2,175
Views
1
CrossRef citations to date
0
Altmetric
Review

The importance of genomic analysis in cracking the coronavirus pandemic

, , , , , , , , , , , , ORCID Icon, , , & ORCID Icon show all
Pages 547-562 | Received 09 Feb 2021, Accepted 13 Apr 2021, Published online: 28 Apr 2021

References

  • Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus study group. bioRxiv. 2020 Feb 2020.02.07.937862
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. PubMed: 32015508. .
  • Chan JF-W, Kok K-H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221–236. PubMed: 31987001. .
  • Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Emerg Microbes Infect. 2020;26(4):450–452. PubMed: 33284615. .
  • Tagliamonte MS, Abid N, Borocci S, et al. Recombination and purifying selection preserves covariant movements of mosaic SARS-CoV-2 protein S. Int J Mol Sci. in press. 2020;22(1). 10.3390/ijms22010080
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. PubMed: 32015507. .
  • WHO. WHO director-general’s remarks at the media briefing on 2019-nCoV on 11 February 2020 [Internet]. [cited 2020 Dec 14]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
  • Rambaut A, Holmes EC, O’Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403–1407. PubMed: 32669681. .
  • )Rambaut, A., Holmes, E.C., O’Toole, Á. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol5, 1403–1407 (2020). Available from: https://doi.org/10.1038/s41564-020-0770-5
  • Tegally H, Wilkinson E, Lessells RR, et al. Major new lineages of SARS-CoV-2 emerge and spread in South Africa during lockdown. Nat Microbiol. 2020. DOI:10.1101/2020.10.28.20221143.
  • Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179. PubMed: 32321524. .
  • Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science. 2021;371(6525):172–177. PubMed: 33172935. .
  • COVID-19 Genomics UK (COG-UK]. An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe. 2020;1(3):e99–100.
  • Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory synd-related coronavirus 2 (SARS-CoV-2] lineage with multiple spike mutations in South Africa. bioRxiv. 2020 Dec 22. DOI:10.1101/2020.12.21.20248640. [ published online].
  • O’Toole A, Hill V, Pybus OG, et al. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Jan 13. Virological. https://virological.org/t/tracking-the-international-spread-of-sars-cov-2-lineages-b-1-1-7-and-b-1-351-501y-v2/592
  • Faria NR, Morales Claro I, Candido D, et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Jan 12. Virological. https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
  • Arya R, Kumari S, Pandey S, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol. 2021;433(2):166725. PubMed: 33245961. .
  • Waman VP, Sen N, Varadi M, et al. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Brief Bioinform. 2020;12(2):bbaa362. PubMed: 33348379.
  • Rambaut A, Loman N, Pybus O, et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. [cited 2020 Dec 21]. Available from: https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
  • Rezende P. “Phylogenetic Relationship of SARS-CoV-2 Sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the spike protein.” Virological, 11 Jan. 2021, Available from: virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585.
  • Faria NR, Claro IM, Candido D, et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological.[cited 2021 Feb 24]. Available from: https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
  • Tegally H, Wilkinson E, Giovanetti M, et al. Emergence of a SARS-CoV-2 variant of concern with mutations in spike glycoprotein. Nature. 2021;592(7854):438–443.
  • Korukluoglu G, Kolukirik M, Bayrakdar F, et al. 40 minutes RT-qPCR assay for screening spike N501Y and HV69-70del mutations 2021. Available from: https://www.biorxiv.org/content/10.1101/2021.01.26.428302v1.full.pdf
  • Vogels CB, Breban M, Alpert T, et al. PCR assay to enhance global surveillance for SARS-CoV-2 variants of concern 2021. 2021. 01.28.21250486]. Available from: https://www.medrxiv.org/content/medrxiv/early/2021/02/01/2021.01.28.21250486.full.pdf
  • Vasques Nonaka CK, Franco MM, Gräf T, et al. Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg Infect Dis. 2021;23(1).
  • “Emerging SARS-CoV-2 Variants.” Centers for disease control and prevention, centers for disease control and prevention. 2021. AVailable from: www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html.
  • Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 2020;9:3–10.
  • Yang J, Yan R, Roy A, et al. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8. PubMed: 25549265. .
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. PubMed: 29788355. .
  • Bianchi M, Benvenuto D, Giovanetti M, et al. Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? Biomed Res Int. PubMed: 32596311 2020;2020: 4389089.
  • Benvenuto D, Angeletti S, Giovanetti M, et al. Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6] could affect viral autophagy. J Infect. 2020;81(1):e24–e27. PubMed: 32283146. .
  • Angeletti S, Benvenuto D, Bianchi M, et al. COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020;92(6):584–588. PubMed: 32083328. .
  • Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp] targeting: an in silico perspective. J Biomol Struct Dyn. 2020;233(2):1–9. PubMed: 32338164.
  • Baruah C, Devi P, Sharma DK. Sequence analysis and structure prediction of SARS-CoV-2 accessory proteins 9b and ORF14: evolutionary analysis indicates close relatedness to bat Coronavirus. Biomed Res Int. 2020;2020:7234961. Published 2020 Oct 20. PubMed: 33102591.
  • Ouzounis CA. A recent origin of Orf3a from M protein across the coronavirus lineage arising by sharp divergence. Comput Struct Biotechnol J. 2020;18:4093–4102. [ PubMed: 33363705].
  • Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS‐CoV‐2 spike glycoprotein with ACE‐2 receptor homologs and human TLRs. J Med Virol. 2020;92(10):2105–2113. PubMed: 32383269.
  • Brooke GN, Prischi F. Structural and functional modelling of SARS-CoV-2 entry in animal models. Sci Rep. 2020;10(1):15917. PubMed: 32985513.
  • Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468. PubMed: 2383859.
  • Naik B, Gupta N, Ojha R, et al. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int J Biol Macromol. PubMed: 32470577 2020;160: 1–17.
  • Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293. PubMed: 32272481. .
  • Mengist HM, Fan X, Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro, signal transduct. Nature. 2020;5: 67. PubMed: 32388537.
  • Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894–904.e9. PubMed: 32275855. .
  • Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220. PubMed: 32225176. .
  • Bangaru S, Ozorowski G, Turner HL, et al. Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science. 2020;370(6520):1089–1094. PubMed: 33082995. .
  • Semper C, Watanabe N, Savchenko A. Structural characterization of nonstructural protein 1 from SARS-CoV-2. IScience. 2021;24(1):101903. PubMed: 33319167. .
  • Konkolova E, Klima M, Nencka R, et al. Structural analysis of the putative SARS-CoV-2 primase complex. J Struct Biol. 2020;211(2):107548. PubMed: 32535228. .
  • Hillen HS, Kokic G, Farnung L. Structure of replicating SARS-CoV-2 polymerase. Nature. 2020;584(7819):154–156. PubMed: 32438371. .
  • Kokic G, Hillen HS, Tegunov D, et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat Commun. 2021;12(1):279. PubMed: 33436624. .
  • Chen J, Malone B, Llewellyn E, et al. Campbell, structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell. 2020;182(6):1560–1573.e13. PubMed: 32783916. .
  • Littler DR, Gully BS, Colson RN, et al. Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. IScience. 2020;23(7):101258. PubMed: 32592996.
  • Rosas-Lemus M, Minasov G, Shuvalova L, et al. High-resolution structures of the SARS-CoV-2 2′-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal. 2020;13(651):abe1202. PubMed: 32994211.
  • Kim Y, Jedrzejczak R, Maltseva NI, et al. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci. 2020;29(7):1596–1605. PubMed: 32304108. .
  • Peng Y, Du N, Lei Y, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. Embo J. 2020;39(20):e105938. PubMed:32914439.
  • Dong S, Sun J, Mao Z, et al. A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV]. J Med Virol. 2020;92(9):1542–1548. PubMed: 32181901.
  • Arévalo SJ, Sifuentes DZ, Robles CH, et al. Uceda-Campos, analysis of the dynamics and distribution of SARS-CoV-2 mutations and its possible structural and functional implications. BioRxiv. 2020;2020(11):13.381228.
  • Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183(3):739–751.e8. PubMed:32991842. .
  • Lokman SM, Rasheduzzaman M, Salauddin A, et al. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: a computational biology approach. Infect Genet Evol. PubMed: 32502733 2020;84: 104389.
  • Issa E, Merhi G, Panossian B, et al. SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis. MSystems. 2020;5(3):e00266–20. PubMed: 32371472. .
  • Bianchi M, Borsetti A, Ciccozzi M, et al. SARS-Cov-2 ORF3a: mutability and function. Int J Biol Macromol. 2021;170:820–826. [ PubMed: 33359807].
  • Zinzula L. Lost in deletion: the enigmatic ORF8 protein of SARS-CoV-2. Biochem Biophys Res Commun. 2020. DOI:10.1016/j.bbrc.2020.10.045
  • Benvenuto D, Demir AB, Giovanetti M, et al. Evidence for mutations in SARS‐CoV‐2 Italian isolates potentially affecting virus transmission. J Med Virol. 2020;92(10):2232–2237. PubMed: 32492183.
  • Gaurav A, Al-Nema M. Chapter 10 - Polymerases of Coronaviruses: structure, function, and inhibitors. In: Gupta SP, editor. Viral Polymerases. Academic Press; 2019. p. 271–300. Available from: https://doi.org/10.1016/B978-0-12-815422-9.00010-3
  • Gao Y, Diederichs K, Fischer F. Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target. bioRxiv. 2020; 2020.03.16.993386. 10.1101/2020.10.07.307546.
  • Muth D, Corman VM, Roth H, et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep. 2018;8(1):15177. PubMed: 30310104.
  • Menachery VD, Younth JBL, Josset L, et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-o-methyltransferase activity. J Med Virol. 2014;88(8):4251–4264. PubMed: 24478444.
  • Armengaud J, Delaunay-Moisan A, Thuret JY, et al. The importance of naturally attenuated SARS-CoV-2in the fight against COVID-19. Environ Microbiol. 2020;22(6):1997–2000. PubMed: 24478444.
  • Baud D, Qi X, Nielsen-Saines K, et al. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020;20(7):773. PubMed: 32171390.
  • Ciotti M, Ciccozzi M, Terrinoni A, et al. The COVID-19 pandemic. Crit Rev Clin Lab Sci. 2020;57(6):365–388. PubMed: 32645276. .
  • Ciotti M, Benedetti F, Zella D, et al. SARS-Cov-2 infection and the COVID-19 pandemic emergency: the importance of diagnostic methods. Chemotherapy. in press.
  • Winichakoon P, Chaiwarith R, Liwsrisakun C, et al. Negative nasopharyngeal and oropharyngeal swab does not rule out COVID-19. J Clin Microbiol. 2020;58(5):e00297–20. PubMed: 32102856. .
  • Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020;9(9):747–756. PubMed: 32196430. .
  • Yu F, Yan L, Wang N, et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin Infect Dis. 2020;71(15):793–798. PubMed: 32221523. .
  • Afzal A. Molecular diagnostic technologies for COVID-19: limitations and challenges. J Adv Res. 2020;26:149–159. [ PubMed: 32837738].
  • Rambaut A, Loman N, Pybus O, et al., on behalf of COVID-19 genomics consortium UK (CoG-UK].Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. https://virological.org/]
  • Pillay S, Giandhari J, Tegally H, et al. Whole genome sequencing of SARS-CoV-2: adapting illumina protocols for quick and accurate outbreak investigation during a pandemic. Genes (Basel). 2020;11(8):949. PubMed: 32824573. .
  • Singh SP, Pritam M, Pandey B, et al. Microstructure, pathophysiology and potential therapeutics of COVID-19: a comprehensive review. PubMed: 32617987 J Med Virol. 2020;931:275–299.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. PubMed: 31986264. .
  • Xie C, Lu J, Wu D, et al. False negative rate of COVID-19 is eliminated by using nasal swab test. Travel Med Infect Dis. PubMed: 32283215 2020;11: 101668.
  • Nandy K, Salunke A, Pathak SK, et al. Coronavirus disease (COVID-19]: a systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr. 2020;14(5):1017–1025. PubMed: 32634716. .
  • Pezzuto A, D’Ascanio M, Grieco A, et al. Functional benefit of smoking cessation in severe COPD patients undergoing bronchial valve implantation. Eur J Intern Med. 2019;68:55–59. PubMed: 31387842.
  • Elbeddini A, Tayefehchamani Y. Amid COVID-19 pandemic: challenges with access to care for COPD patients. Res Social Adm Pharm. 2021;17(1):1934–1937. PubMed: 32513515.
  • Pezzuto A, Tammaro A, Tonini G, et al. COPD influences survival in patients affected by COVID-19, comparison between subjects admitted to an internal medicine unit, and subjects admitted to an intensive care unit: an Italian experience. J Med Virol. 2020;7. PubMed: 33026657. DOI:10.1002/jmv.26585
  • Liu K, Chen Y, Lin R, et al. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Infect. 2020;80(6):e14–e18. PubMed: 32171866.
  • Pagano L, Caira M. Risks for infection in patients with myelodysplasia and acute leukemia. Curr Opin Infect Dis. 2012;25(6):612–618. PubMed: 22964946.
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. PubMed: 32161940. .
  • Vazquez EG, Martinez JA, Mensa J, et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J. 2003;21(4):702–705. PubMed: 12762360.
  • Jalaber C, Lapotre T, Morcet-Delattre T, et al. Chest CT in COVID-19 pneumonia: a review of current knowledge. Diagn Interv Imaging. 2020;101(7–8):431–437. PubMed: 32571748.
  • Bao C, Liu X, Zhang H, et al. Coronavirus disease 2019 (COVID-19] CT findings: a systematic review and meta-analysis. J Am Coll Radiol. 2020;17(6):701–709. PubMed: 32283052.
  • Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease-19 (COVID-19]: relationship to duration of infection. Radiology. 2020;295(3):200463. PubMed: 32077789. .
  • Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–1130. PubMed: 32475230. .
  • Zhang WZ, Oromendia C, Kikkers SA, et al. Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS. Sci Rep. 2020;10(1):10562. PubMed: 32601308. .
  • Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ. 2020;369:m1432. [ PubMed: 32601308].
  • Nutho B, Mahalapbutr P, Hengphasatporn K, et al. Why are lopinavir and ritonavir effective against the newly emerged Coronavirus 2019?: atomistic insights into the inhibitory mechanisms. Biochemistry. 2020;59(18):1769–1779. PubMed: 32293875. .
  • Simpson S, Kay FU, Abbara S, et al. Radiological society of North America expert consensus statement on reporting chest CT findings related to COVID-19. endorsed by the society of thoracic radiology, the American college of radiology, and RSNA - secondary publication. J Thorac Imaging. 2020;35(4):219–227. PubMed: 32324653. .
  • Toussie D, Voutsinas N, Finkelstein M, et al. Clinical and chest radiography features determine patient outcomes in young and middle age adults with COVID-19. Radiology. 2020;297(1):E197–E206. PubMed: 32407255. .
  • Gavin W, Campbell E, Zaidi A, et al. Clinical characteristics, outcomes and prognosticators in adult patients hospitalized with COVID-19. Am J Infect Control. 2020;49(2):158–165. PubMed: 32652252. .
  • Pagano A, Porta G, Bosso G, et al. Non-invasive CPAP in mild and moderate ARDS secondary to SARS-CoV-2. Respir Physiol Neurobiol. PubMed: 32629100 2020;280: 103489.
  • Burns GP, Lane ND, Tedd HM, et al. Improved survival following ward-based non-invasive pressure support for severe hypoxia in a cohort of frail patients with COVID-19: retrospective analysis from a UK teaching hospital. BMJ Open Respir Res. 2020;7(1):e000621. PubMed: 32624494. .
  • Izquierdo J, Almonacid C, Gonzalez Y, et al. The impact of Covid-19 on patients with asthma. Eur Respir J. 2020;56(1):2003142. PubMed: 33154029. .
  • Beken B, Ozturk GK, Aygun FD, et al. Asthma and allergic diseases are not risk factors for hospitalization in children with COVID-19. Ann Allergy Asthma Immunol. 2021;S1081–1206. 00053-3. [ PubMed: 33493639. doi:10.1016/j.anai.2021.01.018
  • Huang SW, Miller SO, Yen CH, et al. Impact of Genetic Variability In ACE2 expression on the evolutionary dynamics of SARS-CoV-2 spike D614G mutation. Genes (Basel). 2021;12(1):16. PubMed: 33374416. .
  • Chen PL, Lee NY, Cia CT, et al. A review of treatment of coronavirus disease 2019 (COVID-19]: therapeutic repurposing and unmet clinical needs. Front Pharmacol. PubMed: 33364959 2020;11: 584956.
  • Ceccarelli G, Alessandri F, Oliva A, et al. Superinfections in patients treated with Teicoplanin as anti-SARS-CoV-2 agent. Eur J Clin Invest. 2021;51(1):e13418. PubMed: 32997792. .
  • Ceccarelli G, Alessandri F, d’Ettorre G, et al. Intensive Care COVID-19 study group of Sapienza university. Is teicoplanin a complementary treatment option for COVID-19? The question remains. Int J Antimicrob Agents. 2020;56(2):106029. PubMed: 32454071. .
  • Tan S, Chen W, Xiang H, et al. Screening druggable targets and predicting therapeutic drugs for COVID-19 via integrated bioinformatics analysis. Genes Genomics. 2021;43(1):55–67. PubMed: 33428154. .
  • Hernández Cordero AI, Li X, Yang CX, et al. Gene expression network analysis provides potential targets against SARS-CoV-2. Sci Rep. 2020;10(1):21863. PubMed: 33318519. .
  • WGS Analysis of COVID-19 Positive Patients (CALYPSO trial], ClinicalTrials.gov identifier: NCT04353401 available at: https://www.clinicaltrials.gov/ct2/show/NCT04353401?term=covid&cond=genomic+analysis&draw=2&rank=1, accessed on 3/2/2021
  • WHO. 2021. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  • Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77–81. PubMed: 32376603. .
  • Palacios R, Patiño EG, De Oliveira Piorelli R, et al. Double-blind, randomized, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated] vaccine manufactured by Sinovac - PROFISCOV: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):853. PubMed: 33059771. .
  • Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA. 2020;324(10):951–960. PubMed: 32789505. .
  • Wang H, Zhang Y, Huang B, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020;182(3):e9. PubMed: 32778225. .
  • Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39–51. PubMed: 33069281. .
  • Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383(24):2320–2332. PubMed: 32877576. .
  • Van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578–582. PubMed: 32731258. .
  • Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARSCoV- 2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–478. PubMed: 32702298.
  • Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222] against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111, PubMed: 33306989
  • Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887–897. PubMed: 32896291.
  • Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020;586(7830):583–588. PubMed: 32731257.
  • Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021 Jan 13:NEJMoa2034201 Epub ahead of print. PMID: 33440088; PMCID: PMC7821985. DOI:10.1056/NEJMoa2034201.
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - preliminary report. N Engl J Med. 2020;383(20):1920–1931. PubMed: 32663912. .
  • Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–2438. PubMed: 32991794. .
  • Widge AT, Rouphael NG, Jackson LA, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med. 2021;384(1):80–82. PubMed: 33270381. .
  • Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589–593. PubMed: 32785213. .
  • Oliver SE, Gargano JW, Marin M, et al. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine - United States, December 2020. MMWR Morb Mortal Wkly Rep. 2020;69(50):1922–1924. PubMed: 33332292. .
  • Ella R, Vadrevu KM, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis. 2021;S1473–3099. PubMed: 33485468.
  • ClinicalTrials. A Study of Ad26.COV2.S for the Prevention of SARS-CoV-2-Mediated COVID-19 in Adult Participants (ENSEMBLE). Available from: https://clinicaltrials.gov/ct2/show/NCT04505722
  • Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–1854. Available from: https://clinicaltrials.gov/ct2/show/NCT04674189
  • Muik A, Wallisch AK, Sänger B, et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science. 2021 Mar 12 Epub 2021 Jan 29. PMID: 33514629;371(6534):1152–1153…
  • Liu Y, Liu J, Xia H, et al. Neutralizing activity of BNT162b2-Elicited serum. N Engl J Med. 2021 Mar 8 Epub ahead of print. PMID: 33684280;384(15):1466–1468…
  • Wu K, Werner AP, Koch M, et al. Serum neutralizing activity elicited by mRNA-1273 vaccine. N Engl J Med. 2021 Mar 17 Epub ahead of print. PMID: 33730471;384(15):1468–1470…
  • A Study of Ad26.COV2.S for the Prevention of SARS-CoV-2-Mediated COVID-19 in Adult Participants (ENSEMBLE) https://www.clinicaltrials.gov/ct2/show/NCT04505722?term=NCT04505722&draw=2&rank=1
  • Madhi SA, Baillie V, Cutland CL, et al. NGS-SA group wits–VIDA COVID group. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021 Mar 16. Epub ahead of print. PMID: 33725432. 10.1056/NEJMoa2102214
  • Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al.,, . Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020Oct1;183(1)158–168.e14. Epub 2020 Aug 14. PMID: 32979941; PMCID: PMC7427556
  • Tarke A, Sidney J, Methot N, et al. Negligible impact of SARS-CoV-2 variantson CD4+and CD8+T cell reactivity in COVID-19 exposed donors and vaccines. bioRxiv. preprint. DOI:10.1101/2021.02.27.433180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.