152
Views
3
CrossRef citations to date
0
Altmetric
Diagnostic Profile

A profile of the GenePOC Carba C assay for the detection and differentiation of gene sequences associated with carbapenem-non-susceptibility

& ORCID Icon
Pages 757-769 | Received 26 Nov 2019, Accepted 17 Jun 2020, Published online: 07 Jul 2020

References

  • WHO. Global Antimicrobial Resistance Surveillance System (GLASS) Report. Geneva: World Health Organization.; 2017. Available from: https://doi.org/ISBN978-92-4-151344-9
  • European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in europe – annual report of the european antimicrobial resistance surveillance network (EARS-Net) 2017. ECDC. 2018. doi:10.2807/esm.05.12.00021-en.
  • Shrivastava S, Shrivastava P, Ramasamy J. WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. JMS - J Med Soc. 2018;32(1):76–77.
  • Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263–272. .
  • Cimmino T, Le Page S, Raoult D, et al. Contemporary challenges and opportunities in the diagnosis and outbreak detection of multidrug-resistant infectious disease. Expert Rev Mol Diagn. 2016;16(11):1163–1175.
  • Pitout JDD. Transmission surveillance for antimicrobial-resistant organisms in the health system. Microbiol Spectr. 2018;6:1–10.
  • Tamma PD, Opene BNA, Gluck A, et al. Comparison of 11 phenotypic assays for accurate detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2017;55(4):1046–1055.
  • Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783–822. .
  • Tuite N, Reddington K, Barry T, et al. Rapid nucleic acid diagnostics for the detection of antimicrobial resistance in Gram-negative bacteria: is it time for a paradigm shift? J Antimicrob Chemother. 2014;69(7):1729–1733.
  • Meier M, Hamprecht A. Systematic comparison of four methods for detection of carbapenemase-producing Enterobacterales directly from blood cultures. J Clin Microbiol. 2019;57(11):1–8.
  • Bissonnette L, Bergeron MG. The GenePOC platform, a rational solution for extreme point-of-care testing. Micromachines. 2016;7(6):1–14.
  • Banerjee R, Humphries R. Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8(4):427–439.
  • Dubourg G, Raoult D, Fenollar F. Emerging methodologies for pathogen identification in bloodstream infections: an update. Expert Rev Mol Diagn. 2019;19(2):161–173.
  • Maugeri G, Lychko I, Sobral R, et al. Identification and antibiotic-susceptibility profiling of infectious bacterial agents: a review of current and future trends. Biotechnol J. 2019;14. DOI:10.1002/biot.201700750
  • Bullman S, Lucey B, Sleator RD. Molecular diagnostics: the changing culture of medical microbiology. Bioeng Bugs. 2012;3(1):1–7.
  • Tsalik EL, Bonomo RA, Fowler VG. New molecular diagnostic approaches to bacterial infections and antibacterial resistance. Annu Rev Med. 2018;69(1):379–394.
  • Ecker DJ, Sampath R, Li H, et al. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn. 2010;10(4):399–415.
  • Decousser JW, Poirel L, Nordmann P. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance. Expert Rev Mol Diagn. 2017;17(4):327–350. .
  • Matsumura Y, Pitout JD. Recent advances in the laboratory detection of carbapenemase-producing Enterobacteriaceae. Expert Rev Mol Diagn. 2016;16(7):783–794.
  • Lucena Baeza L, Pfennigwerth N, Hamprecht A. Rapid and easy detection of carbapenemases in Enterobacterales in the routine laboratory using the new GenePOC Carba/Revogene Carba C assay. J Clin Microbiol. 2019;57(9):1–7. .
  • Hopkins TM, Juang P, Weaver K, et al. Outcomes of macrolide deescalation in severe community-acquired pneumonia. Clin Ther. 2019;41(12):2540–2548.
  • Bogaerts P, Hamels S, De Mendonca R, et al. Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. J Antimicrob Chemother. 2013;68(2):340–347.
  • Ashton PM, Nair S, Dallman T, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol. 2015;33(3):296–302.
  • Doi Y, Potoski BA, Adams-Haduch JM, et al. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol. 2008;46(12):4083–4086.
  • Giske CG, Gezelius L, Samuelsen WM, et al. A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect. 2011;17(4):552–556.
  • Tsakris A, Kristo I, Poulou A, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol. 2009;47(2):362–367.
  • Huang TD, Poirel L, Bogaerts P, et al. Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers. J Antimicrob Chemother. 2014;69:445–450.
  • Van Dijk K, Voets GM, Scharringa J, et al. A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clin Microbiol Infect. 2014;20(4):345–349.
  • Doyle D, Peirano G, Lascols C, et al. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol. 2012;50(12):3877–3880. .
  • Pantel A, Souzy D, Sotto A, et al. Evaluation of two phenotypic screening tests for carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2015;53(10):3359–3362.
  • Girlich D, Poirel L, Nordmann P. Value of the modified hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2012;50(2):477–479.
  • Clinical and Laboratory Standards Institute. The Modified Hodge Test for Suspected Carbapenemase Production in Enterobacteriaceae. CLSI Archived Methods. 2018.
  • Van Der Zwaluw K, De Haan A, Pluister GN, et al. The Carbapenem Inactivation Method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS One. 2015;10(3):1–13. .
  • Pierce VM, Simner PJ, Lonsway DR, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J Clin Microbiol. 2017;55(8):2321–2333.
  • European committee on antimicrobial susceptibility testing. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. EUCAST. 2017. p. 1–43.
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. 2018.
  • Humphries RM, Ledeboer NA. Cim City: the game continues for a better carbapenemase test. J Clin Microbiol. 2019;57(7):1–5.
  • Baeza LL, Pfennigwerth N, Greissl C, et al. Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect. 2019;25(10):1286.e9-1286.e15. .
  • Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18(9):1503–1507.
  • Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;56(12):6437–6440. .
  • Dortet L, Bréchard L, Poirel L, et al. Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin Microbiol Infect. 2014;20(4):340–344.
  • Pasteran F, Tijet N, Melano RG, et al. Simplified protocol for Carba NP test for enhanced detection of carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2015;53(12):3908–3911.
  • Ghani SA, Thomson GK, Snyder JW, et al. Comparison of the Carba NP, modified Carba NP, and updated Rosco Neo-rapid Carb kit tests for carbapenemase detection. J Clin Microbiol. 2015;53(11):3539–3542.
  • Dortet L, Agathine A, Naas T, et al. Evaluation of the RAPIDEC ® CARBA NP, the Rapid CARB Screen ® and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2015;70(11):3014–3022.
  • Tijet N, Boyd D, Patel SN, et al. Evaluation of the Carba NP test for rapid detection of carbapenemase- producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(9):4578–4580.
  • Pires J, Novais A, Peixe L. Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2013;51(12):4281–4283.
  • García-Fernández S, Morosini MI, Gijón D, et al. Detection of carbapenemase production in a collection of Enterobacteriaceae with characterized resistance mechanisms from clinical and environmental origins by use of both Carba NP and Blue-Carba tests. J Clin Microbiol. 2016;54(2):464–466.
  • Pires J, Tinguely R, Thomas B, et al. Comparison of the in-house made Carba-NP and Blue-Carba tests: considerations for better detection of carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 2016;122:33–37.
  • Novais Â, Brilhante M, Pires J, et al. Evaluation of the recently launched Rapid Carb Blue kit for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 2015;53(9):3105–3107.
  • Mancini S, Kieffer N, Poirel L, et al. Evaluation of the RAPIDEC® CARBA NP and β-CARBA® tests for rapid detection of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2017;88(4):293–297.
  • Noël A, Huang TD, Berhin C, et al. Comparative evaluation of four phenotypic tests for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 2017;55(2):510–518.
  • Dortet L, Naas T, McAdam AJ. Noncarbapenemase OXA-48 Variants (OXA-163 and OXA-405) falsely detected as carbapenemases by the β carba test. J Clin Microbiol. 2017;55(2):654–655.
  • Compain F, Gallah S, Eckert C, et al. Assessment of carbapenem resistance in Enterobacteriaceae with the rapid and easy-to-use chromogenic β carba test. J Clin Microbiol. 2016;54(12):3065–3068.
  • Simon M, Richert K, Pfennigwerth N, et al. Carbapenemase detection using the β-CARBA test: influence of test conditions on performance and comparison with the RAPIDEC CarbaNP assay. J Microbiol Methods. 2018;147:17–19.
  • Shalom O, Adler A. Comparative study of 3 carbapenem-hydrolysis methods for the confirmation of carbapenemase production in Enterobacteriaceae. Diagn Microbiol Infect Dis. 2018;90(2):73–76.
  • Meier M, Hamprecht A. Rapid detection of carbapenemases directly from positive blood cultures by the β-CARBA test. Eur J Clin Microbiol Infect Dis. 2019;38(2):259–264.
  • Bogaerts P, Naas T, Saegeman V, et al. OXA-427, a new plasmid-borne carbapenem-hydrolysing class D β-lactamase in Enterobacteriaceae. J Antimicrob Chemother. 2017;72(9):2469–2477.
  • Bogaerts P, Yunus S, Massart M, et al. Evaluation of the BYG carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2016;54(2):349–358.
  • Bogaerts P, Oueslati S, Meunier D, et al. Multicentre evaluation of the BYG Carba v2.0 test, a simplified electrochemical assay for the rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. Sci Rep. 2017;7(1):1–8.
  • Wareham DW, Abdul Momin MHFA. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the Resist-3 O.K.N. (OXA-48, KPC, NDM) lateral flow multiplexed assay. J Clin Microbiol. 2017;55(4):1223–1225.
  • Greissl C, Saleh A, Hamprecht A. Rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases in Enterobacterales by a new multiplex immunochromatographic test. Eur J Clin Microbiol Infect Dis. 2019;38(2):331–335.
  • Kolenda C, Benoit R, Carricajo A, et al. Evaluation of the new multiplex immunochromatographic O.K.N.V.K-set assay for rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases. J Clin Microbiol. 2018;56(11):1–4.
  • Meunier D, Vickers A, Pike R, et al. Evaluation of the K-Set R.E.S.I.S.T. immunochromatographic assay for the rapid detection of KPC and OXA-48-like carbapenemases. J Antimicrob Chemother. 2016;71(8):2357–2359.
  • Saleh A, Göttig S, Hamprecht A. Multiplex immunochromatographic detection of OXA-48, KPC, and NDM carbapenemases: impact of inoculum, antibiotics, and agar. J Clin Microbiol. 2018;56:1–6.
  • Hamprecht A, Vehreschild JJ, Seifert H, et al. Rapid detection of NDM, KPC and OXA-48 carbapenemases directly from positive blood cultures using a new multiplex immunochromatographic assay. PLoS One. 2018;13(9):1–10. .
  • Boutal H, Vogel A, Bernabeu S, et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018;56(4):909–915. .
  • Hopkins KL, Meunier D, Naas T, et al. Evaluation of the NG-Test CARBA 5 multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J Antimicrob Chemother. 2018;73(12):3523–3526.
  • Potron A, Fournier D, Emeraud C, et al. Evaluation of the immunochromatographic NG-test Carba 5 for rapid identification of carbapenemase in nonfermenters. Antimicrob Agents Chemother. 2019;63. DOI:10.1128/aac.00968-19.
  • Takissian J, Bonnin RA, Naas T, et al. NG-test Carba 5 for rapid detection of carbapenemase-producing Enterobacterales from positive blood cultures. Antimicrob Agents Chemother. 2019;17–20. DOI:10.1128/AAC.00011-19
  • Giordano L, Fiori B, D’Inzeo T, et al. Simplified testing method for direct detection of carbapenemase-producing organisms from positive blood cultures using the NG-Test CARBA 5 assay. Antimicrob Agents Chemother. 2019;63. DOI:10.1128/AAC.00550-19.
  • Clark AE, Kaleta EJ, Arora A, et al. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603.
  • Lasserre C, De Martin L, Saint CG, et al. Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization−time of flight mass spectrometry in less than 30 minutes. J Clin Microbiol. 2015;53(7):2163–2171. .
  • Hoyos-Mallecot Y, Riazzo C, Miranda-Casas C, et al. Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods. 2014;105:98–101.
  • Cai JC, Hu YY, Zhang R, et al. Detection of ompk36 porin loss in Klebsiella spp. by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol. 2012;50(6):2179–2182.
  • Carvalhaes CG, Cayô R, Visconde MF, et al. Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: A quick answer for the right decision. J Antimicrob Chemother. 2014;69(8):2132–2136.
  • Ghebremedhin B, Halstenbach A, Smiljanic M, et al. MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. Ann Clin Microbiol Antimicrob. 2016;15. DOI:10.1186/s12941-016-0120-x
  • Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123.
  • Dallenne C, Da Costa A, Decré D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae.  J Antimicrob Chemother. 2010;65(3):490–495.
  • Swayne RL, Ludlam HA, Shet VG, et al. Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo- (class A and D) carbapenemases in Enterobacteriaceae - ScienceDirect. Int J Antimicrob Agents. 2011;38(1):35–38.
  • Smiljanic M, Kaase M, Ahmad-Nejad P, et al. Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates. Ann Clin Microbiol Antimicrob. 2017;16(1):1–7.
  • Girlich D, Oueslati S, Bernabeu S, et al. Evaluation of the BD MAX Check-Points CPO assay for the detection of carbapenemase producers directly from rectal swabs. J Mol Diagnostics. 2020;22(2):294–300.
  • Lau AF, Fahle GA, Kemp MA, et al. Clinical performance of Check-Direct CPE, a multiplex PCR for direct detection of bla KPC, bla NDM and/or bla VIM, and bla OXA-48 from perirectal swabs. J Clin Microbiol. 2015;53(12):3729–3737.
  • Huang TD, Bogaerts P, Ghilani E, et al. Multicentre evaluation of the check-direct CPE® assay for direct screening of carbapenemase-producing Enterobacteriaceae from rectal swabs. J Antimicrob Chemother. 2014;70:1669–1673.
  • Nijhuis R, Samuelsen Ø, Savelkoul P, et al. Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagn Microbiol Infect Dis. 2013;77(4):316–320.
  • Vasoo S, Hon PY, Hsu J-P, et al. A pilot study on the analytic sensitivity and accuracy of the Check-Points Check Direct CPE, Cepheid Xpert Carba-R, and ChromID CARBA SMART chromogenic agar for detecting carbapenemase-producing Enterobacteriaceae. J Glob Antimicrob Resist. 2019;18:235–237.
  • Cunningham SA, Vasoo S, Patel R. Evaluation of the Check-Points Check MDR CT103 and CT103 XL microarray kits by use of preparatory rapid cell lysis. J Clin Microbiol. 2016;54(5):1368–1371.
  • Cuzon G, Naas T, Bogaerts P, et al. Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J Antimicrob Chemother. 2012;67(8):1865–1869.
  • Girlich D, Bernabeu S, Fortineau N, et al. Evaluation of the CRE and ESBL ELITe MGB® kits for the accurate detection of carbapenemase- or CTX-M–producing bacteria. Diagn Microbiol Infect Dis. 2018;92(1):1–7.
  • Boattini M, Bianco G, Iannaccone M, et al. Accuracy of the ELITe MGB assays for the detection of carbapenemases, CTX-M, Staphylococcus aureus and mecA/C genes directly from respiratory samples. J Hosp Infect. 2020;105(2):306–310.
  • Girlich D, Bernabeu S, Grosperrin V, et al. Evaluation of the Amplidiag CarbaR+MCR kit for accurate detection of carbapenemase-producing and colistin-resistant bacteria. J Clin Microbiol. 2019;57. DOI:10.1128/JCM.01800-18.
  • Oueslati S, Girlich D, Dortet L, et al. Evaluation of the Amplidiag CarbaR+VRE kit for accurate detection of carbapenemase-producing bacteria. J Clin Microbiol. 2018;56. DOI:10.1128/JCM.01092-17
  • Verroken A, Despas N, Rodriguez-Villalobos H, et al. The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: A pre-post intervention study. PLoS One. 2019;14(9):1–12.
  • Tojo M, Fujita T, Ainoda Y, et al. Evaluation of an automated rapid diagnostic assay for detection of gram-negative bacteria and their drug-resistance genes in positive blood cultures. PLoS One. 2014;9. DOI:10.1371/journal.pone.0094064.
  • Huang TD, Melnik E, Bogaerts P, et al. Evaluation of the ePlex blood culture identification panels for detection of pathogens in bloodstream infections. J Clin Microbiol. 2019;57:1–11.
  • Kaase M, Szabados F, Wassill L, et al. Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR. J Clin Microbiol. 2012;50(9):3115–3118.
  • Burrack-Lange SC, Personne Y, Huber M, et al. Multicenter assessment of the rapid Unyvero blood culture molecular assay. J Med Microbiol. 2018;67(9):1294–1301.
  • Ceyssens PJ, Garcia-Graells C, Fux F, et al. Development of a Luminex xTAG®assay for cost-effective multiplex detection of β-lactamases in Gram-negative bacteria. J Antimicrob Chemother. 2016;71(9):2479–2483.
  • García-Fernández S, Morosini MI, Marco F, et al. Evaluation of the eazyplex® SuperBug CRE system for rapid detection of carbapenemases and ESBLs in clinical Enterobacteriaceae isolates recovered at two Spanish hospitals.. J Antimicrob Chemother. 2014;70(4):1047–1050.
  • Lafeuille E, Laouira S, Sougakoff W, et al. Detection of OXA-48-like carbapenemase genes by the Xpert® Carba-R test: room for improvement. Int J Antimicrob Agents. 2015;45(4):441–442.
  • Dortet L, Fusaro M, Naas T. Improvement of the Xpert Carba- Rkit for the detection of carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(6):3832–3837.
  • Traczewski MM, Carretto E, Canton R, et al. Multicenter evaluation of the Xpert Carba-R assay for detection of carbapenemase genes in gram-negative isolates. J Clin Microbiol. 2018;56(8):1–8.
  • Girlich D, Laguide M, Dortet L, et al. Evaluation of the Revogene Carba C assay for detection and differentiation of carbapenemase-producing Gram-negative bacteria. J Clin Microbiol. 2020;58(4):1–8.
  • Sambri V, Gateau C, Zannoli S, et al. Diagnosing Clostridioides difficile infections with molecular diagnostics: multicenter evaluation of revogene C. difficile assay. Eur J Clin Microbiol Infect Dis. 2020;39(6):1169–1175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.