711
Views
15
CrossRef citations to date
0
Altmetric
Review

Nanomaterial-based Optical and Electrochemical Biosensors for Amyloid beta and Tau: Potential for early diagnosis of Alzheimer’s Disease

, , , , , , , , , , & show all
Pages 175-193 | Received 06 Oct 2020, Accepted 05 Feb 2021, Published online: 01 Mar 2021

References

  • World Health Organization (WHO) (2020) “Dementia.” [cited 2020 Sep 21]. Available from https://www.who.int/news-room/fact-sheets/detail/dementia
  • Kashyap G, Bapat D, Das D, et al. Synapse loss and progress of Alzheimer’s disease-A network model. Sci Rep. 2019;9(1):1–9.
  • Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–56.
  • Ravisankar P, Parvathi YS, Sri KC, et al. A Comprehensive Analysis on Different Types of Hypothesis, Diagnosis and Treatment of Alzheimer's Disease. IOSR-JDMS.2017;16(4):97-108
  • Jack CR Jr., Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dementia. 2018;14(4):535–562.
  • Allioui H, Sadgal M, Elfazziki AJIJACSA Deep MRI Segmentation: a Convolutional Method Applied to Alzheimer’s Disease Detection. (2019).
  • Zhao J, Ding X, Du Y, et al. behavior. Functional connectivity between white matter and gray matter based on fMRI for Alzheimer’s disease classification. Brain Behav. 2019;9(10):e01407.
  • DeBay DR, Reid GA, Pottie IR, et al. Targeting butyrylcholinesterase for preclinical single photon emission computed tomography (SPECT) imaging of Alzheimer’s disease. 2017;3(2):166–176. Alzheimer’s & Dementia: Translational Research & Clinical Interventions.
  • Stern RA, Adler CH, Chen K, et al. Tau positron-emission tomography in former national football league players. N Engl J Med. 2019;380(18):1716–1725.
  • Prosser A, Tossici-Bolt L, CJCR K. The impact of regional 99mTc-HMPAO single-photon-emission computed tomography (SPECT) imaging on clinician diagnostic confidence in a mixed cognitive impairment sample. (2020).
  • Turner RS, Stubbs T, Davies DA, et al. Potential new approaches for diagnosis of alzheimer’s disease and related dementias. Front Neurol. 2020;11:496.
  • Hampel H, Frank R, Broich K, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9(7):560–574.
  • Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284(6):643–663.
  • Zetterberg H, Schott J. Biomarkers for Alzheimer’s disease beyond amyloid and tau. Nat Med. 2019;25(2):201–203.
  • Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG. Congo. Red and amyloids: history and relationship. Biosci Rep. 2019;39:1.
  • Lermyte F, Everett J, Lam YP, et al. Metal Ion Binding to the Amyloid β Monomer Studied by Native Top-Down FTICR Mass Spectrometry. J Am Soc Mass Spectrom. 2019;30(10):2123–2134.
  • Teunissen CE, Chiu M-J, C-C Y, et al. Plasma Amyloid-β (Aβ 42) Correlates with Cerebrospinal Fluid Aβ 42 in Alzheimer’s Disease. J Alzheimer's Dis. 2018;62(4):1857–1863.
  • Liu C, Song X, Nisbet R, et al. Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N tau in disease. J Biol Chem. 2016;291(15):8173–8188.
  • Wiratpruk N, Noor A, McLean CA, et al. Charge neutral rhenium tricarbonyl complexes of tridentate N-heterocyclic carbene ligands that bind to amyloid plaques of Alzheimer’s disease. Dalton Trans. 2020;49(14):4559–4569.
  • Manna M, Roy S, Bhandari S, et al. A dual-emitting quantum dot complex nanoprobe for ratiometric and visual detection of Hg 2+ and Cu 2+ ions. J Mater Chem C. 2020;8(21):6972–6976.
  • Lima D, Hacke ACM, Inaba J, et al. Electrochemical detection of specific interactions between apolipoprotein E isoforms and DNA sequences related to Alzheimer’s disease. Bioelectrochemistry. 2020;133(107447): 1–9.
  • Chang KL, Ho PCJPO. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics for comparison of caffeinated and decaffeinated coffee and its implications for Alzheimer’s disease. Plos One. 2014;9(8):e104621.
  • Delport A, Hewer R. Determining the protein stability of Alzheimer’s disease protein, amyloid precursor protein. Protein J. 2019;38(4):419–424.
  • Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–430.
  • Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404–413.
  • Shui B, Tao D, Florea A et al. Biosensors for Alzheimer’s disease biomarker detection: a review. 147, 13–24 (2018).
  • Su H, Li S, Jin Y, et al. Nanomaterial-based biosensors for biological detections. 2017;3:19–29. Advanced Health Care Technologies.
  • Hou S, Zhang A, Su M. Nanomaterials for biosensing applications. Nanomaterials (Basel). 2016;6(4):58.
  • Carrette O, Demalte I, Scherl A, et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics. 2003;3(8):1486–1494.
  • Sierks MR, Chatterjee G, McGraw C, et al. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr Biol. 2011;3(12):1188–1196.
  • Hardy J, Selkoe DJ. The Amyloid Hypothesis of Alzheimer’s Disease: progress and Problems on the Road to Therapeutics. Science. 2002;297(5580):353.
  • Sakono M, Zako T. Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J. 2010;277(6):1348–1358.
  • G-f C, T-h X, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–1235.
  • Gu L, Guo Z. Alzheimer's Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J Neurochem. 2013;126(3):305–311.
  • Baldassarre M, Baronio CM, Morozova-Roche LA, et al. β-peptides 1–40 and 1–42 form oligomers with mixed β-sheets. Chem Sci. 2017;8(12):8247–8254.
  • Caldeira C, Cunha C, Vaz AR, et al. Key Aging-Associated Alterations in Primary Microglia Response to Beta-Amyloid Stimulation. Front Aging Neurosci. 2017;9(277)1–23.
  • Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11(1):98.
  • Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev. 2013;12(1):289–309.
  • Ayton S, Wang Y, Diouf I, et al. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry. 2019;25(11):2932–2941.
  • Ivanov SM, Atanasova M, Dimitrov I, et al. Cellular polyamines condense hyperphosphorylated Tau, triggering Alzheimer’s disease. Sci Rep. 2020;10(1):10098.
  • Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–471.
  • Liu P, Smith BR, Montonye ML, et al. A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci Rep. 2020;10(1):3869.
  • Brunden KR, Trojanowski JQ, Lee VMY. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov. 2009;8(10):783–793.
  • Sonawane SK, Chidambaram H, Boral D, et al. EGCG impedes human Tau aggregation and interacts with Tau. Sci Rep. 2020;10(1):12579.
  • Huang H-C, Jiang Z-F. Accumulated Amyloid-β Peptide and Hyperphosphorylated Tau Protein: relationship and Links in Alzheimer’s Disease. J Alzheimer's Dis. 2009;16:15–27.
  • Rajmohan R, Reddy PH. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. J Alzheimer's Dis. 2017;57:975–999.
  • Panza F, Lozupone M, Seripa D, et al. Amyloid‐β immunotherapy for Alzheimer disease: is it now a long shot? Ann Neurol. 2019;85(3):303–315.
  • Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. Jama. 2015;313(19):1924–1938.
  • Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91–100.
  • Elbassal EA, Morris C, Kent TW, et al. Gold nanoparticles as a probe for amyloid-β oligomer and amyloid formation. J Phys Chem C. 2017;121(36):20007–20015.
  • Song C, Deng P, Que L. Rapid multiplexed detection of beta-amyloid and total-tau as biomarkers for Alzheimer’s disease in cerebrospinal fluid. Nanomedicine. 2018;14(6):1845–1852.
  • Mai TD, Ferraro D, Aboud N, et al. Single-step immunoassays and microfluidic droplet operation: towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease. Sens Actuators B Chem. 2018;255:2126–2135.
  • Zhou J, Meng L, Ye W, et al. A sensitive detection assay based on signal amplification technology for Alzheimer’s disease’s early biomarker in exosome. Anal Chim Acta. 2018;1022:124–130.
  • Liu L, Chang Y, Yu J, et al. Two-in-one polydopamine nanospheres for fluorescent determination of beta-amyloid oligomers and inhibition of beta-amyloid aggregation. Sens Actuators B Chem. 2017;251:359–365.
  • Pihlasalo S, Deguchi T, Virtamo M, et al. Luminometric nanoparticle-based assay for high sensitivity detection of β-amyloid aggregation. Anal Chem. 2017;89(4):2398–2404.
  • Akhtar N, Metkar SK, Girigoswami A, et al. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater Sci Eng C. 2017;78:960–968.
  • Morales-Zavala F, Casanova-Morales N, Gonzalez RB, et al. Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer’s disease. J Nanobiotechnology. 2018;16(1):1–14.
  • Sun L, Fan Z, Yue T, et al. Additive nanomanufacturing of lab-on-a-chip fluorescent peptide nanoparticle arrays for Alzheimer’s disease diagnosis. 2018;1(3):182–194. Bio-Des Manuf.
  • Kraus A, Saijo E, Metrick MA, et al. Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer’s disease. Acta Neuropathol. 2019;137(4):585–598.
  • Lisi S, Fiore E, Scarano S, et al. Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta. 2018;1038:173–181.
  • Eravuchira PJ, Banchelli M, D’Andrea C, et al. Hollow core photonic crystal fiber-assisted Raman spectroscopy as a tool for the detection of Alzheimer’s disease biomarkers. J Biomed Opt. 2020;25(7):077001.
  • Ziu I, Laryea ET, Alashkar F, et al. A dip-and-read optical aptasensor for detection of tau protein. Anal Bioanal Chem. 2020;412(5):1193–1201.
  • Girigoswami K, Akhtar N. Nanobiosensors and fluorescence based biosensors: an overview. Int J Nano Dimension. 2019;10(1):1–17.
  • Liu C, Lu D, You X, et al. Carbon dots sensitized lanthanide infinite coordination polymer nanoparticles: towards ratiometric fluorescent sensing of cerebrospinal Aβ monomer as a biomarker for Alzheimer’s disease. Anal Chim Acta. 2020;1105:147–154.
  • Wang C, Li X, Zhang F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst. 2016;141(12):3601–3620.
  • McConnell MRH EM, DeRosa MC. Aptamers as Promising Molecular Recognition Elements for Diagnostics and Therapeutics in the Central Nervous System. Nucleic Acid Ther. 2014;24(6):388–404.
  • Jiang L-F, Chen B-C, Chen B, et al. Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe3O4 magnetic nanoparticles and BaYF5: yb. 2017;170:350–357. Er Nanoparticles as Upconversion Fluorescence Labels. Talanta.
  • Chen L, Lin J, Yi J, et al. A tyrosinase-induced fluorescence immunoassay for detection of tau protein using dopamine-functionalized CuInS 2/ZnS quantum dots. Anal Bioanal Chem. 2019;411(20):5277–5285.
  • Liu B, Shen H, Hao Y, et al. Lanthanide Functionalized Metal–Organic Coordination Polymer: toward Novel Turn-On Fluorescent Sensing of Amyloid β-Peptide. Anal Chem. 2018;90(21):12449–12455.
  • Chan H-N, Xu D, Ho S-L, et al. Ultra-sensitive detection of protein biomarkers for diagnosis of Alzheimer’s disease. Chem Sci. 2017;8(5):4012–4018.
  • Perez-Ruiz E, Decrop D, Ven K, et al. Digital ELISA for the quantification of attomolar concentrations of Alzheimer’s disease biomarker protein Tau in biological samples. Anal Chim Acta. 2018;1015:74–81.
  • Seo Y, K-s P, Ha T, et al. A smart near-infrared fluorescence probe for selective detection of tau fibrils in Alzheimer’s disease. ACS Chem Neurosci. 7(11): 1474–1481. 2016.
  • Chan H-N, Xu D, Ho S-L, et al. Highly sensitive quantification of Alzheimer’s disease biomarkers by aptamer-assisted amplification. Theranostics. 2019;9(10):2939.
  • Huang A, Zhang L, Li W, et al. Controlled fluorescence quenching by antibody-conjugated graphene oxide to measure tau protein. R Soc Open Sci. 2018;5(4):171808.
  • Aldewachi H, Chalati T, Woodroofe MN, et al. Gold nanoparticle-based colorimetric biosensors. Nanoscale. 2018;10(1):18–33.
  • Li M, Guan Y, Zhao A, et al. Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer’s disease. Theranostics. 2017;7(12):2996.
  • Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M. Label-free detection of β-amyloid peptides (Aβ40 and Aβ42): a colorimetric sensor array for plasma monitoring of Alzheimer’s disease. Nanoscale. 2018;10(14):6361–6368.
  • Hu T, Lu S, Chen C, et al. Colorimetric sandwich immunosensor for Aβ (1-42) based on dual antibody-modified gold nanoparticles. Sens Actuators B Chem. 2017;243:792–799.
  • Rauk A. The chemistry of Alzheimer’s disease. Chem Soc Rev. 2009;38(9):2698–2715.
  • Georganopoulou DG, Chang L, J-M N, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Nat Acad Sci. 2005;102(7):2273–2276.
  • Wijaya E, Lenaerts C, Maricot S, et al. Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci. 2011;15(5):208–224.
  • Kim H, Lee JU, Song S, et al. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer’s disease biomarkers. Biosens Bioelectron. 2018;101:96–102.
  • Nair RV, Pae J, Padmanabhan P, et al. Au nano-urchins enabled localized surface plasmon resonance sensing of beta amyloid fibrillation. Nanoscale Adv. 2020.
  • Kim H, Lee JU, Kim S, et al. A nanoplasmonic biosensor for ultrasensitive detection of Alzheimer’s disease biomarker using a chaotropic agent. ACS Sens. 2019;4(3):595–602.
  • Nu TTV, Tran NHT, Nam E, et al. Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer’s disease using surface plasmon resonance fiber sensors. RSC Adv. 2018;8(14):7855–7862.
  • Kim S, Wark AW, Lee HJ. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal Chem. 2016;88(15):7793–7799.
  • Lisi S, Scarano S, Fedeli S, et al. Toward sensitive immuno-based detection of tau protein by surface plasmon resonance coupled to carbon nanostructures as signal amplifiers. Biosens Bioelectron. 2017;93:289–292.
  • Bellassai N, D’Agata R, Jungbluth V, et al. Surface Plasmon Resonance for Biomarker Detection: advances in Non-invasive Cancer Diagnosis. Front Chem. 2019;7:570.
  • Pilot R, Signorini R, Durante C, et al. Review on Surface-Enhanced Raman Scattering. Biosensors (Basel). 2019;9(2):57.
  • Zhang X, Liu S, Song X, et al. Robust and universal SERS sensing platform for multiplexed detection of Alzheimer’s disease core biomarkers using PAapt-AuNPs conjugates. ACS Sens. 2019;4(8):2140–2149.
  • Guerrini L, Arenal R, Mannini B, et al. SERS detection of amyloid oligomers on metallorganic-decorated plasmonic beads. ACS Appl Mater Interfaces. 2015;7(18):9420–9428.
  • Lin D, Wu Z, Li S, et al. Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano. 2017;11(2):1478–1487.
  • Demeritte T, Viraka Nellore BP, Kanchanapally R, et al. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer’s disease biomarkers. ACS Appl Mater Interfaces. 2015;7(24):13693–13700.
  • Zengin A, Tamer U, Caykara T. A SERS-based sandwich assay for ultrasensitive and selective detection of Alzheimer’s tau protein. Biomacromolecules. 2013;14(9):3001–3009.
  • Maurer V, Frank C, Porsiel JC, et al. Step‐by‐step monitoring of a magnetic and SERS‐active immunosensor assembly for purification and detection of tau protein. J Biophotonics. 2020;13(3):e201960090.
  • Bu T, Zako T, Maeda M. Dark field microscopic sensitive detection of amyloid fibrils using gold nanoparticles modified with antibody. Anal Sci. 2016;32(3):307–311.
  • Kang D-Y, Lee J-H, Oh B-K, et al. Ultra-sensitive immunosensor for β-amyloid (1–42) using scanning tunneling microscopy-based electrical detection. Biosens Bioelectron. 2009;24(5):1431–1436.
  • Li Y, Xu D, Chan HN, et al. Dual‐Modal NIR‐Fluorophore Conjugated Magnetic Nanoparticle for Imaging Amyloid‐β Species In Vivo. Small. 2018;14(28):1800901.
  • Cho I-H, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24(1):6.
  • Gutierrez FA, Gonzalez-Dominguez JM, Ansón-Casaos A, et al. Single-walled carbon nanotubes covalently functionalized with cysteine: a new alternative for the highly sensitive and selective Cd(II) quantification. Sens Actuators B Chem. 2017;249:506–514.
  • Zhou Y, Fang Y, Ramasamy RP. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors (Basel). 2019;19(2):392.
  • Fu C, Yi D, Deng C, et al. A Partially Graphitic Mesoporous Carbon Membrane with Three-Dimensionally Networked Nanotunnels for Ultrasensitive Electrochemical Detection. Chem Mater. 2017;29(12):5286–5293.
  • Reza KK, Ali MA, Singh M, et al. Amperometric enzymatic determination of bisphenol A using an ITO electrode modified with reduced graphene oxide and Mn3O4 nanoparticles in a chitosan matrix. Microchim Acta. 2017;184(6):1809–1816.
  • Oliveira T, Morais S New generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. (2019) 124.
  • Kirchner E-M HT. Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors. Mikrochim Acta. 2020;187(8):441.
  • Oh J, Yoo G, Chang YW, et al. A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens Bioelectron. 2013;50:345–350.
  • Yu Y, Wang P, Zhu X, et al. Combined determination of copper ions and β-amyloid peptide by a single ratiometric electrochemical biosensor. Analyst. 2018;143(1):323–331.
  • Moreira FTC, Rodriguez BAG, Dutra RAF, et al. Redox probe-free readings of a β-amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sens Actuators B Chem. 2018;264:1–9.
  • Moreira FTC, Sales MGF. Smart naturally plastic antibody based on poly(α-cyclodextrin) polymer for β-amyloid-42 soluble oligomer detection. Sens Actuators B Chem. 2017;240:229–238.
  • Ramnath D, Tunny K, Hohenhaus DM, et al. TLR3 drives IRF6-dependent IL-23p19 expression and p19/EBI3 heterodimer formation in keratinocytes. Immunol Cell Biol. 2015;93(9):771–779.
  • Krishnan SK, Singh E, Singh P, et al. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019;9(16):8778–8881.
  • Devi R, Gogoi S, Dutta HS, et al. Au/NiFe2O4 nanoparticle-decorated graphene oxide nanosheets for electrochemical immunosensing of amyloid beta peptide. 2020;2(1):239–248. Nanoscale Advances.
  • Li Y, Wang Y, Liu X, et al. Bifunctional pd-decorated polysulfide nanoparticle of Co9S8 supported on graphene oxide: a new and efficient label-free immunosensor for amyloid β-protein detection. Sens Actuators B Chem. 2020;304:127413.
  • Sethi J, Van Bulck M, Suhail A, et al. A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Mikrochim Acta. 2020;187(5):288.
  • Li -S-S, Lin C-W, K-C W, et al. Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor. Sci Rep. 2016;6(1):25155.
  • Li X, Jiang M, Cheng J, et al. Signal multi-amplified electrochemical biosensor for voltammetric determination of tau-441 protein in biological samples using carbon nanomaterials and gold nanoparticles to hint dementia. Mikrochim Acta. 2020;187(5):302.
  • Sonuç Karaboga MN, Sezgintürk MK. Analysis of Tau-441 protein in clinical samples using rGO/AuNP nanocomposite-supported disposable impedimetric neuro-biosensing platform: towards Alzheimer’s disease detection. Talanta. 2020;219:121257.
  • Tao D, Shui B, Gu Y, et al. Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients’ Sera. Biosensors (Basel). 2019;9(3):84..
  • Ye M, Jiang M, Cheng J, et al. Single-layer exfoliated reduced graphene oxide-antibody Tau sensor for detection in human serum. Sens Actuators B Chem. 2020;308:127692.
  • Kim K, Kim M-J, Kim SY, et al. Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nat Commun. 2020;11(1):1–9.
  • Li M, Wang P, Li F, et al. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core–shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens Bioelectron. 2017;87:752–759.
  • Liu H, Zhou X, Shen Q, et al. Paper-based electrochemiluminescence sensor for highly sensitive detection of amyloid-β oligomerization: toward potential diagnosis of Alzheimer’s disease. Theranostics. 2018;8(8):2289–2299.
  • Liu TC, Lee YC, Ko CY, et al. Highly sensitive/selective 3D nanostructured immunoparticle-based interface on a multichannel sensor array for detecting amyloid-beta in Alzheimer’s disease. Theranostics. 2018;8(15):4210–4225.
  • Rushworth JV, Ahmed A, Griffiths HH, et al. A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens Bioelectron. 2014;56:83–90.
  • Yoo YK, Kim G, Park D, et al. Gold nanoparticles assisted sensitivity improvement of interdigitated microelectrodes biosensor for amyloid-β detection in plasma sample. Sens Actuators B Chem. 2020;308:127710.
  • Le HT N, Park J, Chinnadayyala SR, et al. Sensitive electrochemical detection of amyloid beta peptide in human serum using an interdigitated chain-shaped electrode. Biosens Bioelectron. 2019;144:111694.
  • Xue J, Yang L, Wang H, et al. Quench-type electrochemiluminescence immunosensor for detection of amyloid β-protein based on resonance energy transfer from luminol@SnS2-Pd to Cu doped WO3 nanoparticles. Biosens Bioelectron. 2019;133:192–198.
  • Zhang Y, Figueroa-Miranda G, Lyu Z, et al. Monitoring amyloid-β proteins aggregation based on label-free aptasensor. Sens Actuators B Chem. 2019;288:535–542.
  • Jia Y, Yang L, Feng R, et al. MnCO3 as a New Electrochemiluminescence Emitter for Ultrasensitive Bioanalysis of β-Amyloid1–42 Oligomers Based on Site-Directed Immobilization of Antibody. ACS Appl Mater Interfaces. 2019;11(7):7157–7163.
  • Wang C, Zhang N, Li Y, et al. Cobalt-based metal-organic frameworks as co-reaction accelerator for enhancing electrochemiluminescence behavior of N-(aminobutyl)-N-(ethylisoluminol) and ultrasensitive immunosensing of amyloid-Β protein. Sens Actuators B Chem. 2019;291:319–328.
  • Xu R, Wei D, Du B, et al. A photoelectrochemical sensor for highly sensitive detection of amyloid beta based on sensitization of Mn: cdSeto Bi2WO6/CdS. Biosens Bioelectron. 2018;122:37–42.
  • Diba FS, Kim S, Lee HJ. Electrochemical immunoassay for amyloid-beta 1–42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface. CatalToday. 2017;295:41–47.
  • Xia N, Wang X, Yu J, et al. Design of electrochemical biosensors with peptide probes as the receptors of targets and the inducers of gold nanoparticles assembly on electrode surface. Sens Actuators B Chem. 2017;239:834–840.
  • Yoo YK, Yoon DS, Kim G, et al. An Enhanced Platform to Analyse Low-Affinity Amyloid β Protein by Integration of Electrical Detection and Preconcentrator. Sci Rep. 2017;7(1):14303.
  • Carneiro P, Loureiro J, Delerue-Matos C, et al. do Carmo Pereira M. Alzheimer’s disease: development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sens Actuators B Chem. 2017;239:157–165.
  • Xing Y, Feng X-Z, Zhang L, et al. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles. Int J Nanomedicine. 2017;12:3171–3179.
  • El-Said WA, Abd El-Hameed K, Abo El-Maali N, et al. Label-free Electrochemical Sensor for Ex-vivo Monitoring of Alzheimer’s Disease Biomarker. Electroanalysis. 2017;29(3):748–755.
  • Deng C, Liu H, Si S, et al. An electrochemical aptasensor for amyloid-β oligomer based on double-stranded DNA as “conductive spring”. Mikrochim Acta. 2020;187(4):239.
  • Qin J, Park JS, Jo DG, et al. Curcumin-based electrochemical sensor of amyloid-β oligomer for the early detection of Alzheimer’s disease. Sens Actuators B Chem. 2018;273:1593–1599.
  • Kaushik A, Shah P, Vabbina PK, et al. A label-free electrochemical immunosensor for beta-amyloid detection. Anal Methods. 2016;8(31):6115–6120.
  • Kim K, Park CB. Femtomolar sensing of Alzheimer’s tau proteins by water oxidation-coupled photoelectrochemical platform. Biosens Bioelectron. 2020;154:112075.
  • Carlin N, Anti-Tau Antibodies M-MS. Based Electrochemical Sensor for Detection of Tau Protein Biomarkers. J Electrochem Soc. 2018;165(12):G3018–G3025.
  • Shui B, Tao D, Cheng J, et al. A novel electrochemical aptamer–antibody sandwich assay for the detection of tau-381 in human serum. Analyst. 2018;143(15):3549–3554.
  • Wang SX, Acha D, Shah AJ, et al. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens Bioelectron. 2017;92:482–488.
  • Esteves-Villanueva JO, Trzeciakiewicz H, Martic S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker. Analyst. 2014;139(11):2823–2831.
  • Dai Y, Molazemhosseini A, Liu CC, et al. In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV). Biosensors (Basel). 2017;7:1.
  • Chen H, Yuan L, Song W, et al. Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci. 2008;33(11):1059–1087.
  • Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep. 2006;53(3–4):73–197.
  • Qin J, Jo DG, Cho M, et al. Monitoring of early diagnosis of Alzheimer’s disease using the cellular prion protein and poly (pyrrole-2-carboxylic acid) modified electrode. Biosens Bioelectron. 2018;113:82–87.
  • Lehmann S, Delaby C, Boursier G, et al. Relevance of Aβ42/40 ratio for detection of Alzheimer’s disease pathology in clinical routine: the PLMR scale. Front Aging Neurosci. 2018;10:138.
  • Santangelo R, Dell’Edera A, Sala A, et al. The CSF p-tau181/Aβ42 Ratio Offers a Good Accuracy “In Vivo” in the Differential Diagnosis of Alzheimer’s Dementia. Curr Alzheimer Res. 2019;16(7):587–595.
  • Wiltfang J, Esselmann H, Bibl M, et al. Amyloid β peptide ratio 42/40 but not Aβ42 correlates with phospho‐Tau in patients with low‐and high‐CSF Aβ40 load. J Neurochem. 2007;101(4):1053–1059.
  • Spies P, Slats D, Sjogren J, et al. The cerebrospinal fluid amyloid β42/40 ratio in the differentiation of alzheimer’s disease from non-alzheimer’s dementia. Curr Alzheimer Res. 2010;7(5):470–476.
  • Schoonenboom NS, Reesink FE, Verwey NA, et al. Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology. 2012;78(1):47–54.
  • Li Y, Lim E, Fields T, et al. Improving sensitivity and specificity of amyloid-β peptides and tau protein detection with antibiofouling magnetic nanoparticles for liquid biopsy of alzheimer’s disease. ACS Biomater Sci Eng. 2019;5(7):3595–3605.
  • Sabbagh MN, Shi J, Lee M, et al. Salivary beta amyloid protein levels are detectable and differentiate patients with Alzheimer’s disease dementia from normal controls: preliminary findings. BMC Neurol. 2018;18(1):155.
  • Gijs M, Ramakers IH, Visser PJ et al. Detection of amyloid-beta and tau in tear fluid of patients with Alzheimer’s disease. (2020).
  • Kim YH, Lee S-M, Cho S, et al. Amyloid beta in nasal secretions may be a potential biomarker of Alzheimer’s disease. Sci Rep. 2019;9(1):4966.
  • Passali GC, Politi L, Crisanti A, et al. Tau protein detection in anosmic Alzheimer’s disease patient’s nasal secretions. 2015;8(4):201–206. Chemosens Percept.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.