4,434
Views
30
CrossRef citations to date
0
Altmetric
Review

Diagnosis for COVID-19: current status and future prospects

ORCID Icon, , , , , & ORCID Icon show all
Pages 269-288 | Received 29 Oct 2020, Accepted 22 Feb 2021, Published online: 07 Mar 2021

References

  • Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–1976.
  • Zaki AM, Van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820.
  • Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nature Rev Microbiol. 2019;17(3):181–192.
  • Peiris J, Guan Y, Yuen K. Severe acute respiratory syndrome. Nat Med. 2004;10(12):S88–S97.
  • Keni R, Alexander A, Nayak PG, et al. COVID-19: emergence, spread, possible treatments, and global burden. Front Public Health. 2020;8:216.
  • *Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;91:386–389. (Describes different routes of viral shedding)
  • Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):11. 2020/03/13.
  • Poon LL, Peiris M. Emergence of a novel human coronavirus threatening human health. Nature Med. 2020;26,317–319.
  • Organization WH. Dengue and severe dengue. World Health Organization. Regional Office for the Eastern Mediterranean; 2020
  • Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the coronavirus study group. BioRxiv 2020. https://doi.org/10.1101/2020.02.07.937862.
  • Callaway E, Cyranoski D. China coronavirus: six questions scientists are asking. Nature. 2020;577(7792):605.
  • *Chan JF-W Yuan S, Kok K-H, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;39510223:514–523. (reported the human to human transmission of SARS-CoV–2)
  • **Shen K, Yang Y, Wang T, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;1–9. (reported the human to human transmission of SARS-CoV–2) 161
  • Chen Y, Chen L, Deng Q, et al. The presence of SARS‐CoV‐2 RNA in feces of COVID‐19 patients. J Med Virol. 2020;92(7):833-840.
  • Huang H, Fan C, Li M, et al. COVID-19: a call for physical scientists and engineers. ACS Nano. 2020;14(4):3747–3754.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
  • Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;7(6):1012–1023.
  • Yu W-B, Tang G-D, Zhang L, et al. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2) using whole genomic data. ChinaXiv 2020;202002:v2.
  • Shen M, Zhou Y, Ye J, et al. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal. 2020;10(2):97–101.
  • FDA. In vitro diagnostics EUAs 2020 [ cited 2020 December 26]. Available from: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas
  • *Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; (Discovery of SARS-CoV-2 and descriptive analysis about the virus). DOI: 10.1056/NEJMoa2001017.
  • Dai W-C, Zhang H-W, Yu J, et al. CT imaging and differential diagnosis of COVID-19. Canad Associat Radiolog Jl. 2020;71(2):195–200. PubMed PMID: 32129670.
  • Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol. 2020;38(5):515–518.
  • Kadhiresan P, Kozlowski HN, Kozlowski HN. et al. **Udugama B. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020; 14(4): 3822–3835. 2020/04/28; (Describes earliest methods for SARS-CoV-2 detection)
  • Bhalla N, Pan Y, Yang Z, et al. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–7807. 2020/07/28.
  • Chan WCW. Nano research for COVID-19. 2020/04/28 ACS Nano. 2020;144:3719–3720.
  • Morales-Narváez E, Dincer C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens Bioelectron. 2020;163:112274.
  • *Cui F, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosensors and bioelectronics. 2020: 1 12349. (Describes different prospective portable detection technology for SARS-CoV–2)
  • Hussein HA, Hassan RY, Chino M, et al. Point-of-care diagnostics of COVID-19: from current work to future perspectives. Sensors. 2020;20(15):4289.
  • Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nature Med. 2020;26:450–452.
  • Chauhan G, Madou MJ, Kalra S, et al. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020;14(7):7760–7782.
  • Jin Y-H, Cai L, Cheng Z-S, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4.
  • Von Der Thüsen J, Van Der Eerden M. Histopathology and genetic susceptibility in COVID‐19 pneumonia. Eur J Clinic Investigat. 2020;50(7). doi: 10.1111/eci.13259
  • Chakraborty C, Sharma A, Sharma G, et al. SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur Rev Med Pharmacol Sci. 2020;24(7):4016–4026.
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama 2020;323(11):1061.
  • Hanley B, Lucas SB, Youd E, et al. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73(5):239–242.
  • *Nunnari G, Sanfilippo C, Castrogiovanni P, et al. Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection. Exp Cell Res. 2020;3952:112204. (Reports clinical charactiristics of COVID-19 patients)
  • Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID- 19. Jama. 2020.
  • Pan X, Chen D, Xia Y, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(4):410–411.
  • Hoehl S, Rabenau H, Berger A, et al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. N Engl J Med. 2020;382(13):1278–1280.
  • Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med. 2020;382(24):2302–2315.
  • Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
  • Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273.
  • Chakraborty C, Sharma AR, Bhattacharya M, et al. The 2019 novel coronavirus disease (COVID-19) pandemic: a zoonotic prospective. Asian Pac J Trop Med. 2020;13(6):242.
  • Lam TT-Y, Shum M-H-H, Zhu H-C, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 2020;583:282–285.
  • Chakraborty C, Sharma AR, Sharma G, et al. Extensive partnership, collaboration, and teamwork is required to stop the COVID-19 outbreak. Archiv Med Res. 2020;51(7):728–730.
  • Seah I, Su X, Lingam G. Revisiting the dangers of the coronavirus in the ophthalmology practice. Nat Publishing Group. 2020;34(7):1155-1157.
  • Peck KM, Lauring AS. Complexities of viral mutation rates. J Virol. 2018;92(14):e01031–17.
  • Neuman BW, Adair BD, Yoshioka C, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918–7928.
  • Cascella M, Rajnik M, Cuomo A, et al. Features, evaluation and treatment coronavirus (COVID-19). StatPearls [Internet]: StatPearls Publishing; 2020.
  • Bar-On YM, Flamholz A, Phillips R, et al. Science forum: SARS-CoV-2 (COVID-19) by the numbers. Elife 2020;9:e57309.
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269.
  • Helmy YA, Fawzy M, Elaswad A, et al. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med. 2020;9(4):1225.
  • Saha RP, Singh MK, Samanta S, et al. Repurposing drugs, ongoing vaccine and new therapeutic development initiatives against COVID-19. Front Pharmacol. 2020;11:1258.
  • Bhattacharya M, Sharma AR, Mallick B, et al. Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex. Infect Genet Evol. 2020;85:104587.
  • Wang C, Liu Z, Chen Z, et al. The establishment of reference sequence for SARS‐CoV‐2 and variation analysis. J Med Virol. 2020;92(6):667-674.
  • Van Dorp L, Acman M, Richard D, et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection. Gene Evolut. 2020;83:104351.
  • Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1–12.
  • Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7). doi: 10.1128/JVI.00127-20.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.
  • Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448.
  • Chan JF-W, Kok K-H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221–236.
  • Wang Y, Wang Y, Chen Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. J Med Virol. 2020;92(6):568-76.
  • Rickman HM, Rampling T, Shaw K, et al. Nosocomial transmission of COVID-19: a retrospective study of 66 hospital-acquired cases in a London teaching hospital. Clin Infect Dis. 2021;72(4):690-693.
  • Guan W-J, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720.
  • Guo Z, Wang Z, Zhang S, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Diseases. 2020;26(7):1583–1591.
  • Organization WH. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Scientific Brief. 2020;29.
  • Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–1567.
  • Chin A, Chu J, Perera M, et al. Stability of SARS-CoV-2 in different environmental conditions. medRxiv 2020. https://doi.org/10.1101/2020.03.15.20036673.
  • Moriarty LF Public health responses to covid-19 outbreaks on cruise ships—Worldwide, February–March 2020. MMWR Morbidity and Mortality Weekly Report. 2020;69.
  • Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577–582.
  • Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2020;18(1):1–14.
  • Ye M, Fu D, Ren Y, et al. Treatment with convalescent plasma for COVID‐19 patients in Wuhan, China. J Med Virol. 2020;92(10):1890–1901.
  • Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. J Med Virol. 2020;92(9):1518-1524.
  • Saenz-Flor KV, Santafe LM. Concordance of” rapid” serological tests and IgG and IgM chemiluminescence for SARS-COV-2. medRxiv. 2020. https://doi.org/10.1101/2020.06.01.20114884.
  • Wan Z, Zhang Y, He Z, et al. A melting curve-based multiplex RT-qPCR assay for simultaneous detection of four human coronaviruses. Int J Mol Sci. 2016;17(11):1880.
  • Noh JY, Yoon S-W, Kim D-J, et al. Simultaneous detection of severe acute respiratory syndrome, Middle East respiratory syndrome, and related bat coronaviruses by real-time reverse transcription PCR. Arch Virol. 2017;162(6):1617–1623.
  • Kabir, M.A., Soto-Acosta, R., Sharma, S. et al. An antibody panel for highly specific detection and differentiation of Zika virus. Sci Rep. 202010:11906.
  • Grant PR, Garson JA, Tedder RS, et al. Detection of SARS coronavirus in plasma by real-time RT-PCR. New Engl J Med. 2003;349(25):2468–2469.
  • Haagmans BL, Al Dhahiry SH, Reusken CB, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014;14(2):140–145.
  • Herrada CA, Kabir M, Altamirano R, et al. Advances in diagnostic methods for Zika virus infection. J Med Dev. 2018;12(4). doi: 10.1115/1.4041086.
  • Kabir MA, Zilouchian H, Caputi M, et al. Advances in HIV diagnosis and monitoring. Critic Rev Biotechnol. 2020;40(5):623-38.
  • Bar-On YM, Flamholz A, Phillips R, et al. SARS-CoV-2 (COVID-19) by the numbers. Elife 2020;9:e57309.
  • Kim JY, Ko J-H, Kim Y, et al. Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea. J Korean Med Sci. 2019;35(7).
  • **Pan Y Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020;204:411–412. (Describes viral dynamics in infected patients different clinical samples)
  • Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv 2020. https://doi.org/10.1101/2020.02.11.20021493.
  • Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus–infected pneumonia. J Med Virol. 2020;92(6):680-682
  • Corman V, Bleicker T, Brünink S, et al. Diagnostic detection of 2019-nCoV by real-time RT-PCR. World Health Organization, Jan. 2020;17.
  • **Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;253: (Earliest developmeant and deployment of robust diagnostic methodology for SARS-CoV-2 detection) doi: 10.2807/1560-7917.ES.2020.25.3.2000045
  • Prevention CNIfVDCa. Novel primers and probes for detection of novel coronavirus in coronavirus 2020 [ cited 2020 April 01]. Available from: http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html
  • Chu DK, Pan Y, Cheng SM, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. 2020;66(4):549–555.
  • Shirato K, Nao N, Katano H, et al. Development of genetic diagnostic methods for novel coronavirus 2019 (nCoV-2019) in Japan. Jpn J Infect Dis. 2020;73(4):304-307.
  • Administration NMP. State food and drug administration emergency approval of new coronavirus detection products 2020 [ cited 2020 2020 September 27]. Available from: http://www.nmpa.gov.cn/WS04/CL2056/375802.html
  • Control CfD, Prevention. Division of viral diseases, CDC 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel. 2020.
  • Biotech M. Accula™ SARS-Cov-2 2020 [ cited 04 Apr 2020]. Available from: https://www.fda.gov/media/136355/download
  • PreciGenome. FastPlex Triplex SARS-CoV-2 Detection Kit 2020 2020 November 07]. Available from: https://www.fda.gov/media/139523/download
  • Bio-Rad. Bio-Rad SARS-CoV-2 ddPCR Test 2020 [ cited 2020 November 07]. Available from: https://www.fda.gov/media/137579/download
  • Co P. IntelliPlexTM SARS-CoV-2 Detection Kit 2020 [ cited 2020 November 07]. Available from: https://www.fda.gov/media/139527/download
  • BioFire. BioFire® respiratory panel 2.1 (RP2.1) 2020 [ cited 2020 November 07]. Available from: https://www.fda.gov/media/137583/download
  • QIAGEN. QIAstat-Dx® Respiratory SARS-CoV2 Panel 2020 [ cited 2020 November 07]. Available from: https://www.fda.gov/media/136571/download
  • BioCode A. BioCode® SARS-CoV-2 Assay 2020 [ cited 2020 November 07]. Available from: https://www.fda.gov/media/139049/download
  • Biotech M. Accula SARS-CoV-2 Test 2020 [ cited 2020 November 07]. Available from: https://www.fda.gov/media/136355/download
  • GenMark Diagnostics I. ePlex SARS-CoV-2 2020 [ cited 2020 November 07]. Available from: https://www.fda.gov/media/136282/download
  • Canada Go. Diagnostic devices for use against coronavirus (COVID-19) 2020 [ cited 2020 April 04]. Available from: https://www.canada.ca/en/health-canada/services/drugs-health-products/medical-devices/covid-19/diagnostic-devices-authorized.html
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63–e63.
  • Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16(3):223–229.
  • Sharma S, Kabir MA, Lab-on-a-chip Zika AW. Detection with reverse transcription loop-mediated isothermal amplification–Based assay for point-of-care settings. Archiv Pathol Lab Med. 2020;144(11):1335–1343.
  • Hardinge P, Murray JA. Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers. Sci Rep. 2019;9(1):1–13.
  • **Lu R, Wu X, Wan Z, et al. Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Virologica Sinica. 2020:35,344–347. (Reports LAMP based isothermal amplification approch for detection of SARS-CoV–2).
  • Yan C, Cui J, Huang L, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin Microbiol Infect. 2020;26(6):773–779.
  • Yang W, Dang X, Wang Q, et al. Rapid detection of SARS-CoV-2 using reverse transcription RT-LAMP method. medRxiv 2020. https://doi.org/10.1101/2020.03.02.20030130.
  • Zhu X, Wang X, Han L, et al. Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of COVID-19. medRxiv 2020;2020(3):17.20037796.
  • Sahoo PR, Sethy K, Mohapatra S, et al. Loop mediated isothermal amplification: an innovative gene amplification technique for animal diseases. Vet World. 2016;9(5):465.
  • Baek YH, Um J, Antigua KJC, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect. 2020;9(1):998–1007.
  • Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):e204.
  • Lutz S, Weber P, Focke M, et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip. 2010;10(7):887–893.
  • Xia S, Chen X Ultrasensitive and whole-course encapsulated field detection of 2019-nCoV gene applying exponential amplification from RNA combined with chemical probes. 2020.
  • El-Tholoth M, Bau HH, Song J A single and two-stage, closed-tube, molecular test for the 2019 novel coronavirus (COVID-19) at home, clinic, and points of entry. 2020.
  • Behrmann O, Bachmann I, Spiegel M, et al. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (exo-IQ). Clin Chem. 2020;66(8):1047–1054.
  • Kim Y, Yaseen AB, Kishi JY, et al. Single-strand RPA for rapid and sensitive detection of SARS-CoV-2 RNA. medRxiv 2020. https://doi.org/10.1101/2020.08.17.20177006.
  • Zaghloul H, El-shahat M. Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis. World J Hepatol. 2014;6(12):916.
  • Brentano ST, Mcdonough SH Isothermal amplification of RNA by transcription-mediated amplification (TMA). In: Nonradioactive analysis of biomolecules. Kessler, Christoph: Springer; 2000. p. 374–380.
  • Nye MB, Schwebke JR, Body BA. Comparison of APTIMA Trichomonas vaginalis transcription-mediated amplification to wet mount microscopy, culture, and polymerase chain reaction for diagnosis of trichomoniasis in men and women. Am J Obstet Gynecol. 2009;200(2):188. e1–188. e7.
  • Kamisango K, Kamogawa C, Sumi M, et al. Quantitative detection of hepatitis B virus by transcription-mediated amplification and hybridization protection assay. J Clin Microbiol. 1999;37(2):310–314.
  • Sarrazin C, Teuber G, Kokka R, et al. Detection of residual hepatitis C virus RNA by transcription‐mediated amplification in patients with complete virologic response according to polymerase chain reaction–based assays. Hepatology. 2000;32(4):818–823.
  • Pham J, Meyer S, Nguyen C, et al. Performance characteristics of a high-throughput automated transcription-mediated amplification test for SARS-CoV-2 detection. J Clin Microbiol. 2020;58(10). doi: 10.1128/JCM.01669-20.
  • Inc H. Aptima® SARS-CoV-2 Assay 2020 [ cited 2020 December 7]. Available from: https://www.fda.gov/media/138096/download
  • Zhen W, Manji R, Smith E, et al. Comparison of four molecular in vitro diagnostic assays for the detection of SARS-CoV-2 in nasopharyngeal specimens. J Clin Microbiol. 2020;58(8). doi: 10.1128/JCM.00743-20.
  • Smith E, Zhen W, Manji R, et al. Analytical and clinical comparison of three nucleic acid amplification tests for SARS-CoV-2 detection. bioRxiv 2020. https://doi.org/10.1101/2020.05.14.097311.
  • *Gorzalski AJ Tian H, Laverdure C, Laverdure C, et al. High-Throughput Transcription-mediated amplification on the hologic panther is a highly sensitive method of detection for SARS-CoV-2. J Clin Virol.2020;104501. (Reports Transcription-mediated amplification based isothermal amplification approch for detection of SARS-CoV–2) 129
  • Schneider P, Wolters L, Schoone G, et al. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol. 2005;43(1):402–405.
  • Böhmer A, Schildgen V, Lüsebrink J, et al. Novel application for isothermal nucleic acid sequence-based amplification (NASBA). J Virol Methods. 2009;158(1–2):199–201.
  • Compton J. Nucleic acid sequence-based amplification. 1991/03/01 Nature. 1991;350(6313):91–92.
  • Keightley MC, Sillekens P, Schippers W, et al. Real‐time NASBA detection of SARS‐associated coronavirus and comparison with real‐time reverse transcription‐PCR. J Med Virol. 2005;77(4):602–608.
  • Ali MM, Li F, Zhang Z, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–3341.
  • Mohsen MG, Kool ET. The discovery of rolling circle amplification and rolling circle transcription. Acc Chem Res. 2016;49(11):2540–2550.
  • Nilsson M. Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Histochem Cell Biol. 2006;126(2):159–164.
  • Tian B, Gao F, Fock J, et al. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron. 2020;165:112356.
  • Huang W, Hsu H, Su J, et al. Room temperature isothermal colorimetric padlock probe rolling circle amplification for viral RNA detection. bioRxiv 2020. https://doi.org/10.1101/2020.06.12.128876.
  • Diagnostics A. ID NOW COVID-19 2020 [ cited 2020 April 26]. Available from: https://www.fda.gov/media/136525/download
  • Rhoads DD, Cherian SS, Roman K, et al. Comparison of Abbott ID Now, Diasorin Simplexa, and CDC FDA EUA methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from individuals diagnosed with COVID-19. J Clin Microbiol. 2020;58(8). doi: 10.1128/JCM.00760-20.
  • Ghofrani M, Casas MT, Pelz RK, et al. Performance characteristics of the ID NOW COVID-19 assay: a regional health care system experience. medRxiv. 2020. https://doi.org/10.1101/2020.06.03.20116327.
  • Comer SW, Fisk D. an extended laboratory validation study and comparative performance evaluation of the Abbott ID NOW COVID-19 assay in a coastal California tertiary care medical center. medRxiv 2020.
  • Thwe PM, Ren P. How many are we missing with ID NOW COVID-19 assay using direct nasopharyngeal swabs?–Findings from a mid-sized academic hospital clinical microbiology laboratory.Diagn Microbiol Infect Dis. 2020; 98(2):115123.
  • Cradic K, Lockhart M, Ozbolt P, et al. Clinical evaluation and utilization of multiple molecular in vitro diagnostic assays for the detection of SARS-CoV-2. Am J Clinic Pathol. 2020;154(2):201–207.
  • Lephart PR, Bachman MA, LeBar W, et al. Comparative study of four SARS-CoV-2 nucleic acid amplification test (NAAT) platforms demonstrates that ID NOW performance is impaired substantially by patient and specimen type. bioRxiv 2020. https://doi.org/10.1101/2020.06.04.135616.
  • health c. Cue COVID-19 Test 2020 [ cited 2020 December 7]. Available from: https://www.fda.gov/media/138826/download
  • Biosystems A. iAMP COVID-19 Detection Kit 2020 [ cited 2020 December 7]. Available from: https://www.fda.gov/media/136870/download
  • Biomaterials S. AQ-TOP™ COVID-19 Rapid Detection Kit 2020 [ cited 2020 December 7]. Available from: https://www.fda.gov/media/138307/download
  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823.
  • Davidson AR, Lu W-T, Stanley SY, et al. Anti-CRISPRs: protein Inhibitors of CRISPR-Cas Systems. Annu Revi Biochem. 2020;89:89.
  • *Broughton JP, Deng X, Yu G, et al.CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020; 38,870–874(Reports CRISPR based approch for detection of SARS-CoV–2)
  • Broughton JP, Deng W, Fasching CL, et al. A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR. Mammoth biosciences. CA: South San Francisco; 2020.
  • Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.
  • Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–442.
  • Food U, Administration D, SARS-CoV SC. Kit.
  • Zhang F, Abudayyeh OO, Gootenberg JS A protocol for detection of COVID-19 using CRISPR diagnostics. A protocol for detection of COVID-19 using CRISPR diagnostics. 2020;8.
  • Guo L, Sun X, Wang X, et al. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 2020;6(1):1–4. .
  • Rauch JN, Valois E, Solley SC, et al. A Scalable, easy-to-deploy, protocol for Cas13-based detection of SARS-CoV-2 genetic material. bioRxiv 2020. https://doi.org/10.1101/2020.04.20.052159.
  • Ramachandran A, Huyke DA, Sharma E, et al. Electric-field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2.Proceedings of the National Academy of Sciences. 2020 ;117(47):29518-29525.
  • Lucia C, Federico P-B, Alejandra GC. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12. bioRxiv 2020. https://doi.org/10.1101/2020.02.29.971127.
  • Huang W, Yu L, Wen D, et al. A CRISPR-Cas12a-based specific enhancer for more sensitive detection of SARS-CoV-2 infection.EBioMedicine.2020;61:103036.
  • Ali Z, Aman R, Mahas A, et al. iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2.Virus Res. 2020; 288: 198129.
  • Omodamilola OI, Ibrahim AU. CRISPR Technology. Advantages, Limitations and Future Direction. J Biomed Pharm Sci. 2018;1(2):115.
  • Okba NM, Müller MA, Li W, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease 2019 patients. Emerg Infect Diseases. 2020;26(7):1478–1488.
  • Whitman JD, Hiatt J, Mowery CT, et al. Test performance evaluation of SARS-CoV-2 serological assays. MedRxiv 2020. DOi: 10.1101/2020.04.25.20074856.
  • Luo Z, Ang MJY, Chan SY, et al. Combating the coronavirus pandemic: early detection, medical treatment, and a concerted effort by the global community. Research 2020;2020.
  • *Amanat F, Stadlbauer D, Strohmeier S, et al.A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020; 26(7), 1033-1036.(Reports ELISA based assay to detect SARS-CoV-2 seroconversion)
  • Li M, Jin R, Peng Y, et al. Generation of antibodies against COVID-19 virus for development of diagnostic tools. medRxiv 2020. https://doi.org/10.1101/2020.02.20.20025999.
  • Coleman B, Coarsey C, Kabir MA, et al. Point-of-care colorimetric analysis through smartphone video. Sensors and Actuators B: Chemical. 2019;282:225–231.
  • Kabir MA, Zilouchian H, Sher M, et al. Development of a flow-free automated colorimetric detection assay integrated with smartphone for Zika NS1. Diagnostics. 2020;10(1):42. .
  • Liu W, Liu L, Kou G, et al. Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. J Clin Microbiol. 2020;58(6). doi: 10.1128/JCM.00461-20.
  • Rosendal E, Wigren J, Groening R, et al. Detection of asymptomatic SARS-CoV-2 exposed individuals by a sensitive S-based ELISA. medRxiv 2020. doi: 10.1101/2020.06.02.20120477.
  • Food U, Administration D. EUA authorized serology test performance. 2020.
  • Diagnostics SH. SARS-CoV-2 Total (COV2T) 2020 [ cited 2020 September 23]. Available from: https://www.fda.gov/media/138442/download
  • Inc. SHD. SARS‑CoV‑2 Total Antibody assay (CV2T) 2020 [ cited 2020 September 23]. Available from: https://www.fda.gov/media/138757/download
  • Biorad. Platelia SARS-CoV-2 Total Ab 2020 [cited 2020 Jul 23]. Available from: https://www.fda.gov/media/137493/download
  • Coste AT, Jaton K, Papadimitriou-Olivgeris M, et al. Comparison of SARS-CoV-2 serological tests with different antigen targets. Journal of Clinical Virology. 2021;134:104690.
  • Coarsey C, Coleman B, Kabir MA, et al. Development of a flow-free magnetic actuation platform for an automated microfluidic ELISA. RSC Adv. 2019;9(15):8159–8168.
  • Sher M, Zhuang R, Demirci U, et al. based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn. 2017;17(4):351–366.
  • Yetisen AK, Akram MS, Lowe CR. based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–2251.
  • **Jiang N, Ahmed R, Damayantharan M, et al. Lateral and Vertical Flow Assays for Point‐of‐Care Diagnostics. Advanced healthcare materials. 2019;8( 14):1900244. (Summerizes lateral flow assay technology from different perspectives for disease detection)
  • Deng X, Wang C, Gao Y, et al. Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosens Bioelectron. 2018;105:211–217.
  • Mak WC, Beni V, Turner AP. Lateral-flow technology: from visual to instrumental. TrAC Trend Anal Chem. 2016;79:297–305.
  • Lee D, Shin Y, Chung S, et al. Simple and highly sensitive molecular diagnosis of Zika virus by lateral flow assays. Anal Chem. 2016;88(24):12272–12278.
  • Rohrman BA, Leautaud V, Molyneux E, et al. A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One. 2012;7(9):e45611.
  • Iqbal SMA, Butt NZ. Design and analysis of microfluidic cell counter using spice simulation. SN Appl Sci. 2019;1(10):1290.
  • Carter LJ, Garner LV, Smoot JW, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci.; 2020;6(5):591–605.
  • **Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol. 2020; ;38(5):515-8.(Describes earliest approces for rapid and portable test development for COVID-19 diagnosis)
  • Xie L, Liu Y, Fan B, et al. Dynamic changes of serum SARS-coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respir Res. 2005;6(1):5.
  • Chen Z, Zhang Z, Zhai X, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92(10):7226–7231.
  • Patelarchive NV MTR, The coronavirus test that might exempt you from social distancing—if you pass. [cited 2020 Apr 2]. Available from:https://www.technologyreview.com/2020/04/02/974964/the-coronavirus-test-that-might-exempt-you-from-social-distancingif-you-pass/#Echobox=1585843328
  • Jacqueline Hoffmann mbb, Development of a nucleic acid based COVID-19 Rapid Test, https://www.milenia-biotec.com/en/covid-19-rapid-test-development, access web at June, 13, 2020.
  • Santiago I. Trends and innovations in biosensors for COVID‐19 mass testing. ChemBioChem 2020;21(20):1–11.
  • Ahmed R, Ozen MO, Karaaslan MG, et al. Tunable Fano‐Resonant Metasurfaces on a Disposable Plastic‐Template for Multimodal and Multiplex Biosensing. Adv Mater. 2020;32(19):1907160.
  • Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sens Actuat. 1983;4:299–304.
  • Rifat AA, Ahmed R, Yetisen AK, et al. Photonic crystal fiber based plasmonic sensors. Sens Actuat B: Chem. 2017;243:311–325.
  • Nath P, Kabir A, Khoubafarin Doust S, et al. Detection of bacterial and viral pathogens using photonic point-of-care devices. Diagnostics. 2020;10(10):841.
  • Ahmed R, Rifat AA, Yetisen AK, et al. Optical microring resonator based corrosion sensing. RSC Adv. 2016;6(61):56127–56133.
  • Rifat AA, Ahmed R, Bhowmik BB. SOI Waveguide-Based Biochemical Sensors. Computat Photon Sensors. 2019;423–448.
  • Rifat AA, Haider F, Ahmed R, et al. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt Lett. 2018;43(4):891–894.
  • Esmaelpourfarkhani M, Abnous K, Taghdisi SM, et al. A novel turn-off fluorescent aptasensor for ampicillin detection based on perylenetetracarboxylic acid diimide and gold nanoparticles. Biosens Bioelectron. 2020;164:112329.
  • Qiu G, Gai Z, Tao Y, et al. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. 2020;14(5):5268–5277.
  • Djaileb A, Charron B, Jodaylami MH, et al. A rapid and quantitative serum test for SARS-CoV-2 antibodies with portable surface plasmon resonance sensing. 2020.
  • Ahmed R, Ozen MO, Inci F, et al., editors. Real-time biosensing of proteins on a DVD nanoplasmonic grating. Plasmonics in biology and medicine XVI; 2019: international society for optics and photonics.
  • Moitra P, Alafeef M, Dighe K, et al. Selective Naked-Eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14(6):7617–7627.
  • Zeng J, Zhang Y, Zeng T, et al. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today. 2020;32:100855.
  • Fraire JC, Pérez LA, Coronado EA. Rational design of plasmonic nanostructures for biomolecular detection: interplay between theory and experiments. ACS Nano. 2012;6(4):3441–3452.
  • Jung YL, Jung C, Parab H, et al. Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens Bioelectron. 2010;25(8):1941–1946.
  • Kupferschmidt K, Cohen J Race to find COVID-19 treatments accelerates. American Association for the Advancement of Science; 2020.
  • Ramdas K, Darzi A, Jain S. ‘Test, re-test, re-test’: using inaccurate tests to greatly increase the accuracy of COVID-19 testing. Nature Med. 2020;26(6):810-811.
  • Kosack CS, Page A-L, Klatser PR. A guide to aid the selection of diagnostic tests. Bull World Health Organ. 2017;95(9):639.
  • Sher M, Asghar W. Development of a multiplex fully automated assay for rapid quantification of CD4+ T cells from whole blood. Biosens Bioelectron. 2019;142:111490.
  • Forster P, Forster L, Renfrew C, et al. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences. 2020;117( 17):9241–9243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.