical features and complete genome characterization of a distinct Human Rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol. 2007;45(11):3655.
  • Palacios G, Druce J, Du L, et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med. 2008;358(10):991–998.
  • Kapoor A, Victoria J, Simmonds P, et al. A highly prevalent and genetically diversified picornaviridae genus in South Asian children. Proc Natl Acad Sci U S A. 2008;105(51):20482–20487.
  • Holtz LR, Finkbeiner SR, Zhao G, et al. Klassevirus 1, a previously undescribed member of the family picornaviridae, is globally widespread. Virol J. 2009;6(1):86.
  • Zoll J, Erkens Hulshof S, Lanke K, et al. Saffold virus, a human theiler’s-like cardiovirus, is ubiquitous and causes infection early in life. PLoS Pathog. 2009;5(5):e1000416.
  • Mishra N, Pereira M, Rhodes RH, et al. Identification of a novel polyomavirus in a pancreatic transplant recipient with retinal blindness and vasculitic myopathy. J Infect Dis. 2014;210(10):1595–1599.
  • Finkbeiner SR, Li Y, Ruone S, et al. Identification of a novel astrovirus (Astrovirus VA1) associated with an outbreak of acute gastroenteritis. J Virol. 2009;83(20):10836.
  • van Leeuwen M, Williams MMW, Koraka P, et al. Human picobirnaviruses identified by molecular screening of diarrhea samples. J Clin Microbiol. 2010;48(5):1787.
  • Mokili JL, Dutilh BE, Lim YW, et al. Identification of a novel human papillomavirus by metagenomic analysis of samples from patients with febrile respiratory illness. Plos One. 2013;8(3):e58404.
  • Kapoor A, Slikas E, Simmonds P, et al. A newly identified bocavirus species in human stool. J Infect Dis. 2009;199(2):196–200.
  • Sridhar S, To KKW, Chan JFW, et al. A systematic approach to novel virus discovery in emerging infectious disease outbreaks. J Mol Diagn. 2015;17(3):230–241.
  • Lewis T, Loman NJ, Bingle L, et al. High-throughput whole-genome sequencing to dissect the epidemiology of acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect. 2010;75(1):37–41.
  • Harris SR, Feil EJ, Holden MTG, et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010;327(5964):469.
  • Snitkin ES, Zelazny AM, Thomas PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4(148):148ra116.
  • Zhou K, Ferdous M, de Boer RF, et al. The mosaic genome structure and phylogeny of Shiga toxin-producing Escherichia coli O104: h4is driven by short-term adaptation. Clin Microbiol Infect. 2015;21(5):468.e7–468.e18.
  • Ho CC, Yuen K-Y, Lau SKP, et al. Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104: h4outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol. 2011;49(10):3714–3716.
  • Whipple GH. A hitherto undescribed disease characterised anatomically by deposits of fat and fatty acids in the intestinal and mesenteric lymphatic tissues. Bull Johns Hopkins Hosp. 1907 Sept;18:382–391.
  • Chears WC Jr., Ashworth CT. Electron microscopic study of the intestinal mucosa in Whipple’s disease. Demonstration of encapsulated bacilliform bodies in the lesion. Gastroenterology. 1961;41:129–138.
  • Yardley JH, Hendrix TR. Combined electron and light microscopy in Whipple’s disease. Demonstration of “bacillary bodies” in the intestine. Bull Johns Hopkins Hosp. 1961;109:80–98.
  • Wilson KH, Blitchington R, Frothingham R, et al. Phylogeny of the Whipple’s-disease-associated bacterium. Lancet. 1991;338(8765):474–475.
  • Relman DA, Schmidt TM, MacDermott RP, et al. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med. 1992;327(5):293–301.
  • La Scola B, Fenollar F, Fournier PE, et al. Description of Tropheryma whipplei gen. nov., sp. nov., the Whipple’s disease bacillus. Int J Syst Evol Microbiol. 2001;51(Pt 4):1471–1479.
  • Schoedon G, Goldenberger D, Forrer R, et al. Deactivation of macrophages with interleukin-4 is the key to the isolation of Tropheryma whippelii. J Infect Dis. 1997;176(3):672–677.
  • Raoult D, Birg ML, La Scola B, et al. Cultivation of the bacillus of Whipple’s disease. N Engl J Med. 2000;342(9):620–625.
  • Dolmans RA, Boel CHE, Lacle MM, et al. Clinical manifestations, treatment, and diagnosis of Tropheryma whipplei infections. Clin Microbiol Rev. 2017;30(2):529–555.
  • Yuen KY, Woo PC, Teng JL, et al. Laribacter hongkongensis gen. nov., sp. nov., a novel gram-negative bacterium isolated from a cirrhotic patient with bacteremia and empyema. J Clin Microbiol. 2001;39(12):4227–4232.
  • Woo PC, Lau SKP, Teng JLL, et al. Association of Laribacter hongkongensis in community-acquired gastroenteritis with travel and eating fish: a multicentre case-control study. Lancet. 2004;363(9425):1941–1947.
  • Teng JL, Woo PCY, Ma SSL, et al. Ecoepidemiology of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis. J Clin Microbiol. 2005;43(2):919–922.
  • Lau SK, Woo PCY, Fan RYY, et al. Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from drinking water reservoirs in Hong Kong. J Appl Microbiol. 2007;103(3):507–515.
  • Woo PC, Kuhnert P, Burnens AP, et al. Laribacter hongkongensis: a potential cause of infectious diarrhea. Diagn Microbiol Infect Dis. 2003;47(4):551–556.
  • Beilfuss HA, Quig D, Block MA, et al. Definitive identification of laribacter hongkongensis acquired in the United States. J Clin Microbiol. 2015;53(7):2385–2388.
  • Engsbro AL, Nielsen KL, Hornum M, et al. Laribacter hongkongensis: clinical presentation, epidemiology and treatment. A review of the literature and report of the first case in Denmark. Infect Dis (Lond). 2018;50(6):417–422.
  • Woo PC, Lau SKP, Tse H, et al. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats. PLoS Genet. 2009;5(3):e1000416.
  • Lau SK, Fan RY, Ho TC, et al. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis. Cell Biosci. 2011;1(1):22.
  • Lau SK, Wong GK, Tsang AK, et al. Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis. Cell Biosci. 2011;1(1):17.
  • Lau SK, Fan RY, Wong GK, et al. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis. Cell Biosci. 2011;1:28.
  • Xie J, He J-B, Shi J-W, et al. An adult zebrafish model for Laribacter hongkongensis infection: Koch’s postulates fulfilled. Emerg Microbes Infect. 2014;3(10):e73.
  • Tang BS, Lau SKP, Teng JLL, et al. Matrix-assisted laser desorption ionisation-time of flight mass spectrometry for rapid identification of Laribacter hongkongensis. J Clin Pathol. 2013;66(12):1081–1083.
  • Satoh K, Makimura K, Hasumi Y, et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41–44.
  • Spivak ES, Hanson KE. Candida auris: an Emerging Fungal Pathogen. J Clin Microbiol. 2018;56(2):e01588–17.
  • Chowdhary A, Sharma C, Meis JF. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017;13(5):e1006290.
  • Kim TH, Kweon OJ, Kim HR, et al. Identification of uncommon candida species using commercial identification systems. J Microbiol Biotechnol. 2016;26(12):2206–2213.
  • Kordalewska M, Zhao Y, Lockhart SR, et al. Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candida auris. J Clin Microbiol. 2017;55(8):2445–2452.
  • Theill L, Dudiuk C, Morales-Lopez S, et al. Single-tube classical PCR for Candida auris and Candida haemulonii identification. Rev Iberoam Micol. 2018;35(2):110–112.
  • Ruiz-Gaitan AC, Fernández-Pereira J, Valentin E, et al. Molecular identification of Candida auris by PCR amplification of species-specific GPI protein-encoding genes. Int J Med Microbiol. 2018;308(7):812–818.
  • Sigurgeirsson B, Baran R. The prevalence of onychomycosis in the global population: a literature study. J Eur Acad Dermatol Venereol. 2014;28(11):1480–1491.
  • Youssef AB, Kallel A, Azaiz Z, et al. Onychomycosis: which fungal species are involved? Experience of the laboratory of parasitology-mycology of the Rabta hospital of Tunis. J Mycol Med. 2018;28(4):651–654.
  • Bongomin F, Batac CR, Richardson MD, et al. A review of onychomycosis due to aspergillus species. Mycopathologia. 2018;183(3):485–493.
  • Abdel-Sater MA, Moubasher AA, Soliman Z. Identification of three yeast species using the conventional and internal transcribed spacer region sequencing methods as first or second global record from human superficial infections. Mycoses. 2016;59(10):652–661.
  • Haghani I, Shams-Ghahfarokhi M, Dalimi Asl A, et al. Molecular identification and antifungal susceptibility of clinical fungal isolates from onychomycosis (uncommon and emerging species). Mycoses. 2019;62(2):128–143.
  • Tsang -C-C, Tang JYM, Chan K-F, et al. Diversity of phenotypically non-dermatophyte, non-aspergillus filamentous fungi causing nail infections: importance of accurate identification and antifungal susceptibility testing. Emerg Microbes Infect. 2019;8(1):531–541.
  • Watanabe S, Ishida K. Molecular diagnostic techniques for onychomycosis: validity and potential application. Am J Clin Dermatol. 2017;18(2):281–286.
  • Perdomo H, Sutton DA, García D, et al. Spectrum of clinically relevant acremonium species in the United States. J Clin Microbiol. 2011;49(1):243–256.
  • Peiris JSM, Lai ST, Poon L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–1325.
  • Marra MA, Jones SJM, Astell CR, et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300(5624):1399.
  • Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394.
  • Guan Y, Peiris J, Zheng B, et al. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet. 2004;363(9403):99–104.
  • Lau SK, Woo PCY, Li KSM, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102(39):14040–14045.
  • Luk HKH, Li X, Fung J, et al. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 2019;71:21–30.
  • Woo PC, Lau SKP, Tsoi H-W, et al. Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J Infect Dis. 2005;192(11):1898–1907.
  • Lau SK, Woo PCY, Yip CCY, et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006;44(6):2063–2071.
  • Woo PC, Lau SKP, Yip CCY, et al. Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J Virol. 2006;80(14):7136–7145.
  • Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820.
  • Cotten M, Watson SJ, Kellam P, et al. Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study. Lancet. 2013;382(9909):1993–2002.
  • Briese T, Mishra N, Jain K, et al. Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. MBio. 2014;5(3):e01146–14.
  • Yusof MF, Queen K, Eltahir YM, et al. Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates. Emerg Microbes Infect. 2017;6(11):e101.
  • Lau SKP, Wong A, Lau T, et al. Molecular evolution of MERS coronavirus: dromedaries as a recent intermediate host or long-time animal reservoir? Int J Mol Sci. 2017;18(10):2138.
  • Woo PC, Wang M, Lau SKP, et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol. 2007;81(4):1574–1585.
  • Woo PC, Lau SKP, Lam CSF, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995–4008.
  • de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87(14):7790–7792.
  • Lau SK, Li KSM, Tsang AKL, et al. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol. 2013;87(15):8638–8650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.