165
Views
1
CrossRef citations to date
0
Altmetric
Review

Advances and required improvements in methods to diagnosing Clostridioides difficile infections in the healthcare setting

&
Pages 311-321 | Received 15 Jan 2021, Accepted 05 Mar 2021, Published online: 21 Mar 2021

References

  • George WL, Sutter VL, Goldstein EJ, et al. Aetiology of antimicrobial-agent-associated colitis. Lancet. 1978;1(8068):802–803.
  • Bartlett JG, Moon N, Chang TW, et al. Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology. 75(5): 778–782. 1978.
  • Mulligan ME, Rolfe RD, Finegold SM, et al. Contamination of a hospital environment by Clostridium difficile. Curr Microbiol. 1979;3(3):173–175.
  • Kim K-H, Fekety R, Batts DH, et al. Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis. J Infect Dis. 1981;143(1):42–50.
  • Bartlett JG. Narrative review: the new epidemic of Clostridium difficile associated enteric disease. Ann Intern Med. 2006;145(10):758–764.
  • Edwards AN, Karim ST, Pascual RA, et al. Chemical and stress resistances of Clostridium difficile spores and vegetative cells. Front Microbiol. 2016;7:1698.
  • Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6(1):130.
  • He M, Miyajima F, Roberts P, et al. Emergence and global spread of epidemic healthcare-associated clostridium difficile. Nat Genet. 2013;45(1):109–113.
  • McDonald LC, Killgore GE, Thompson A, et al. An epidemic, toxin gene-variant strain of clostridium difficile. N Engl J Med. 353(23): 2433–2441. 2005. .
  • Marsh JW, Arora R, Schlackman JL, et al. Association of relapse of clostridium difficile disease with BI/NAP1/027. J Clin Microbiol. 2012;50(12):4078–4082.
  • Warny M, Pepin J, Fang A, et al. Toxin production by an emerging strain of clostridium difficile associated with outbreaks of severe disease in north america and europe. Lancet. 2005;366(9491):1079–1084.
  • Zaiß NH, Witte W, Nübel U. Fluoroquinolone resistance and clostridium difficile, germany. Emerg Infect Dis. 2010;16(4):675–677.
  • Spigaglia P, Barbanti F, Dionisi AM, et al. Clostridium difficile isolates resistant to fluoroquinolones in italy: emergence of PCR ribotype 018. J Clin Microbiol. 2010;48(8):2892–2896.
  • Polivkova S, Krutova M, Petrlova K, et al. Clostridium difficile ribotype 176 - A predictor for high mortality and risk of nosocomial spread? Anaerobe. 2016;40:35–40.
  • Krutova M, Capek V, Nycova E, et al. The association of a reduced susceptibility to moxifloxacin in causative clostridium (clostridioides) difficile strain with the clinical outcome of patients. Antimicrob Resist Infect Control. 2020;9(1):98.
  • Chitnis AS, Holzbauer SM, Belflower RM, et al. Epidemiology of community-associated clostridium difficile infection, 2009 through 2011. JAMA Intern Med. 2013;173(14):1359–1367.
  • Balsells E, Shi T, Leese C, et al. Global burden of Clostridium difficile infections: a systematic review and meta-analysis. J Glob Health. 2019;9(1):010407.
  • Goorhuis A, Bakker D, Corver J, et al. Emergence of clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis. 2008;47(9):1162–1170.
  • Keel K, Brazier JS, Post KW, et al. Prevalence of PCR ribotypes among clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol. 2007;45(6):1963–1964.
  • Goorhuis A, Debast SB, Van Leengoed LAMG, et al. Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol. 2008;46(3):1157. author reply 1158
  • Stein K, Egan S, Lynch H, et al. PCR-ribotype distribution of clostridium difficile in irish pigs. Anaerobe. 2017;48:237–241.
  • Schneeberg A, Neubauer H, Schmoock G, et al. Clostridium difficile genotypes in piglet populations in germany. J Clin Microbiol. 2013;51(11):3796–3803.
  • Krutova M, Zouharova M, Matejkova J, et al. The emergence of clostridium difficile PCR ribotype 078 in piglets in the czech republic clusters with clostridium difficile PCR ribotype 078 isolates from germany, japan and taiwan. Int J Med Microbiol. 2018;308(7):770–775.
  • Knetsch CW, Hensgens MPM, Harmanus C, et al. Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology (Reading). 2011;157(11):3113–3123.
  • Lim SK, Stuart RL, Mackin KE, et al. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin Infect Dis. 2014;58(12):1723–1730.
  • Lucado J, Gould C, Elixhauser A. Clostridium difficile infections (CDI) in hospital stays, 2009. HCUP statistical brief no. 124 Internet. Rockville (MD): US Department of Health and Human Services, Agency for Healthcare Research and Quality; 2011. Available from: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb124.pdf
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–1208.
  • Barbut F, Delmée M, Brazier JS, et al. A European survey of diagnostic methods and testing protocols for Clostridium difficile. Clin Microbiol Infect. 2003;9(10):989–996.
  • Barbut F, Mastrantonio P, Delmée M, et al. Prospective study of clostridium difficile infections in europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect. 2007;13(11):1048–1057.
  • Bauer MP, Notermans DW, Van Benthem BH, et al. Clostridium difficile infection in europe: a hospital-based survey. Lancet. 2011;377(9759):63–73.
  • Slimings C, Armstrong P, Beckingham WD, et al. Increasing incidence of clostridium difficile infection, australia, 2011–2012. Med J Aust. 2014;200(5):272–276.
  • Ho J, Dai RZW, Kwong TNY, et al. Disease burden of clostridium difficile infections in adults, Hong Kong, China, 2006–2014 - Volume 23, Number 10—October 2017. Emerging Infect Dis J CDC. 2017;23(10):1671–1679.
  • Guh AY, Mu Y, Winston LG, et al. Trends in U.S. burden of clostridioides difficile infection and outcomes. new england. J Med. 2020;382:1320–1330.
  • Jen MH, Saxena S, Bottle A, et al. Assessment of administrative data for evaluating the shifting acquisition of Clostridium difficile infection in England. J Hosp Infect. 2012;80(3):229–237.
  • Wilcox MH, Shetty N, Fawley WN, et al. Changing epidemiology of clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis. 2012;55(8):1056–1063.
  • Dingle KE, Didelot X, Quan TP, et al. Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis. 2017;17(4):411–421.
  • Kallen AJ, Thompson A, Ristaino P, et al. Complete restriction of fluoroquinolone use to control an outbreak of Clostridium difficile infection at a community hospital. Infect Control Hosp Epidemiol. 2009;30(3):264–272.
  • Shea KM, Hobbs ALV, Jaso TC, et al., Effect of a health care system respiratory fluoroquinolone restriction program to alter utilization and impact rates of clostridium difficile infection. Antimicrob Agents Chemother. 2017;61(6):61.
  • Lawes T, J-m L-L, Nebot CA, et al. Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17(2):194–206.
  • Sarma JB, Marshall B, Cleeve V, et al. Effects of fluoroquinolone restriction (from 2007 to 2012) on Clostridium difficile infections: interrupted time-series analysis. J Hosp Infect. 2015;91(1):74–80.
  • Pitiriga V, Vrioni G, Saroglou G, et al. The impact of antibiotic stewardship programs in combating quinolone resistance: a systematic review and recommendations for more efficient interventions. Adv Ther. 2017;34(4):854–865.
  • Clabots CR, Johnson S, Olson MM, et al. Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis. 1992;166(3):561–567.
  • Alasmari F, Seiler SM, Hink T, et al. Prevalence and risk factors for asymptomatic Clostridium difficile carriage. Clin Infect Dis. 2014;59(2):216–222.
  • Walker AS, Eyre DW, Wyllie DH, et al. Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med. 2012;9(2):e1001172.
  • Eyre DW, Cule ML, Wilson DJ, et al. Diverse Sources of C difficile infection identified on whole-genome sequencing. N Engl J Med. 2013;369:1195–1205.
  • Kong LY, Eyre DW, Corbeil J, et al. Clostridium difficile: investigating transmission patterns between infected and colonized patients using whole genome sequencing. Clin Infect Dis. 2019;68(2):204–209.
  • Hurley BW, Nguyen CC. The spectrum of pseudomembranous enterocolitis and antibiotic-associated diarrhea. Arch Intern Med. 2002;162(19):2177–2184.
  • Freiler J, Durning S, Ender P, et al. Clostridium difficile small bowel enteritis occurring after total colectomy. Clin Infect Dis. 2001;33(8):1429–1431.
  • Mattila E, Arkkila P, Mattila PS, et al. Extraintestinal Clostridium difficile Infections. Clin Infect Dis. 2013;57(6):e148–e153.
  • Saginur R, Hawley CR, Bartlett JG. Colitis associated with metronidazole therapy. J Infect Dis. 1980;141(6):772–774.
  • Bingley PJ, Harding GM. Clostridium difficile colitis following treatment with metronidazole and vancomycin. Postgrad Med J. 1987;63(745):993–994.
  • Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile Colitis. N Engl J Med. 1994;330(4):257–262.
  • Vardakas KZ, Trigkidis KK, Boukouvala E, et al. Clostridium difficile infection following systemic antibiotic administration in randomised controlled trials: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;48(1):1–10.
  • Tedesco FJ. Pseudomembranous colitis: pathogenesis and therapy. Med Clin North Am. 1982;66(3):655–664.
  • Eze P, Balsells E, Kyaw MH, et al. Risk factors for Clostridium difficile infections - an overview of the evidence base and challenges in data synthesis. J Glob Health. 2017;7(1):010417.
  • Chakra CNA, Pepin J, Sirard S, et al. Risk factors for recurrence, complications and mortality in clostridium difficile infection: a systematic review. Plos One. 2014;9(6):e98400.
  • McDonald LC, Gerding DN, Johnson S, et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66:e1–e48.
  • Bauer MP, Kuijper EJ, Van Dissel JT. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect. 2009;15(12):1067–1079.
  • Kelly CP. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin Microbiol Infect. 2012;18(Suppl 6):21–27.
  • Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for clostridium difficile infection. N Engl J Med. 2011;364(5):422–431.
  • Lowy I, Molrine DC, Leav BA, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med. 2010;362(3):197–205.
  • Wilcox MH, Fawley WN, Settle CD, et al. Recurrence of symptoms in Clostridium difficile infection–relapse or reinfection? J Hosp Infect. 1998;38(2):93–100.
  • Tang-Feldman Y, Mayo S, Silva J, et al. Molecular analysis of Clostridium difficile strains isolated from 18 cases of recurrent clostridium difficile-associated diarrhea. J Clin Microbiol. 2003;41(7):3413–3414.
  • O’Neill GL, Beaman MH, Riley TV. Relapse versus reinfection with Clostridium difficile. Epidemiol Infect. 1991;107(3):627–635.
  • Johnson S, Adelmann A, Clabots CR, et al. Recurrences of clostridium difficile diarrhea not caused by the original infecting organism. J Infect Dis. 1989;159(2):340–343.
  • Barbut F, Richard A, Hamadi K, et al. Epidemiology of recurrences or reinfections of Clostridium difficile-associated diarrhea. J Clin Microbiol. 2000;38(6):2386–2388.
  • Usacheva EA, Jin J-P, Peterson LR. Host response to Clostridium difficile infection: diagnostics and detection. J Glob Antimicrob Resist. 2016;7:93–101.
  • Polage CR, Solnick JV, Cohen SH. Nosocomial Diarrhea: evaluation and treatment of causes other than clostridium difficile. Clin Infect Dis. 2012;55(7):982–989.
  • Berdichevski T, Barshack I, Bar-Meir S, et al. Pseudomembranes in a patient with flare-up of inflammatory bowel disease (IBD): is it only Clostridium difficile or is it still an IBD exacerbation? Endoscopy. 2010;42(Suppl 2):E131.
  • Farooq PD, Urrunaga NH, Tang DM, et al. Pseudomembranous Colitis. Dis Mon. 2015;61(5):181–206.
  • Tang DM, Urrunaga NH, De Groot H, et al. Pseudomembranous colitis: not always caused by clostridium difficile. Case Rep Med. 2014;2014:812704.
  • Arimoto J, Horita N, Kato S, et al. Diagnostic test accuracy of glutamate dehydrogenase for clostridium difficile: systematic review and meta-analysis. Sci Rep. 2016;6(1):29754.
  • Burnham C-AD, Carroll KC. Diagnosis of clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev. 2013;26:604–630.
  • Planche T, Aghaizu A, Holliman R, et al. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis. 8(12): 777–784. 2008. .
  • Crobach MJT, Planche T, Eckert C, et al. European society of clinical microbiology and infectious diseases: update of the diagnostic guidance document for clostridium difficile infection. Clin Microbiol Infect. 22(Suppl 4): S63–81. 2016. .
  • Fairley DJ, McKenna JP, Stevenson M, et al. Association of Clostridium difficile ribotype 078 with detectable toxin in human stool specimens. J Med Microbiol. 2015;64(11):1341–1345.
  • Tenover FC, Novak-Weekley S, Woods CW, et al. Impact of strain type on detection of toxigenic clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol. 2010;48(10):3719–3724.
  • Polage CR, Gyorke CE, Kennedy MA, et al. Overdiagnosis of clostridium difficile infection in the molecular test era. JAMA Intern Med. 175(11): 1792–1801. 2015. .
  • Guinta MM, Bunnell K, Harrington A, et al. Clinical and economic impact of the introduction of a nucleic acid amplification assay for Clostridium difficile. Ann Clin Microbiol Antimicrob. 2017;16(1):77.
  • Currie B. Real-timePCR testing for CDI improves outcomes and reduces costs. MLO Med Lab Obs. 2009;41:18–20.
  • Planche TD, Davies KA, Coen PG, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis. 13(11): 936–945. 2013. .
  • Bruno-Murtha LA, Osgood RA, Alexandre CE. A Successful A Successful strategy to decrease hospital-onset clostridium difficile. Infect Control Hosp Epidemiol. 2018;39(2):234–236.
  • Mizusawa M, Small BA, Hsu Y-J, et al. Prescriber behavior in clostridioides difficile testing: a 3-hospital diagnostic stewardship intervention. Clinl Infect Dis. 2019;69(11):2019–2021.
  • Truong CY, Gombar S, Wilson R, et al. Real-time electronic tracking of diarrheal episodes and laxative therapy enables verification of clostridium difficile clinical testing criteria and reduction of clostridium difficile infection rates. J Clin Microbiol. 2017;55(5):1276–1284.
  • Madden GR, German Mesner I, Cox HL, et al. Reduced clostridium difficile tests and laboratory-identified events with a computerized clinical decision support tool and financial incentive. Infect Control Hosp Epidemiol. 2018;39(6):737–740.
  • Yen C, Holtom P, Butler-Wu SM, et al. Reducing clostridium difficile colitis rates via cost-saving diagnostic stewardship. Infect Control Hosp Epidemiol. 2018;39(6):734–736.
  • Quan KA, Yim J, Merrill D, et al. Reductions in clostridium difficile infection (CDI) rates using real-time automated clinical criteria verification to enforce appropriate testing. Infect Control Hosp Epidemiol. 2018;39(5):625–627.
  • Drees M, Dressler R, Taylor K, et al. Testing stewardship: a ‘hard stop’ to reduce inappropriate C diff testing. Open Forum Infect Dis. 2017;4(suppl_1):S1–S2.
  • Song L, Zhao M, Duffy DC, et al. Development and validation of digital enzyme-linked immunosorbent assays for ultrasensitive detection and quantification of clostridium difficile toxins in stool patel R, editor. J Clin Microbiol. 2015;53(10):3204–3212.
  • Banz A, Lantz A, Riou B, et al. Sensitivity of single-molecule array assays for detection of clostridium difficile toxins in comparison to conventional laboratory testing algorithms. J Clin Microbiol. e00452-18,/jcm/56/8/e00452-18.atom. 2018;56(8). 10.1128/JCM.00452-18
  • Rissin DM, Fournier DR, Piech T, et al. Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal Chem. 2011;83(6):2279–2285.
  • Nr P, Kraft CS. Ultrasensitive detection and quantification of toxins for optimized diagnosis of clostridium difficile infection. kraft CS, editor. J Clin Microbiol. 2016;54(2):259–264.
  • Pollock NR, Banz A, Chen X, et al. Comparison of clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay (old). Clin Infect Dis. 68(1): 78–86. 2019. .
  • Sandlund J, Bartolome A, Almazan A, et al. Ultrasensitive detection of clostridioides difficile toxins A and B by use of automated single-molecule counting technology. J Clin Microbiol. e00908-18,/jcm/56/11/e00908-18.atom. 2018;56(11). 10.1128/JCM.00908-18
  • Sandlund J, Davies K, Wilcox MH. Ultrasensitive clostridioides difficile toxin testing for higher diagnostic accuracy. J Clin Microbiol. 2020; e01913-19,/jcm/58/6/JCM.01913-19.atom.58(6). 10.1128/JCM.01913-19.
  • Hansen G, Young S, Wu AHB, et al. Ultrasensitive detection of clostridioides difficile toxins in stool by use of single-molecule counting technology: comparison with detection of free toxin by cell culture cytotoxicity neutralization assay. J Clin Microbiol. e00719-19,/jcm/57/11/JCM.00719-19.atom. 2019;57(11). 10.1128/JCM.00719-19
  • Gite S, Archambault D, Cappillino MP, et al. A rapid, accurate, single molecule counting method detects clostridium difficile toxin b in stool samples. Sci Rep. 2018;8(1):8364.
  • Ryder AB, Huang Y, Li H, et al. Assessment of clostridium difficile infections by quantitative detection of tcdB toxin by use of a real-time cell analysis system. J Clin Microbiol. 2010;48(11):4129–4134.
  • Garvey MI, Bradley CW, Wilkinson MAC, et al. Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection? Antimicrob Resist Infect Control. 2017;6(1):127.
  • De Jong E, De Jong AS, Bartels CJM, et al. Clinical and laboratory evaluation of a real-time PCR for Clostridium difficile toxin A and B genes. Eur J Clin Microbiol Infect Dis. 2012;31(9):2219–2225.
  • Anikst VE, Gaur RL, Schroeder LF, et al. Organism burden, toxin concentration, and lactoferrin concentration do not distinguish between clinically significant and nonsignificant diarrhea in patients with Clostridium difficile. Diagn Microbiol Infect Dis. 2016;84(4):343–346.
  • Truong C, Schroeder LF, Gaur R, et al. Clostridium difficile rates in asymptomatic and symptomatic hospitalized patients using nucleic acid testing. Diagn Microbiol Infect Dis. 2017;87(4):365–370.
  • Origüen J, Má O, Fernández-Ruiz M, et al. Toxin B PCR amplification cycle threshold adds little to clinical variables for predicting outcomes in clostridium difficile infection: a retrospective cohort study. onderdonk AB, editor. J Clin Microbiol. e01125-18,/jcm/57/2/JCM.01125-18.atom. 2019;57(2). 10.1128/JCM.01125-18
  • Shah MD, J-m B-L, Coe K, et al. Evaluation of cycle threshold, toxin concentration, and clinical characteristics of clostridioides difficile infection in patients with discordant diagnostic test results. J Clin Microbiol. e01681-19,/jcm/58/5/JCM.01681-19.atom. 2020;58(5). 10.1128/JCM.01681-19
  • Senchyna F, Gaur RL, Gombar S, et al. Clostridium difficile PCR Cycle Threshold Predicts Free Toxin. Tang Y-W, editor. J Clin Microbiol. 2017;55(9):2651–2660.
  • Kamboj M, Brite J, McMillen T, et al. Potential of real-time PCR threshold cycle (C T) to predict presence of free toxin and clinically relevant C difficile infection (CDI) in patients with cancer. J Infect. 2018;76(4):369–375.
  • Luo RF, Spradley S, Banaei N. Alerting physicians during electronic order entry effectively reduces unnecessary repeat PCR testing for clostridium difficile: fig 1. J Clin Microbiol. 2013;51(11):3872–3874.
  • Otto CC, Shuptar SL, Milord P, et al. Reducing unnecessary and duplicate ordering for ovum and parasite examinations and clostridium difficile PCR in immunocompromised patients by using an alert at the time of request in the order management system. J Clin Microbiol. 2015;53(8):2745–2748.
  • Nicholson MR, Freswick PN, Di Pentima MC, et al. The use of a computerized provider order entry alert to decrease rates of clostridium difficile testing in young pediatric patients. Infect Control Hosp Epidemiol. 2017;38(5):542–546.
  • COMMITTEE ON INFECTIOUS DISEASES. Clostridium difficile Infection in Infants and Children. PEDIATRICS. 2013;131(1):196–200.
  • Tran NN, Mills JP, Zimmerman C, et al. Incorporating preauthorization into antimicrobial stewardship pharmacist workflow reduces Clostridioides difficile and gastrointestinal panel testing. Infect Control Hosp Epidemiol. 2020;41(10):1136–1141.
  • White DR, Hamilton KW, Pegues DA, et al. the impact of a computerized clinical decision support tool on inappropriate cCostridium difficile testing. Infect Control Hosp Epidemiol. 2017;38(10):1204–1208.
  • Nistico JA, Hage JE, Schoch PE, et al. Unnecessary repeat Clostridium difficile PCR testing in hospitalized adults with C. difficile-negative diarrhea. Eur J Clin Microbiol Infect Dis. 2013;32(1):97–99.
  • Wu Q, Savidge TC. Systems approaches for the clinical diagnosis of Clostridioides difficile infection. Transl Res. 2020;220:57–67.
  • Yu H, Chen K, Sun Y, et al. Cytokines are markers of the clostridium difficile-induced inflammatory response and predict disease severity. Clin Vaccine Immunol. 2017;24(8):e00037–17. e00037-17
  • Wu X, Lai X, Tu H, et al. Elevated serum CXCL10 in patients with Clostridium difficile infection are associated with disease severity. Int Immunopharmacol. 2019;72:92–97.
  • Kane SV, Sandborn WJ, Rufo PA, et al. Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation. Am J Gastroenterol. 2003;98(6):1309–1314.
  • Steiner TS, Flores CA, Pizarro TT, et al. Fecal lactoferrin, Interleukin-1, and Interleukin-8 are elevated in patients with severe Clostridium difficile colitis. Clin Diagn Lab Immunol. 1997;4(6):719–722.
  • Swale A, Miyajima F, Roberts P, et al. Calprotectin and lactoferrin faecal levels in patients with clostridium difficile infection (CDI): a prospective cohort study popoff MR, editor. PLoS One. 2014;9(8):e106118.
  • LaSala PR, Ekhmimi T, Hill AK, et al. Quantitative fecal lactoferrin in toxin-positive and toxin-negative clostridium difficile specimens: table 1. J Clin Microbiol. 2013;51(1):311–313.
  • Rao K, Santhosh K, Mogle JA, et al. Elevated fecal calprotectin associates with adverse outcomes from Clostridium difficile infection in older adults. Infect Dis (Auckl). 2016;48(9):663–669.
  • The level of fecal calprotectin significantly correlates with Clostridium difficile infection severity. 2019 [cited 2020 Dec 29]; Available from: http://journals.pan.pl/dlibra/publication/131136.
  • Golizeh M, Winter K, Roussel L, et al. Fecal host biomarkers predicting severity of Clostridioides difficile infection. JCI Insight. Internet] 2020 [cited 2020 Dec 30]; Available from . : http://insight.jci.org/articles/view/142976
  • Kelly CP, Chen X, Williams D, et al. Host immune markers distinguish clostridioides difficile infection from asymptomatic carriage and non–c. difficile diarrhea. Clinl Infect Dis. 2019:ciz330. 10.1093/cid/ciz330
  • Dieterle MG, Putler R, Perry DA, et al. Systemic inflammatory mediators are effective biomarkers for predicting adverse outcomes in Clostridioides difficile infection. mBio. e00180-20,/mbio/11/3/mBio.00180-20.atom. 2020;11(3). 10.1128/mBio.00180-20
  • Ross CL, Spinler JK, Savidge TC. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe. 2016;41:37–43.
  • Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14:609–620.
  • Zhou P, Zhou N, Shao L, et al. Diagnosis of Clostridium difficile infection using an UPLC–MS based metabolomics method. Metabolomics. 2018;14(8):102.
  • Patel M, Fowler D, Sizer J, et al. Faecal volatile biomarkers of Clostridium difficile infection. PLoS ONE. 2019;14(4):e0215256.
  • Lim SC, Knight DR, Riley TV. Clostridium difficile and One Health. Clin Microbiol Infect. 2020;26(7):857–863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.