366
Views
10
CrossRef citations to date
0
Altmetric
Special Report

Role of artificial intelligence and vibrational spectroscopy in cancer diagnostics

, &
Pages 749-755 | Received 08 Feb 2020, Accepted 15 Jun 2020, Published online: 27 Jun 2020

References

  • Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–773.
  • Rehman IU, Movasaghi Z, Rehman S. Vibrational spectroscopy for tissue analysis, series in medical physics and biomedical engineering. CRC Press; A Taylor and Francis Book, Boca Raton; 2012 October. ISBN 978-1- 439-3608-8.
  • Cooper GM, Sunderland MA. The cell: a molecular approach.2nd ed., Sunderland,Sinauer Associates;The Development and Causes of Cancer. 2000. ISBN-10: 9780878931064.
  • Rehman IU, Smith R, Hench LL, et al. Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J Biomed Mater Res. 1995;29(10):1287–1294.
  • Smith R, Rehman IU. Fourier transform raman spectroscopic studies of human bone. J Mater. 1994;5(9–10):775–778.
  • Khan AF, Younas MA, Khan AS, et al. Raman spectroscopy of natural bone and synthetic apatites. Appl Spectrosc Rev. 2013;48(4):329–355.
  • Larraona-Puy M, Ghita A, Zoladek A, et al. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy. J Mol Struct. 2011;993(1–3):57–61.
  • Sigurdsson S, Philipsen PA, Hansen LK, et al. Detection of skin cancer by classification of Raman spectra. IEEE Trans Biomed Eng. 2004;51(10):1784–1793.
  • Cheng WT, Liu MT, Liu HN, et al. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc Res Tech. 2005;68(2):75–79.
  • Liu W, Sun Z, Chen J, et al. Raman spectroscopy in colorectal cancer diagnostics: comparison of PCA-LDA and PLS-DA models. J Spectro. 2016;6. Article ID 1603609. DOI:10.1155/2016/1603609
  • Oshima Y, Shinzawa H, Takenaka T, et al. Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy. J Biomed Opt. 2010;15(1):017009.
  • Li XZ, Yang TY, Ding JH. Surface enhanced Raman spectroscopy (sers) of saliva for the diagnosis of lung cancer. Spectrosc Spectral Anal. 2012;32(2):391–393.
  • Talari ACS, Evans CA, Holen I, et al. Raman spectroscopic analysis differentiates between breast cancer cell lines. J Raman Spectroscopy. 2015;46(5):421–427.
  • Rehman S, Movasaghi Z, Darr JA, et al. Fourier transform infrared spectroscopic analysis of breast cancer tissues; identifying differences between normal breast, invasive ductal carcinoma, and ductal carcinoma in situ of the breast. Appl Spectrosc Rev. 2010;45(5):355–368.
  • Haka AS, Shafer-Peltier KE, Fitzmaurice M, et al. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci U S A. 2005;102(35):12371–12376.
  • Saha A, Barman I, Dingari NC, et al. Raman spectroscopy: a real-time tool for identifying microcalcifications during stereotactic breast core needle biopsies. Biomed Opt Express. 2011;2(10):2792–2803.
  • Haka AS, Shafer KE, Fitzmaurice M, et al. Distinguishing type Ii microcalcifications in benign and malignant breast lesions using raman spectroscopy. Lab Invest. 2002;82(1):36A.
  • Shetty G, Kendall C, Shepherd N, et al. Raman Spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer. 2006;94(10):1460–1464.
  • Ogawa M, Harada Y, Yamaoka Y, et al. Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy. Biochem Biophys Res Commun. 2009;382(2):370–374. Epub.
  • Chaichi A, Prasad A, Gartia MR. Raman spectroscopy and microscopy applications in cardiovascular diseases: from molecules to organs. Biosensors (Basel). 2018;8(4):107.
  • Bauer NJ, Hendrikse F, March WF. In vivo confocal Raman spectroscopy of the human cornea. Cornea. 1999;18(4):483–488.
  • Erckens R, Jongsma F, Wicksted J, et al. Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med Sci. 2001;16:236–252.
  • Sheng D, Xu F, Yu Q, et al. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy. J. Mol. Struct. 2015;1099:18–23.
  • Palaniappan PR, Vijayasundaram V. FTIR study of arsenic induced biochemical changes on the liver tissues of fresh water fingerlings Labeo rohita. Rom J Biophys. 2008;18:135–144.
  • Cheng Z, Namhyun C, Wang R, et al. Simultaneous detection of dual prostate specific antigens using surface-enhanced raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano. 2017;11(5):4926–4933.
  • Kast RE, Tucker SC, Killian K, et al. Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metast Rev. 2014;33(2–3):673–693.
  • Feng S, Pan J, Wu Y, et al. Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis. Sci China-Life Sci. 2011;54(9):828–834.
  • Kawabata T, Kikuchi H, Okazaki S, et al. Near-infrared multichannel Raman spectroscopy with a 1064 Nm excitation wavelength for Ex vivo diagnosis of gastric cancer. J Surg Res. 2011;169(2):E137–E143.
  • Bergholt MS, Lin K, Zheng W, et al. In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx. 2012;17(7). J Biomed Opt. DOI:10.1117/1.JBO.17.7.077002
  • Mian SA, Yorucu C, Ullah MS, et al. Raman spectroscopy can discriminate between normal, dysplastic and cancerous oral mucosa: a tissue-engineering approach. J Tissue Eng Regen Med. 2016. DOI:10.1002/term.2234
  • Mian SA, Colley H, Thornhill MH, et al. Development of a dewaxing protocol for tissue-engineered models of the oral mucosa used for Raman spectroscopic analysis. Appl Spectrosc Rev. 2014;49(8):614–617.
  • Shapiro A, Gofrit ON, Pizov G, et al. Raman molecular imaging: a novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur Urol. 2011;59(1):106–112.
  • Fung MFK, Senterman MK, Mikhael NZ, et al. Pressure-tuning Fourier transform infrared spectroscopic study of carcinogenesis in human endometrium. Biospectroscopy. 1996;2(3). DOI:10.1002/(SICI)1520-6343(1996)2:3<155::AID-BSPY2>3.0.CO;2-7
  • Ramos IR, Lyng FM, Rehman IU, et al. The use of vibrational spectroscopy to study the pathogenesis multiple sclerosis and other neurological conditions. Appl Spectrosc Rev. 2017;52(10):868–882.
  • Kirsch M, Schackert G, Salzer R, et al. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem. 2010;398(4):1707–1713.
  • Gatenby R, Vincent TL. An evolutionary model of carcinogenesis. Cancer Res. 2003;63(19):6212–6220.
  • McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4 (9)):613–628.
  • Talari ACS, Movasaghi Z, Rehman S, et al. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2015;50(1):46–111.
  • Conklin MW, Eickhoff JC, Riching KM, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–1232.
  • Eckel R, Huo H, Guan H-W, et al. Characteristic infrared spectroscopic patterns in the protein bands of human breast cancer tissue. Vib Spectrosc. 2001;27(2):165–173.
  • Gao T, Feng J, Ci Y. Human breast carcinomal tissues display distinctive FTIR spectra: implication for the histological characterization of carcinomas. Anal Cell Pathol. 1999;18(2):87–93.
  • Ghosh K, Stuke A, Todorović M, et al. Deep learning spectroscopy: neural networks for molecular excitation spectra. Adv Sci. 2019 May 3;6(9):1801367.
  • Devosa O, Ruckebuscha C, Durandab A, et al. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemometr Intell Lab Syst. 2009 March 15;96(1):27–33.
  • Kistenev YV, Borisov AV, Knyazkova AI, et al. Applications of THz laser spectroscopy and machine learning for medical diagnostics. EPJ Web Conf. 2018;195(10006):TERA–2018.
  • Sattlecker M, Baker R, Stone N, et al. Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra. Chemom Intell Lab Syst. 2011;107(2):363–370.
  • Gajjar K, Trevisan J, Owens G, et al. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst. 2013;138(14):3917.
  • Ellis DI, Broadhurst D, Clarke SJ, et al. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. Analyst. 2005;130(12):1648.
  • Morellos A, Pantazi X-E, Moshou D, et al. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst Eng. 2016;152:104–116.
  • Cheng C, Liu J, Zhang C, et al. An overview of infrared spectroscopy based on continuous wavelet transform combined with machine learning algorithms: application to Chinese medicines, plant classification, and cancer diagnosis. Appl Spectrosc Rev. 2010;45(2):148–164.
  • Amato F, López A, MaríaPeña-Méndez E, et al. Artificial neural networks in medical diagnosis. J Appl Biomed. 2013;11(2):47–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.