695
Views
14
CrossRef citations to date
0
Altmetric
Review

Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit

ORCID Icon, &
Pages 703-721 | Received 06 Jan 2021, Accepted 19 Apr 2021, Published online: 02 Jul 2021

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424.
  • Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57–70.
  • Kroemer G, Senovilla L, Galluzzi L, et al. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015 2015/10/01;21(10):1128–1138.
  • Mathur P, Sathishkumar K, Chaturvedi M, et al. Cancer statistics, 2020: report from national cancer registry programme, India. JCO Global Oncol. 2020;(6):1063–1075. doi:10.1200/GO.20.00122.
  • Society AC. Cancer Facts & Figures 2019. [ cited 2021 Mar 19]. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
  • Malvia S, Bagadi S, Dubey U, et al. Epidemiology of breast cancer in Indian women: breast cancer epidemiology. Asia Pac J Clin Oncol. 2017 02/01;13(4):289–295.
  • Sturgeon CM, Duffy MJ, Stenman U-H, et al. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem. 2008;54(12):e11–e79.
  • Weigel MT, Dowsett M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocrine-related cancer. 2010;17(4):R245.
  • Panieri E. Breast cancer screening in developing countries. Best Pract Res Clin Obstetrics Gynaecol. 2012 2012/04/01/;26(2):283–290.
  • Singh K, Tantravahi U, Lomme MM, et al. Updated 2013 college of American pathologists/American society of clinical oncology (CAP/ASCO) guideline recommendations for human epidermal growth factor receptor 2 (HER2) fluorescent in situ hybridization (FISH) testing increase HER2 positive and HER2 equivocal breast cancer cases; retrospective study of HER2 FISH results of 836 invasive breast cancers. Breast Cancer Res Treat. 2016 2016/06/01;157(3):405–411.
  • Lv S, Zhang K, Zhu L, et al. H2-based electrochemical biosensor with Pd Nanowires@ZIF-67 molecular Sieve bilayered sensing interface for immunoassay. Anal Chem. 2019 2019/09/17;91(18):12055–12062.
  • Cai G, Yu Z, Tong P, et al. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale. 2019;11(33):15659–15667.
  • Yu Z, Cai G, Tong P, et al. Saw-toothed microstructure-based flexible pressure sensor as the signal readout for point-of-care immunoassay. ACS Sens. 2019 2019/09/27;4(9):2272–2276.
  • Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst. 2016;141(5):1551–1568.
  • Bakhtiari H, Palizban AA, Khanahmad H, et al. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci. 2020;15(2):107–122.
  • Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors (Basel). 2012;12(1):612–631.
  • Kaur H, Bruno JG, Kumar A, et al. Aptamers in the therapeutics and diagnostics pipelines. Theranostics. 2018;8(15):4016–4032.
  • Ahirwar R, Vellarikkal SK, Sett A, et al. Aptamer-assisted detection of the altered expression of estrogen receptor alpha in human breast cancer. PLoS One. 2016;11(4):e0153001.
  • Ahirwar R, Nahar P. Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis. J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Aug 1;997:105–109.
  • Ahirwar R, Nahar P. Screening and identification of a DNA aptamer to concanavalin A and its application in food analysis. J Agric Food Chem. 2015 Apr 29;63(16):4104–4111.
  • Huo B, Hu Y, Gao Z, et al. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta. 2021 2021/01/15/;222:121565.
  • Nguyen V-T, Kwon YS, Gu MB. Aptamer-based environmental biosensors for small molecule contaminants. Curr Opin Biotechnol. 2017 2017/06/01/;45:15–23.
  • Sunday CE, Chowdhury M, Tang D. Review-Aptamer-Based Electrochemical Sensing Strategies for Breast Cancer. J. Electrochem. Chem comm. 2018;54(52):7199–7202.
  • Zahra Q, Khan QA, Luo Z. Advances in Optical Aptasensors for Early Detection and Diagnosis of Various Cancer Types. Frontiers in Oncology. 2011 ;11(9):632165.
  • Poturnayova A, Dzubinova L, Burikova M, et al. Detection of Breast Cancer Cells Using Acoustics Aptasensor Specific to HER2 Receptors. Biosensors. 2019;9(2)72.
  • Razmi N, Baradaran B, Hejazi M, et al. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron. 2018 2018/08/15/;113:58–71.
  • Yousefi M, Dehghani S, Nosrati R, et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens Bioelectron. 2019 2019/04/01/;130:1–19.
  • Dehghani S, Nosrati R, Yousefi M, et al. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): a review. Biosens Bioelectron. 2018 Jul 1;110:23–37.
  • Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta. 2020 2020/09/04;187(10):549.
  • Xiang W, Lv Q, Shi H, et al. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020 2020/07/01/;214:120716.
  • Molina R, Barak V, Van Dalen A, et al. Tumor Markers in Breast Cancer – european Group on Tumor Markers Recommendations. Tumor Biol: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2005 Nov-Dec;26(6):281–293.
  • Kabel AM. Tumor markers of breast cancer: new prospectives. J Oncol Sci. 2017 2017/04/01/. ;3(1):5–11.
  • Tsai M-J, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63(1):451–486.
  • Platet N, Cathiard AM, Gleizes M, et al. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol. 2004 2004/07/01/;51(1):55–67.
  • Sampayo R, Recouvreux S, Simian M. Chapter six - The hyperplastic phenotype in PR-A and PR-B transgenic mice: lessons on the role of estrogen and progesterone receptors in the mouse mammary gland and breast cancer. In: Litwack G, editor. Vitamins & hormones. Vol. 93. London: Academic Press; 2013. p. 185–201.
  • Viale G, Regan M, Maiorano E, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1-98. J clin oncol. 2007;25(25):3846–3852.
  • Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006 2006/01/17/;366(1):2–16.
  • Krysan K, Reckamp KL, Dalwadi H, et al. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non–small cell lung cancer cells in an epidermal growth factor receptor–independent manner. Cancer Res. 2005;65(14):6275–6281.
  • Wolff AC, Hammond MEH, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of clinical oncology/college of American pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–256.
  • Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 2009 2009/10/01;6(10):587–595.
  • Lee K-L, Kuo Y-C, Ho Y-S, et al. Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers (Basel). 2019;11(9):1334.
  • Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer. J clin oncol: official journal of the American Society of Clinical Oncology 2005 Oct 1;23(28):7212–7220.
  • Varga Z, Li Q, Jochum W, et al. Ki-67 assessment in early breast cancer: SAKK28/12 validation study on the IBCSG VIII and IBCSG IX cohort. Sci Rep. 2019 2019/09/19;9(1):13534.
  • Jonckheere N, Van Seuningen I. The membrane-bound mucins: from cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie. 2010 2010/01/01/;92(1):1–11.
  • Lin DC, Genzen JR. Concordance analysis of paired cancer antigen (CA) 15-3 and 27.29 testing. Breast Cancer Res Treat. 2018 Jan;167(1):269–276.
  • Emele FE, Chukwurah EF. Evaluation of serum cancer antigens (CA15-3 and CA27.29) and circulating immune complexes as important tools in the management of breast cancer in Nigeria. J Immunol. 2017;198(1Supplement):76.1.
  • Gold P, Freedman SO. Specific carcinoembryonic antigens of the human digestive system. J Exp Med. 1965 Sep 1;122(3):467–481.
  • Shao Y, Sun X, He Y, et al. Elevated levels of serum tumor markers CEA and CA15-3 are prognostic parameters for different molecular subtypes of breast cancer. PLOS ONE. 2015;10(7):e0133830.
  • Völker HU, Weigel M, Strehl A, et al. Levels of uPA and PAI-1 in breast cancer and its correlation to Ki67-index and results of a 21-multigene-array. Diagnostic pathology. 2018 Aug 31;13(1):67.
  • Rivlin N, Brosh R, Oren M, et al. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2(4):466–474.
  • Choo JR, Nielsen TO. Biomarkers for basal-like breast cancer. Cancers (Basel). 2010;2(2):1040–1065.
  • Zhang X, Xing C, Guan W, et al. Clinicopathological and prognostic significance of nestin expression in patients with breast cancer: a systematic review and meta-analysis. Cancer Cell Int. 2020;20(1):169.
  • Newby JC, A’Hern RP, Leek RD, et al. Immunohistochemical assay for epidermal growth factor receptor on paraffin-embedded sections: validation against ligand-binding assay and clinical relevance in breast cancer. Br J Cancer. 1995 1995/06/01;71(6):1237–1242.
  • Nicholson RI, Colin P, Francis AB, et al. Evaluation of an enzyme immunoassay for estrogen receptors in human breast cancers. Cancer Res. 1986 Aug;46(8 Suppl):4299s–4302s.
  • Shafie S, Brooks SC. Characteristics of the dextran-coated charcoal assay for estradiol receptor in breast cancer preparations. J Lab Clin Med. 1979 Nov;94(5):784–798.
  • Goussard J, Lechevrel C, Martin PM, et al. Comparison of monoclonal antibodies and tritiated ligands for estrogen receptor assays in 241 breast cancer cytosols. Cancer Res. 1986 Aug;46(8 Suppl):4282s–4287s.
  • Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update. Arch Pathol Lab Med. 2018;142(11):1364–1382.
  • Bhalla N, Jolly P, Formisano N, et al. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.
  • Schoenherr RM, Whiteaker JR, Zhao L, et al. Multiplexed quantification of estrogen receptor and HER2/Neu in tissue and cell lysates by peptide immunoaffinity enrichment mass spectrometry. Proteomics. 2012;12(8):1253–1260.
  • Sharifi M, Avadi MR, Attar F, et al. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron. 2019 2019/02/01/;126:773–784.
  • Ahirwar R, Dalal A, Sharma JG, et al. An aptasensor for rapid and sensitive detection of estrogen receptor alpha in human breast cancer. Biotechnol Bioeng. 2019 Jan;116(1):227–233.
  • Urmann K, Modrejewski J, Scheper T, et al. Aptamer-modified nanomaterials: principles and applications. BioNanoMaterials. 2017 Apr 01;18(1–2):20160012.
  • Jo H, Ban C. Aptamer–nanoparticle complexes as powerful diagnostic and therapeutic tools. Exp Mol Med. 2016 2016/05/01;48(5):e230–e230.
  • Hernandez F, Ozalp V. Graphene and other nanomaterial-based electrochemical aptasensors. Biosensors (Basel). 2012 12/01;2(1):1–14.
  • Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91–100.
  • Xu J, Chen W, Shi M, et al. An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells. Mikrochim Acta. 2019 Feb 22;186(3):204.
  • Zhang M, Gao G, Ding Y, et al. A fluorescent aptasensor for the femtomolar detection of epidermal growth factor receptor-2 based on the proximity of G-rich sequences to Ag nanoclusters. Talanta. 2019 2019/07/01/;199:238–243.
  • Jo H, Her J, Ban C. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron. 2015 2015/09/15/;71:129–136.
  • Ahirwar R, Nahar P. Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha. Anal Bioanal Chem. 2016 2016/01/01;408(1):327–332.
  • Ranganathan V, Srinivasan S, Singh A, et al. An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal Biochem. 2020 2020/01/01/;588:113471.
  • Shah VP, Midha KK, Dighe S, et al. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. J Pharm Sci. 1992;81(3):309–312.
  • Ortega FG, Piguillem SV, Messina GA, et al. EGFR detection in extracellular vesicles of breast cancer patients through immunosensor based on silica-chitosan nanoplatform. Talanta. 2019 Mar 1;194:243–252.
  • Marques RC, Viswanathan S, Nouws HP, et al. Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta. 2014 Nov;129:594–599.
  • Marques RCB, Costa-Rama E, Viswanathan S, et al. Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15-3 and HER2-ECD. Sens Actuators B Chem. 2018 2018/02/01/;255:918–925.
  • Freitas M, Nouws HPA, Keating E, et al. Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumour cells using quantum dots as detection labels. Mikrochim Acta. 2020 2020/02/22;187(3):184.
  • Li X, Shen C, Yang M, et al. Polycytosine DNA electric-current-generated immunosensor for electrochemical detection of Human Epidermal Growth Factor Receptor 2 (HER2). Anal Chem. 2018 Apr 3;90(7):4764–4769.
  • Shen C, Liu S, Li X, et al. Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Mikrochim Acta. 2018 Nov 13;185(12):547.
  • Freitas M, Neves MMPS, Nouws HPA, et al. Quantum dots as nanolabels for breast cancer biomarker HER2-ECD analysis in human serum. Talanta. 2020 2020/02/01/;208:120430.
  • Lah ZMANH, Ahmad SAA, Zaini MS, et al. An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed Anal. 2019 2019/09/10/;174:608–617.
  • Arkan E, Saber R, Karimi Z, et al. A novel antibody-antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Anal Chim Acta. 2015 May 18;874:66–74.
  • Freitas M, Nouws HPA, Delerue-Matos C. Electrochemical sensing platforms for HER2-ECD breast cancer biomarker detection. Electroanalysis. 2019;31(1):121–128.
  • Emami M, Shamsipur M, Saber R, et al. An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates. Analyst. 2014;139(11):2858–2866.
  • Ilkhani H, Ravalli A, Marrazza G. Design of an affibody-based recognition strategy for Human Epidermal Growth Factor Receptor 2 (HER2) detection by electrochemical biosensors. Chemosensors. 2016;4(4):23.
  • Al-Khafaji QAM, Harris M, Tombelli S, et al. An electrochemical immunoassay for HER2 detection. Electroanalysis. 2012;24(4):735–742.
  • Ravalli A, Da Rocha CG, Yamanaka H, et al. A label-free electrochemical affisensor for cancer marker detection: the case of HER2. Bioelectrochemistry. 2015 2015/12/01/;106:268–275.
  • Tallapragada SD, Layek K, Mukherjee R, et al. Development of screen-printed electrode based immunosensor for the detection of HER2 antigen in human serum samples. Bioelectrochemistry. 2017 2017/12/01/;118:25–30.
  • Eletxigerra U, Martinez-Perdiguero J, Merino S, et al. Amperometric magnetoimmunosensor for ErbB2 breast cancer biomarker determination in human serum, cell lysates and intact breast cancer cells. Biosens Bioelectron. 2015 2015/08/15/;70:34–41.
  • Shamsipur M, Emami M, Farzin L, et al. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens Bioelectron. 2018 Apr 30;103:54–61.
  • Sharma S, Zapatero-Rodríguez J, Saxena R, et al. Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron. 2018 May 30;106:78–85.
  • Patris S, De Pauw P, Vandeput M, et al. Nanoimmunoassay onto a screen printed electrode for HER2 breast cancer biomarker determination. Talanta. 2014 2014/12/01/;130:164–170.
  • Hartati YW, Letelay LK, Gaffar S, et al. Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sens Bio-Sens Res. 2020 2020/02/01/. ;27:100316.
  • Wang X-Y, Feng Y-G, Wang A-J, et al. A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, Au@Ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sens Actuators B Chem. 2021 2021/03/15/;331:129460.
  • Yola ML. Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Mikrochim Acta. 2021 2021/02/10;188(3):78.
  • Ehzari H, Samimi M, Safari M, et al. Label-free electrochemical immunosensor for sensitive HER2 biomarker detection using the core-shell magnetic metal-organic frameworks. J Electroanal Chem. 2020 2020/11/15/;877:114722.
  • Moreno M, Bontkes HJ, Scheper RJ, et al. High level of MUC1 in serum of ovarian and breast cancer patients inhibits huHMFG-1 dependent cell-mediated cytotoxicity (ADCC). Cancer Lett. 2007 2007/11/08/;257(1):47–55.
  • Gheybi E, Amani J, Salmanian AH, et al. Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer. Tumor Biol. 2014 2014/11/01;35(11):11489–11497.
  • Wei W, Pan X, Li D, et al. Detection of MUC-1 protein and MCF-7 cells based on fluorescence resonance energy transfer from quantum dots to graphene oxide. J Nanosci Nanotechnol. 2012 Oct;12(10):7685–7691.
  • Wu M-S, Yuan D-J, Xu -J-J, et al. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem. 2013 2013/12/17;85(24):11960–11965.
  • Li Y, Zhang Y, Zhao M, et al. A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells. Chem comm. 2016;52(20):3959–3961.
  • Zhang N, Li W, Guo Z, et al. Electrochemiluminescence aptasensor for the MUC1 protein based on multi-functionalized graphene oxide nanocomposite. Electroanalysis. 2016 2016/07/01;28(7):1504–1509.
  • Tian J, Huang T, Lu J. A photoelectrochemical aptasensor for mucin 1 based on DNA/aptamer linking of quantum dots and TiO2 nanotube arrays. Anal Methods. 2016;8(11):2375–2382.
  • Jiang X, Wang H, Wang H, et al. Signal-switchable electrochemiluminescence system coupled with target recycling amplification strategy for sensitive Mercury Ion and Mucin 1 assay. Anal Chem. 2016 2016/09/20;88(18):9243–9250.
  • Jiang X, Wang H, Wang H, et al. Electrochemiluminescence biosensor based on 3-D DNA nanomachine signal probe powered by protein-aptamer binding complex for ultrasensitive Mucin 1 detection. Anal Chem. 2017 2017/04/04;89(7):4280–4286.
  • Chen A, Zhao M, Zhuo Y, et al. Hollow porous polymeric nanospheres of a self-enhanced ruthenium complex with improved electrochemiluminescent efficiency for ultrasensitive aptasensor construction. Anal Chem. 2017 2017/09/05;89(17):9232–9238.
  • Li S-K, Liu Z-T, Li J-Y, et al. Enzyme-free target recycling and double-output amplification system for electrochemiluminescent assay of Mucin 1 with MoS2 nanoflowers as co-reaction accelerator. ACS Appl Mater Interfaces. 2018 2018/05/02;10(17):14483–14490.
  • Yang F, Jiang X, Zhong X, et al. Highly sensitive electrochemiluminescence detection of mucin1 based on V2O5 nanospheres as peroxidase mimetics to catalyze H2O2 for signal amplification. Sens Actuators B Chem. 2018 2018/07/15/;265:126–133.
  • Cheng AKH, Su H, Wang YA, et al. Aptamer-based detection of epithelial tumor marker Mucin 1 with quantum dot-based fluorescence readout. Anal Chem. 2009 2009/08/01;81(15):6130–6139.
  • Zhang Y, Guo S, Huang H, et al. Silicon nanodot-based aptasensor for fluorescence turn-on detection of mucin 1 and targeted cancer cell imaging. Anal Chim Acta. 2018 Dec 4;1035:154–160.
  • Yang D, Liu M, Xu J, et al. Carbon nanosphere-based fluorescence aptasensor for targeted detection of breast cancer cell MCF-7. Talanta. 2018 2018/08/01/;185:113–117.
  • Huang X, Liu H, Fang W, et al. Sensitive and selective immunofluorescence assay for CA15-3 detection using fluorescein derivative A10254. Protein Pept Lett. 2018;25(8):776–782.
  • He L, Duan F, Song Y, et al. 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods. 2d Mater. 2017 2017/05/12;4(2):025098.
  • Feng J, Wu X, Ma W, et al. A SERS active bimetallic core–satellite nanostructure for the ultrasensitive detection of Mucin-1. Chem comm. 2015;51(79):14761–14763.
  • Qu A, Wu X, Xu L, et al. SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale. 2017;9(11):3865–3872.
  • Zhao J, He X, Bo B, et al. A “signal-on” electrochemical aptasensor for simultaneous detection of two tumor markers. Biosens Bioelectron. 2012 2012/04/15/;34(1):249–252.
  • Ma F, Ho C, Cheng AKH, et al. Immobilization of redox-labeled hairpin DNA aptamers on gold: electrochemical quantitation of epithelial tumor marker mucin 1. Electrochim Acta. 2013 2013/11/01/;110:139–145.
  • Wang Z, Xia N, Shi J, et al. Electrochemical aptasensor for determination of Mucin 1 by P-Aminophenol redox cycling. Anal Lett. 2014 2014/09/22;47(14):2431–2442.
  • Wen W, Hu R, Bao T, et al. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. Biosens Bioelectron. 2015 2015/09/15/;71:13–17.
  • Florea A, Ravalli A, Cristea C, et al. An optimized bioassay for Mucin1 detection in serum samples. Electroanalysis. 2015 2015/07/01;27(7):1594–1601.
  • Liu C, Liu X, Qin Y, et al. A simple regenerable electrochemical aptasensor for the parallel and continuous detection of biomarkers. RSC Adv. 2016;6(63):58469–58476.
  • Karpik AE, Crulhas BP, Rodrigues CB, et al. Aptamer-based biosensor developed to monitor MUC1 released by prostate cancer cells. Electroanalysis. 2017 2017/10/01;29(10):2246–2253.
  • Ma C, Liu H, Zhang L, et al. Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru(NH3)63+ electronic wires. Biosens Bioelectron. 2018 2018/01/15/;99:8–13.
  • Lin C, Zheng H, Huang Y, et al. Homogeneous electrochemical aptasensor for mucin 1 detection based on exonuclease I-assisted target recycling amplification strategy. Biosens Bioelectron. 2018 2018/10/15/;117:474–479.
  • Florea A, Taleat Z, Cristea C, et al. Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes. Electrochem commun. 2013 2013/08/01/;33:127–130.
  • Hu R, Wen W, Wang Q, et al. Novel electrochemical aptamer biosensor based on an enzyme–gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1. Biosens Bioelectron. 2014 2014/03/15/;53:384–389.
  • Liu X, Qin Y, Deng C, et al. A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. Talanta. 2015 2015/01/15/;132:150–154.
  • Chen X, Zhang Q, Qian C, et al. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag. Biosens Bioelectron. 2015 2015/02/15/;64:485–492.
  • Xiang J, Pi X, Chen X, et al. Integrated signal probe based aptasensor for dual-analyte detection. Biosens Bioelectron. 2017 Oct 15;96:268–274.
  • Song J. Development of electrochemical Aptamer biosensor for tumor marker MUC1 determination. Int J Electrochem Sci. 2017;5618–5627. doi:10.20964/2017.06.46
  • Wang M, Hu B, Ji H, et al. Aptasensor based on hierarchical core–shell nanocomposites of zirconium hexacyanoferrate nanoparticles and mesoporous mFe3O4@mC: electrochemical quantitation of epithelial tumor marker Mucin-1. ACS omega. 2017 2017/10/31;2(10):6809–6818.
  • Farzin L, Sadjadi S, Shamsipur M, et al. A sandwich-type electrochemical aptasensor for determination of MUC 1 tumor marker based on PSMA-capped PFBT dots platform and high conductive rGO-N′1,N′3-dihydroxymalonimidamide/thionine nanocomposite as a signal tag. J Electroanal Chem. 2017 2017/12/15/;807:108–118.
  • Gupta P, Bharti A, Kaur N, et al. An electrochemical aptasensor based on gold nanoparticles and graphene oxide doped poly(3,4-ethylenedioxythiophene) nanocomposite for detection of MUC1. J Electroanal Chem. 2018 2018/03/15/;813:102–108.
  • Ariad S, Seymour L, Bezwoda WR. Platelet-derived growth factor (PDGF) in plasma of breast cancer patients: correlation with stage and rate of progression. Breast Cancer Res Treat. 1991 Dec;20(1):11–17.
  • Zhang H, Li F, Chen H, et al. AuNPs colorimetric sensor for detecting platelet-derived growth factor-BB based on isothermal target-triggering strand displacement amplification. Sens Actuators B Chem. 2015 2015/02/01/;207:748–755.
  • Lin T-E, Chen W-H, Shiang Y-C, et al. Colorimetric detection of platelet-derived growth factors through competitive interactions between proteins and functional gold nanoparticles. Biosens Bioelectron. 2011 2011/11/15/;29(1):204–209.
  • Tang L, Liu Y, Ali MM, et al. Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem. 2012 2012/06/05;84(11):4711–4717.
  • Chang CC, Wei SC, Wu TH, et al. Aptamer-based colorimetric detection of platelet-derived growth factor using unmodified gold nanoparticles. Biosens Bioelectron. 2013 Apr 15;42:119–123.
  • Ming-Yu L, Yu-Wei C, Yu-Ting T, et al., editors. High sensitive, colorimetric, isothermal nucleic acids amplification: a versatile platform for protein biosensors. 2008 3rd International Conference on Sensing Technology; 2008 30 Nov.-3 Dec. Taiwan: National TaiwanCheng-Kung University; 2008.
  • Huang -C-C, Huang Y-F, Cao Z, et al. Aptamer-modified Gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem. 2005 2005/09/01;77(17):5735–5741.
  • Wang C-W, Chang H-T. Sensitive detection of platelet-derived growth factor through surface-enhanced raman scattering. Anal Chem. 2014 2014/08/05;86(15):7606–7611.
  • Ye S, Zhai X, Wu Y, et al. Dual-primer self-generation SERS signal amplification assay for PDGF-BB using label-free aptamer. Biosens Bioelectron. 2016 2016/05/15/;79:130–135.
  • Jiang Y, Fang X, Bai C. Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem. 2004 Sep 1;76(17):5230–5235.
  • Babu E, Singaravadivel S, Manojkumar P, et al. Aptamer-based label-free detection of PDGF using ruthenium(II) complex as luminescent probe. Anal Bioanal Chem. 2013 2013/08/01;405(21):6891–6895.
  • Sun YH, Cai S, Lau CW, et al. Novel PDGF aptasensor based on gold nanoparticle triggered Chemiluminescence. Procedia Eng. 2011 2011/01/01/;25:1565–1568.
  • Yao L-Y, Yu X-Q, Zhao Y-J, et al. An aptamer-based chemiluminescence method for ultrasensitive detection of platelet-derived growth factor by cascade amplification combining rolling circle amplification with hydroxylamine-enlarged gold nanoparticles. Anal Methods. 2015;7(20):8786–8792.
  • Bi S, Luo B, Ye J, et al. Label-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification. Biosens Bioelectron. 2014 2014/12/15/;62:208–213.
  • Zhang X, Zhang H, Xu S, et al. A highly sensitive LED-induced chemiluminescence platform for aptasensing of platelet-derived growth factor. Analyst. 2014;139(1):133–137.
  • Wang P, Song Y, Zhao Y, et al. Hydroxylamine amplified gold nanoparticle-based aptameric system for the highly selective and sensitive detection of platelet-derived growth factor. Talanta. 2013 2013/01/15/;103:392–397.
  • Cao Z-J, Peng Q-W, Qiu X, et al. Highly sensitive chemiluminescence technology for protein detection using aptamer-based rolling circle amplification platform. J Pharm Anal. 2011 2011/08/01/;1(3):159–165.
  • Liu -J-J, Song X-R, Wang Y-W, et al. Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Anal Chim Acta. 2012 2012/10/24/;749:70–74.
  • Wang G, Zhu Y, Chen L, et al. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosens Bioelectron. 2015 2015/01/15/;63:552–557.
  • Yang X-H, Sun S, Liu P, et al. A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles. Chin Chem Lett. 2014 2014/01/01/;25(1):9–14.
  • Jin X, Zhao J, Zhang L, et al. An enhanced fluorescence polarization strategy based on multiple protein–DNA–protein structures for sensitive detection of PDGF-BB. RSC Adv. 2014;4(13):6850–6853.
  • Penmatsa V, Ruslinda AR, Beidaghi M, et al. Platelet-derived growth factor oncoprotein detection using three-dimensional carbon microarrays. Biosens Bioelectron. 2013 2013/01/15/;39(1):118–123.
  • Guo L, Zhao Q. Determination of the platelet-derived growth factor BB by a competitive thrombin-linked aptamer-based Fluorometric assay. Mikrochim Acta. 2016 2016/12/01;183(12):3229–3235.
  • Ruslinda AR, Penmatsa V, Ishii Y, et al. Highly sensitive detection of platelet-derived growth factor on a functionalized diamond surface using aptamer sandwich design. Analyst. 2012;137(7):1692–1697.
  • Guo L, Zhao Q. Thrombin-linked aptamer assay for detection of platelet derived growth factor BB on magnetic beads in a sandwich format. Talanta. 2016 2016/09/01/;158:159–164.
  • Shukoor MI, Altman MO, Han D, et al. Aptamer-nanoparticle assembly for logic-based detection. ACS Appl Mater Interfaces. 2012 2012/06/27;4(6):3007–3011.
  • Zhang Z-Z, Zhang C-Y. Highly sensitive detection of protein with aptamer-based target-triggering two-stage amplification. Anal Chem. 2012 2012/02/07;84(3):1623–1629.
  • Ruslinda AR, Ishiyama Y, Wang X, et al. Fluorescence-signaling aptasensor for ATP and PDGF detection on functionalized diamond surface. J Electrochem Soc. 2012 01/01;159(5):182.
  • Zhu D, Yang RX, Tang Y-P, et al. Robust nanoplasmonic substrates for aptamer macroarrays with single-step detection of PDGF-BB. Biosens Bioelectron. 2016 2016/11/15/;85:429–436.
  • Lee J, Icoz K, Roberts A, et al. Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem. 2010 2010/01/01;82(1):197–202.
  • Wang X, Ishii Y, Ruslinda AR, et al. Effective surface functionalization of nanocrystalline diamond films by direct carboxylation for PDGF detection via aptasensor. ACS Appl Mater Interfaces. 2012 2012/07/25;4(7):3526–3534.
  • Liang J, Wei R, He S, et al. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Analyst. 2013;138(6):1726–1732.
  • Li H, Wang M, Wang C, et al. Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Anal Chem. 2013 2013/05/07;85(9):4492–4499.
  • Zhang J, Yuan Y, biXie S, et al. Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA–PtNPs dendrimer as a synergetic signal amplification label. Biosens Bioelectron. 2014 2014/10/15/;60:224–230.
  • Zhao C-L, Hua M, Yang C-Y, et al. A novel aptasensor based on 3D-inorganic hybrid composite as immobilized substrate for sensitive detection of platelet-derived growth factor. Chin Chem Lett. 2017 2017/07/01/;28(7):1417–1423.
  • Jiang W, Tian D, Zhang L, et al. Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles. Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB. Mikrochim Acta. 2017 11/01;184(11):4375–4381.
  • Jun J, Lee JS, Shin DH, et al. Aptamer-functionalized hybrid carbon nanofiber FET-type electrode for a highly sensitive and selective platelet-derived growth factor biosensor. ACS Appl Mater Interfaces. 2014 2014/08/27;6(16):13859–13865.
  • Lee JS, Kim W, Cho S, et al. Multidimensional hybrid conductive nanoplate-based aptasensor for platelet-derived growth factor detection. J Mat Chem B. 2016;4(25):4447–4454.
  • He L, Zhang S, Ji H, et al. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosens Bioelectron. 2016 2016/05/15/;79:553–560.
  • Huang K-J, Shuai H-L, Zhang J-Z. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide–graphene composites and Exonuclease III assisted signal amplification. Biosens Bioelectron. 2016 2016/03/15/;77:69–75.
  • Zhang Z, Guo C, Zhang S, et al. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Biosens Bioelectron. 2017;89(2):735-742.
  • Wu Z-S, Zhou H, Zhang S, et al. Electrochemical Aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Anal Chem. 2010 02/01;82(6):2282–2289.
  • Bai L, Yuan R, Chai Y, et al. Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials. 2012 Feb;33(4):1090–1096.
  • Qu F, Lu H, Yang M, et al. Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement. Biosens Bioelectron. 2011 2011/08/15/;26(12):4810–4814.
  • Yu T, Li J, Liu Q, et al. Electrochemical aptasensor based on Klenow fragment polymerase reaction for ultrasensitive detection of PDGF-BB. Int J Electrochem Sci. 2012;7(9):8533–8542.
  • Deng K, Xiang Y, Zhang L, et al. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry. Anal Chim Acta. 2013 2013/01/08/;759:61–65.
  • Han J, Zhuo Y, Chai Y, et al. Multi-labeled functionalized C60 nanohybrid as tracing tag for ultrasensitive electrochemical aptasensing. Biosens Bioelectron. 2013 2013/08/15/;46:74–79.
  • Wang C, Ding L, Qu F. Sensitive electrochemical immunosensor for platelet-derived growth factor in serum with electron transfer mediated by gold nanoparticles initiated silver enhancement. Measurement. 2013 2013/01/01/;46(1):279–283.
  • Zhang S, Hu X, Yang X, et al. Background eliminated signal-on electrochemical aptasensing platform for highly sensitive detection of protein. Biosens Bioelectron. 2014 11/24;66C:363–369.
  • Song W, Li H, Liang H, et al. Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing Silver nanoparticles aggregate for signal amplification. Anal Chem. 2014 2014/03/04;86(5):2775–2783.
  • Huang K-J, Liu Y-J, Zhai Q-F. Ultrasensitive biosensing platform based on layered vanadium disulfide-graphene composites coupling with tetrahedron-structured DNA probes and exonuclease III assisted signal amplification. J Mater Chem B. 2015 2015/11/;3(41):8180–8187.
  • Fang L-X, Huang K-J, Liu Y. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens Bioelectron. 2015 2015/09/15/;71:171–178.
  • Liu X, Shuai H-L, Huang K-J. A label-free electrochemical aptasensor based on leaf-like vanadium disulfide-Au nanoparticles for the sensitive and selective detection of platelet-derived growth factor BB. Anal Methods. 2015;7(19):8277–8284.
  • Xia H, Song-Bai Z, Ji-Lin L, et al., editors. Structure-switching hairpin probe based electrochemical aptasensor for highly sensitive detection of protein. 5th International Conference on Advanced Design and Manufacturing Engineering; 2015 2015/10. Shenzhen, China: Atlantis Press.
  • Yu Y, Su G, Zhu H, et al. Proximity hybridization-mediated isothermal exponential amplification for ultrasensitive electrochemical protein detection. Int J Nanomedicine. 2017;12:5903–5914.
  • Hasanzadeh M, Razmi N, Mokhtarzadeh A, et al. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int J Biol Macromol. 2018 2018/03/01/;108:69–80.
  • Stathopoulos J, Armakolas A, Stathopoulos GP, et al. Plasma VEGF levels in breast cancer patients with and without metastases. Oncol Lett. 2010;1(4):739–741.
  • Lin X, Leung K-H, Lin L, et al. Determination of cell metabolite VEGF165 and dynamic analysis of protein–DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens Bioelectron. 2016 2016/05/15/;79:41–47.
  • Li W, Zhang Q, Zhou H, et al. Chemiluminescence detection of a protein through the Aptamer-controlled catalysis of a porphyrin probe. Anal Chem. 2015 2015/08/18;87(16):8336–8341.
  • Shan S, He Z, Mao S, et al. Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay. Talanta. 2017 2017/08/15/;171:197–203.
  • Zhang H, Li M, Li C, et al. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: combination of aptamer–target recognition and T7 exonuclease-assisted cycling signal amplification. Biosens Bioelectron. 2015 2015/12/15/;74:98–103.
  • Lan J, Li L, Liu Y, et al. Upconversion luminescence assay for the detection of the vascular endothelial growth factor, a biomarker for breast cancer. Mikrochim Acta. 2016 2016/12/01;183(12):3201–3208.
  • Wang S-E, Huang Y, Hu K, et al. A highly sensitive and selective aptasensor based on fluorescence polarization for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). Anal Methods. 2014 01/07;6(1):62–66.
  • Lin X, Chen Q, Liu W, et al. Assay of multiplex proteins from cell metabolism based on tunable aptamer and microchip electrophoresis. Biosens Bioelectron. 2015 2015/01/15/;63:105–111.
  • Chattaraj R, Mohan P, Livingston CM, et al. Mutually-reactive, Fluorogenic Hydrocyanine/Quinone reporter pairs for in-solution biosensing via nanodroplet association. ACS Appl Mater Interfaces. 2016 2016/01//;8(1):802–808.
  • Li J, Sun K, Chen Z, et al. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. Biosens Bioelectron. 2017 Mar 15;89(Pt 2):964–969.
  • Mita C, Abe K, Fukaya T, et al. Vascular Endothelial Growth Factor (VEGF) detection using an Aptamer and PNA-based bound/free separation system. Materials (Basel). 2014 Feb 11;7(2):1046–1054.
  • Wang S-E, Si S. A Fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein Vascular Endothelial Growth Factor (VEGF). Appl Spectrosc. 2013 2013/11/01;67(11):1270–1274.
  • Li X, Ding X, Fan J. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst. 2015;140(23):7918–7925.
  • Xu H, Kou F, Ye H, et al. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talanta. 2017 Dec 1;175:177–182.
  • Zhu X, Kou F, Xu H, et al. A highly sensitive aptamer-immunoassay for vascular endothelial growth factor coupled with portable glucose meter and hybridization chain reaction. Sens Actuators B Chem. 2017 2017/12/01/;253:660–665.
  • Zhang H, Peng L, Li M, et al. A label-free colorimetric biosensor for sensitive detection of vascular endothelial growth factor-165. Analyst. 2017 Jul 7;142(13):2419–2425.
  • Chen H, Hou Y, Qi F, et al. Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosens Bioelectron. 2014 2014/11/;61:83–87.
  • Wu D, Gao T, Lei L, et al. Colorimetric detection of proteins based on target-induced activation of aptazyme. Anal Chim Acta. 2016 2016/10/26/;942:68–73.
  • Ko J, Lee S, Lee EK, et al. SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres. Phys Chem Chem Phys. 2013;15(15):5379–5385.
  • Zhao S, Ma W, Xu L, et al. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented–AU pyramid superstructure. Biosens Bioelectron. 2015 2015/06/15/;68:593–597.
  • Zhao S, Yang W, Lai RY. A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron. 2011 2011/01/15/;26(5):2442–2447.
  • Crulhas BP, Karpik AE, Delella FK, et al. Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells. Anal Bioanal Chem. 2017 2017/11/01;409(29):6771–6780.
  • Cheng W, Ding S, Li Q, et al. A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension. Biosens Bioelectron. 2012 2012/06/01/;36(1):12–17.
  • Lv Z, Wang K, Zhang X. A new electrochemical aptasensor for the analysis of the vascular endothelial growth factor. J Immunoassay Immunochem. 2014 2014/07/03;35(3):233–240.
  • Feng L, Lyu Z, Offenhäusser A, et al. Electrochemically triggered aptamer immobilization via click reaction for vascular endothelial growth factor detection. Eng Life Sci. 2016 2016/09/01;16(6):550–559.
  • Shamsipur M, Farzin L, Amouzadeh Tabrizi M, et al. Highly sensitive label free electrochemical detection of VGEF165 tumor marker based on “signal off” and “signal on” strategies using an anti-VEGF165 aptamer immobilized BSA-gold nanoclusters/ionic liquid/glassy carbon electrode. Biosens Bioelectron. 2015 2015/12/15/;74:369–375.
  • Amouzadeh Tabrizi M, Shamsipur M, Farzin L. A high sensitive electrochemical aptasensor for the determination of VEGF165 in serum of lung cancer patient. Biosens Bioelectron. 2015 2015/12/15/;74:764–769.
  • Fu X-M, Liu Z-J, Cai S-X, et al. Electrochemical aptasensor for the detection of Vascular Endothelial Growth Factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. Chin Chem Lett. 2016 2016/06/01/;27(6):920–926.
  • Huang C-S, Chen C-Y, Huang L-K, et al. Prognostic value of postoperative serum carcinoembryonic antigen levels in colorectal cancer patients who smoke. PloS one. 2020;15(6):e0233687–e0233687.
  • Luo C, Wen W, Lin F, et al. Simplified aptamer-based colorimetric method using unmodified Gold nanoparticles for the detection of carcinoma embryonic antigen. RSC Adv. 2015;5(15):10994–10999.
  • Liang K, Zhai S, Zhang Z, et al. Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification. Analyst. 2014;139(17):4330–4334.
  • Guo C, Su F, Song Y, et al. Aptamer-templated Silver nanoclusters embedded in Zirconium metal–organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen. ACS Appl Mater Interfaces. 2017 2017/11/29;9(47):41188–41199.
  • Qiu Z, Shu J, Tang D. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal Chem. 2017 2017/05/02;89(9):5152–5160.
  • Yang X, Zhuo Y, Zhu S, et al. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters’ fluorescence. Biosens Bioelectron. 2015 Feb 15;64:345–351.
  • Bao B, Su P, Zhu J, et al. Rapid aptasensor capable of simply detect tumor markers based on conjugated polyelectrolytes. Talanta. 2018 Dec 1;190:204–209.
  • Wang Y, Wei Z, Luo X, et al. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta. 2019 Apr 1;195:33–39.
  • Li H, Shi L, Sun DE, et al. Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron. 2016 Dec 15;86:791–798.
  • Zhou Z-M, Zhou J, Chen J, et al. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Biosens Bioelectron. 2014 2014/09/;59:397–403.
  • Sun Y, Fan J, Cui L, et al. Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Mikrochim Acta. 2019 2019/02/02;186(3):152.
  • Xu J, Shi M, Huang H, et al. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Analyst. 2018;143(16):3918–3925.
  • Yang W, Zhou X, Zhao J, et al. A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Mikrochim Acta. 2018 Jan 10;185(2):100.
  • He MQ, Wang K, Wang WJ, et al. Smart DNA machine for carcinoembryonic antigen detection by exonuclease III-assisted target recycling and DNA walker cascade amplification. Anal Chem. 2017 Sep 5;89(17):9292–9298.
  • Zhou ZM, Feng Z, Zhou J, et al. Capillary electrophoresis-chemiluminescence detection for carcino-embryonic antigen based on aptamer/graphene oxide structure. Biosens Bioelectron. 2015 Feb;15(64):493–498.
  • Khang H, Cho K, Chong S, et al. All-in-one dual-aptasensor capable of rapidly quantifying carcinoembryonic antigen. Biosens Bioelectron. 2017 Apr 15;90:46–52.
  • Wang Y-L, Cao J-T, Chen Y-H, et al. A label-free electrochemiluminescence aptasensor for carcinoembryonic antigen detection based on electrodeposited ZnS–CdS on MoS2 decorated electrode. Anal Methods. 2016;8(26):5242–5247.
  • Shi G-F, Cao J-T, Zhang -J-J, et al. Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen. Analyst. 2014;139(22):5827–5834.
  • Zhang X, Bao N, Luo X, et al. Patchy gold coated Fe3O4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors. Biosens Bioelectron. 2018 2018/08/;114:44–51.
  • Zhou X, Guo S, Gao J, et al. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens Bioelectron. 2017 2017/12/15/;98:83–90.
  • Zhou X, Xue S, Jing P, et al. A sensitive impedimetric platform biosensing protein: insoluble precipitates based on the biocatalysis of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrinin in HCR-assisted dsDNA. Biosens Bioelectron. 2016 Dec 15;86:656–663.
  • Shu H, Wen W, Xiong H, et al. Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem commun. 2013 2013/12/01/;37:15–19.
  • Wang P, Wan Y, Deng S, et al. Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers. Biosens Bioelectron. 2016 04/29/received;86:536–541.
  • Cheng H, Xu L, Zhang H, et al. Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker. Analyst. 2016 Jul 21;141(14):4381–4387.
  • Quan H, Zuo C, Li T, et al. Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta. 2015 2015/09/10/;176:893–897.
  • Liu Z, Wang Y, Guo Y, et al. Label-free electrochemical aptasensor for carcino-embryonic antigen based on ternary nanocomposite of gold nanoparticles, hemin and graphene. Electroanalysis. 2016;28(5):1023–1028.
  • Deng W, Shen L, Wang X, et al. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing. Biosens Bioelectron. 2016 2016/08/15/;82:132–139.
  • Zeng X, Ma S, Bao J, et al. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing. Anal Chem. 2013 Dec 17;85(24):11720–11724.
  • Qiu Z, Shu J, Tang D. NaYF4:Yb,Er upconversion nanotransducer with in situ fabrication of Ag2S for near-infrared light responsive photoelectrochemical biosensor. Anal Chem. 2018 2018/10/;90(20):12214–12220.
  • Qiu Z, Shu J, Tang D. Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core–shell NaYF4: yb,Tm@TiO2Upconversion microrods. Anal Chem. 2018 2018/01/02;90(1):1021–1028.
  • Qiu Z, Shu J, Liu J, et al. Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device. Anal Chem. 2019 2019/01/15;91(2):1260–1268.
  • Han Z, Luo M, Weng Q, et al. ZnO flower-rod/g-C3N4-gold nanoparticle-based photoelectrochemical aptasensor for detection of carcinoembryonic antigen. Anal Bioanal Chem. 2018 2018/10/;410(25):6529–6538.
  • Ding Y, Ling J, Wang H, et al. Fluorescent detection of Mucin 1 protein based on aptamer functionalized biocompatible carbon dots and graphene oxide. Anal Methods. 2015;7(18):7792–7798.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.