249
Views
1
CrossRef citations to date
0
Altmetric
Review

Molecular techniques for the genomic viral RNA detection of West Nile, Dengue, Zika and Chikungunya arboviruses: a narrative review

, , , , , , , , & show all
Pages 591-612 | Received 03 Mar 2021, Accepted 27 Apr 2021, Published online: 08 Jun 2021

References

  • McArthur MA, Sztein MB, Edelman R. Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert Rev Vaccines. 2013;12(8):933–953.
  • Halstead SB, Katzelnick LC, Russell PK, et al. Ethics of a partially effective dengue vaccine: lessons from the Philippines. Vaccine. 2020;38(35):5572–5576.
  • Cobo F. Application of molecular diagnostic techniques for viral testing. Open Virol J. 2012;5(1):104–114.
  • Chambers TJ, Hahn CS, Galler R, et al. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44(1):649–688.
  • Fall G, Di Paola N, Faye M, et al. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis. 2017;11(11):e0006078.
  • Kalayanarooj S. Clinical manifestations and management of dengue/DHF/DSS. Trop Med Health. 2011;39(4SUPPLEMENT):S83–S87.
  • Tang KF, Ooi EE. Diagnosis of dengue: an update. Expert Rev Anti Infect Ther. 2012;10(8):895–907.
  • Beaver JT, Lelutiu N, Habib R, et al. Evolution of two major Zika virus lineages: implications for pathology, immune response, and vaccine development. Front Immunol. 2018;9. DOI:10.3389/fimmu.2018.01640.
  • Gong Z, Gao Y, Han GZ. Zika virus: two or three lineages? Trends Microbiol. 2016;24(7):521–522.
  • Rasmussen SA, Jamieson DJ, Honein MA, et al. Zika virus and birth defects — reviewing the evidence for causality. N Engl J Med. 2016;374(20):1981–1987.
  • Heymann DL, Hodgson A, Sall AA, et al. Zika virus and microcephaly: why is this situation a PHEIC? Lancet. 2016;387(10020):719–721.
  • Soto-Hernández JL, De León Rosales SP, Cañas ESV, et al. Guillain–Barré syndrome associated with Zika virus infection: a prospective case series from Mexico. Front Neurol. 2019;10. DOI:10.3389/fneur.2019.00435.
  • Rozé B, Najioullah F, Fergé JL, et al. Guillain-Barré syndrome associated with Zika virus infection in martinique in 2016: a prospective study. Clin Infect Dis. 2017;65(9):1462–1468.
  • Fabrizius RG, Anderson K, Hendel-Paterson B, et al. Case report: guillain-barré syndrome associated with zika virus infection in a traveler returning from Guyana. Am J Trop Med Hyg. 2016;95(5):1161–1165.
  • Atkinson B, Hearn P, Afrough B, et al. Detection of zika virus in semen. Emerg Infect Dis. 2016;22(5): 940-940. DOI:10.3201/eid2205.160107
  • Gourinat AC, O’Connor O, Calvez E, et al. Detection of zika virus in urine. Emerg Infect Dis. 2015;21(1):84–86.
  • De M. Campos R, Cirne-Santos C, Meira GLS, et al. Prolonged detection of Zika virus RNA in urine samples during the ongoing Zika virus epidemic in Brazil. J Clin Virol. 2016;77:69–70.
  • Corman VM, Rasche A, Baronti C, et al. Assay optimization for molecular detection of Zika virus. Bull World Health Organ. 2016;94(12):880–892.
  • Murray KO, Gorchakov R, Carlson AR, et al. Prolonged detection of zika virus in vaginal secretions and whole blood. Emerg Infect Dis. 2017;23(1):99–101.
  • Barzon L, Pacenti M, Berto A, et al. Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016. Eurosurveillance. 2016;21(10):30159.
  • Musso D, Roche C, Nhan TX, et al. Detection of Zika virus in saliva. J Clin Virol. 2015;68:53–55.
  • Langsjoen RM, Haller SL, Roy CJ, et al. Chikungunya virus strains show lineage-specific variations in virulence and cross-protective ability in murine and nonhuman primate models. MBio. 2018;9(2):e02449–17.
  • Weaver SC, Forrester NL. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res. 2015;120:32–39.
  • Tsetsarkin KA, Chen R, Yun R, et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun. 2014;5(1). DOI:10.1038/ncomms5084.
  • Lazzarini L, Barzon L, Foglia F, et al. First autochthonous dengue outbreak in Italy, August 2020. Eurosurveillance. 2020;25(36). DOI:10.2807/1560-7917.ES.2020.25.36.2001606.
  • Lanciotti RS, Calisher CH, Gubler DJ, et al. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30(3):545–551.
  • Raengsakulrach B, Nisalak A, Maneekarn N, et al. Comparison of four reverse transcription-polymerase chain reaction procedures for the detection of dengue virus in clinical specimens. J Virol Methods. 2002;105(2):219–232.
  • Harris E, Roberts TG, Smith L, et al. Typing of dengue viruses in clinical specimens and mosquitoes by single- tube multiplex reverse transcriptase PCR. J Clin Microbiol. 1998;36(9):2634–2639.
  • Scaramozzino N, Crance JM, Jouan A, et al. Comparison of Flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol. 2001;39(5):1922–1927.
  • Mackay IM, Arden KE, Nitsche A, et al. Real-time PCR in virology. Nucleic Acids Res. 2002;30(6):1292–1305.
  • Jungkind D. Automation of laboratory testing for infectious diseases using the polymerase chain reaction - Our past, our present, our future. J Clin Virol. 2001;20(1–2):1–6.
  • Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14(8):1232–1239.
  • Faye O, Faye O, Diallo D, et al. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught Mosquitoes. Virol J. 2013;10(1):311.
  • Pyke AT, Daly MT, Cameron JN, et al. Imported Zika virus infection from the Cook Islands into Australia, 2014. PLoS Curr. 2014. DOI:10.1371/currents.outbreaks.4635a54dbffba2156fb2fd76dc49f65e.
  • Tappe D, Nachtigall S, Kapaun A, et al. Acute Zika virus infection after travel to Malaysian Borneo, September 2014. Emerg Infect Dis. 2015;21(5):911–913.
  • Waggoner JJ, Pinsky BA, Kraft CS. Zika virus: diagnostics for an emerging pandemic threat. J Clin Microbiol. 2016;54:860–867.
  • De Moraes FM, Dla E, Klein TM, et al. Searching for the best real-time RT-PCRs to detect zika virus infections: the importance of comparing several protocols. Braz J Med Biol Res. 2018;51(6). DOI:10.1590/1414-431x20187221.
  • Shu PY, Huang JH. Current advances in dengue diagnosis. Clin Diagn Lab Immunol. 2004;11(4):642–650.
  • Santhosh SR, Parida MM, Dash PK, et al. Development and evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of Chikungunya virus. J Clin Virol. 2007;39(3):188–193.
  • Ali UH, Vasan SS, Thayan R, et al. Development and evaluation of a one-step SYBR-Green I-based real-time RT-PCR assay for the detection and quantification of Chikungunya virus in human, monkey and mosquito samples. Trop Biomed. 2010;27(3):611–623.
  • Wang SM, Ali UH, Sekaran SD, et al. Detection and quantification of Chikungunya virus by real-time RT-PCR assay. Methods Mol Biol. 2016;1426:105–117.
  • Ho PS, Ng MML, Chu JJH. Establishment of one-step SYBR green-based real time-PCR assay for rapid detection and quantification of chikungunya virus infection. Virol J. 2010;7(1). DOI:10.1186/1743-422X-7-13
  • Carletti F, Bordi L, Chiappini R, et al. Short report: rapid detection and quantification of chikungunya virus by a one-step reverse transcription-polymerase chain reaction real-time assay. Am J Trop Med Hyg. 2007;77(3):521–524.
  • Thirion L, Pezzi L, Corcostegui I, et al. Development and evaluation of a duo chikungunya virus real-time RT-PCR assay targeting two regions within the genome. Viruses. 2019;11(8):755.
  • Pastorino B, Bessaud M, Grandadam M, et al. Development of a TaqMan® RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J Virol Methods. 2005;124(1–2):65–71.
  • Panning M, Grywna K, Van Esbroeck M, et al. Chikungunya fever in travelers returning to Europe from the Indian Ocean Region, 2006. Emerg Infect Dis. 2008;14(3):416–422.
  • Lanciotti RS, Kerst AJ, Nasci RS, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38(11):4066–4071.
  • Papin JF, Vahrson W, Dittmer DP. SYBR green-based real-time quantitative PCR assay for detection of West Nile virus circumvents false-negative results due to strain variability. J Clin Microbiol. 2004;42(4):1511–1518.
  • Sambri V, Capobianchi MR, Cavrini F, et al. Diagnosis of west nile virus human infections: overview and proposal of diagnostic protocols considering the results of external quality assessment studies. Viruses. 2013;5(10):2329–2348.
  • Lustig Y, Sofer D, Bucris ED, et al. Surveillance and diagnosis of west nile virus in the face of flavivirus cross-reactivity. Front Microbiol. 2018;9. DOI:10.3389/fmicb.2018.02421.
  • Jiménez-Clavero MA, Agüero M, Rojo G, et al. A new fluorogenic real-time RT-PCR assay for detection of lineage 1 and lineage 2 West Nile viruses. J Vet Diagnostic Investig. 2006;18(5):459–462.
  • Papin JF, Vahrson W, Larson L, et al. Genome-wide real-time PCR for West Nile virus reduces the false-negative rate and facilitates new strain discovery. J Virol Methods. 2010;169(1):103–111.
  • Elnifro EM, Ashshi AM, Cooper RJ, et al. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13(4):559–570.
  • Vázquez A, Herrero L, Negredo A, et al. Real time PCR assay for detection of all known lineages of West Nile virus. J Virol Methods. 2016;236:266–270.
  • Johnson BW, Russell BJ, Lanciotti RS. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol. 2005;43(10):4977–4983.
  • Santiago GA, Vergne E, Quiles Y, et al. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis. 2013;7(7). DOI:10.1371/annotation/ae27d48b-025f-47ce-8427-4af59f821ad7.
  • Waggoner JJ, Gresh L, Mohamed-Hadley A, et al. Single-reaction multiplex reverse transcription PCR for detection of zika, Chikungunya, and dengue viruses. Emerg Infect Dis. 2016;22(7):1295–1297.
  • Waggoner JJ, Ballesteros G, Gresh L, et al. Clinical evaluation of a single-reaction real-time RT-PCR for pan-dengue and chikungunya virus detection. J Clin Virol. 2016;78:57–61.
  • Mansuy JM, Lhomme S, Cazabat M, et al. Detection of Zika, dengue and chikungunya viruses using single-reaction multiplex real-time RT-PCR. Diagn Microbiol Infect Dis. 2018;92(4):284–287.
  • Pabbaraju K, Wong S, Gill K, et al. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay. J Clin Virol. 2016;83:66–71.
  • Centers for Disease Control and Prevention. Trioplex Real-time RT-PCR Assay. 2017;
  • Santiago GA, Vázquez J, Courtney S, et al. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun. 2018;9(1). DOI:10.1038/s41467-018-03772-1.
  • Mishra N, Ng J, Rakeman JL, et al. One-step pentaplex real-time polymerase chain reaction assay for detection of zika, dengue, chikungunya, West nile viruses and a human housekeeping gene. J Clin Virol. 2019;120:44–50.
  • The Center for Infection and Immunity. CII-ArboViroPlex rRT-PCR assay Instructions for Use. 2017;
  • Wu W, Wang J, Yu N, et al. Development of multiplex real-time reverse-transcriptase polymerase chain reaction assay for simultaneous detection of Zika, dengue, yellow fever, and chikungunya viruses in a single tube. J Med Virol. 2018;90(11):1681–1686.
  • Quan PL, Sauzade M, Brouzes E. DPCR: a technology review. Sensors (Switzerland). 2018;18(4):1271.
  • Vynck M, Trypsteen W, Thas O, et al. The future of digital polymerase chain reaction in virology. Mol Diagnosis Ther. 2016;20(5):437–447.
  • Sedlak RH, Jerome KR. Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis. 2013;75(1):1–4.
  • De Filette M, Ulbert S, Diamond MS, et al. Recent progress in West Nile virus diagnosis and vaccination. Vet Res. 2012;43(1):16.
  • Abachin E, Convers S, Falque S, et al. Comparison of reverse-transcriptase qPCR and droplet digital PCR for the quantification of dengue virus nucleic acid. Biologicals. 2018;52:49–54.
  • Navarro Sanchez ME, Devard N, Houy C, et al. Multiplex reverse transcriptase droplet digital PCR for the simultaneous quantification of four dengue serotypes: proof of concept study. Biologicals. 2020;67:62–68.
  • Hui Y, Wu Z, Qin Z, et al. Micro-droplet digital polymerase chain reaction and real-time quantitative polymerase chain reaction technologies provide highly sensitive and accurate detection of Zika virus. Virol Sin. 2018;33(3):270–277.
  • Esposito DLA, Da Fonseca BAL. Sensitivity and detection of chikungunya viral genetic material using several PCR-based approaches. Rev Soc Bras Med Trop. 2017;50(4):465–469.
  • Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies - A review. Nucleosides Nucleotides Nucleic Acids. 2008;27(3):224–243.
  • Wang Y, Wang Y, Ma AJ, et al. Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Sci Rep. 2015;5:11902.
  • Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14(3):303–308.
  • Wu SJL, Lee EM, Putvatana R, et al. Detection of dengue viral RNA using a nucleic acid sequence-based amplification assay. J Clin Microbiol. 2001;39(8):2794–2798.
  • Jittmittraphap A, Thammapalo S, Ratanasetyuth N, et al. Rapid detection of dengue viral RNA in mosquitoes by nucleic acid-sequence based amplification (NASBA). Southeast Asian J Trop Med Public Health. 2006;37(6):1117–1124.
  • Baeumner AJ, Schlesinger NA, Slutzki NS, et al. Biosensor for dengue virus detection: sensitive, rapid, and serotype specific. Anal Chem. 2002;74(6):1442–1448.
  • Zaytseva NV, Montagna RA, Lee EM, et al. Multi-analyte single-membrane biosensor for the serotype-specific detection of Dengue virus. Anal Bioanal Chem. 2004;380(1). doi:10.1007/s00216-004-2724-9.
  • Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell. 2016;165(5):1255–1266.
  • Telles JN, Le Roux K, Grivard P, et al. Evaluation of real-time nucleic acid sequence-based amplification for detection of Chikungunya virus in clinical samples. J Med Microbiol. 2009;58(9):1168–1172.
  • Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins. PLoS Biol. 2018;4(7):e204.
  • Lobato IM, O’Sullivan CK. Recombinase polymerase amplification: basics, applications and recent advances. TrAC - Trends Anal Chem. 2018;98:19–35.
  • Teoh BT, Sam SS, Tan KK, et al. Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J Clin Microbiol. 2015;53(3):830–837.
  • Hue KDT, Tuan TV, Thi HTN, et al. Validation of an internally controlled one-step real-time multiplex RT-PCR assay for the detection and quantitation of dengue virus RNA in plasma. J Virol Methods. 2011;177(2):168–173.
  • Abd El Wahed A, Patel P, Faye O, et al. Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS One. 2015;10(6):e0129682.
  • Abd El Wahed A, El-Deeb A, El-Tholoth M, et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS One. 2013;8(8):e71642.
  • Dieng I, Hedible BG, Diagne MM, et al. Mobile laboratory reveals the circulation of dengue virus serotype I of asian origin in medina gounass (Guediawaye), Senegal. Diagnostics. 2020;10(6):408.
  • Patel P, Abd El Wahed A, Faye O, et al. A field-deployable reverse transcription recombinase polymerase amplification assay for rapid detection of the chikungunya virus. PLoS Negl Trop Dis. 2016;10(9):e0004953.
  • Diagne CT, Faye O, Guerbois M, et al. Vector competence of aedes aegypti and aedes vittatus (Diptera: culicidae) from senegal and cape verde archipelago for West African lineages of chikungunya virus. Am J Trop Med Hyg. 2014;91(3):635–641.
  • Abd El Wahed A, Ss S, Faye O, et al. Rapid molecular detection of Zika Virus in acute-phase urine samples using the recombinase polymerase amplification assay. PLoS Curr. 2017. doi:10.1371/currents.outbreaks.a7f1db2c7d66c3fc0ea0a774305d319e.
  • Pessoa R, Patriota JV, De Lourdes De Souza M, et al. Investigation into an outbreak of dengue-like illness in pernambuco, Brazil, revealed a cocirculation of Zika, Chikungunya, and dengue virus type 1. Med (United States). 2016;95(12):e3201.
  • Wand NIV, Bonney LC, Watson RJ, et al. Point-of-care diagnostic assay for the detection of zika virus using the recombinase polymerase amplification method. J Gen Virol. 2018;99(8):1012–1026.
  • Chan K, Wong PY, Parikh C, et al. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA. Anal Biochem. 2018;545:4–12.
  • Hoser MJ, Mansukoski HK, Morrical SW, et al., Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte. PLoS One. 9(11): e112656. 2014.
  • Eboigbodin KE, Brummer M, Ojalehto T, et al. Rapid molecular diagnostic test for Zika virus with low demands on sample preparation and instrumentation. Diagn Microbiol Infect Dis. 2016;86(4):369–371.
  • Notomi T, Mori Y, Tomita N, et al., Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 53(1): 1–5. 2015.
  • Parida M, Horioke K, Ishida H, et al. Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay. J Clin Microbiol. 2005;43(6):2895–2903.
  • Teoh BT, Sam SS, Tan KK, et al. Detection of dengue viruses using reverse transcription-loop-mediated isothermal amplification. BMC Infect Dis. 2013;13(1). DOI:10.1186/1471-2334-13-387.
  • Lu X, Li X, Mo Z, et al. Rapid identification of chikungunya and dengue virus by a real-time reverse transcription-loop-mediated isothermal amplification method. Am J Trop Med Hyg. 2012;87(5):947–953.
  • Li S, Fang M, Zhou B, et al. Simultaneous detection and differentiation of dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay. Virol J. 2011;8:360.
  • Da Silva SJR, Pardee K, Pena L. Loop-mediated isothermal amplification (LAMP) for the diagnosis of Zika virus: a review. Viruses. 2019;12(1):19.
  • Song J, Mauk MG, Hackett BA, et al. Instrument-free point-of-care molecular detection of Zika Virus. Anal Chem. 2016;88(14):7289–7294.
  • Tian B, Qiu Z, Ma J, et al. Attomolar Zika virus oligonucleotide detection based on loop-mediated isothermal amplification and AC susceptometry. Biosens Bioelectron. 2016;86:420–425.
  • Lee D, Shin Y, Chung S, et al. Simple and highly sensitive molecular diagnosis of Zika virus by lateral flow assays. Anal Chem. 2016;88(24):12272–12278.
  • Estrela PFN, Mendes G De M, De Oliveira KG, et al. Ten-minute direct detection of Zika virus in serum samples by RT-LAMP. J Virol Methods. 2019;271:113675.
  • Bui TT, Moi ML, Morita K, et al. Development of universal and lineage-specific primer sets for rapid detection of the zika virus (ZIKV) in blood and urine samples using one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP). Jpn J Infect Dis. 2020;73(2):153–156.
  • Chotiwan N, Brewster CD, Magalhaes T, et al. Rapid and specific detection of Asian- and African-lineage Zika viruses. Sci Transl Med. 2017;9(388):eaag0538.
  • Calvert AE, Biggerstaff BJ, Tanner NA, et al. Rapid colorimetric detection of Zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP). PLoS One. 2017;12(9):e0185340.
  • Wang X, Yin F, Bi Y, et al. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2016;238:86–93.
  • Lopez-Jimena B, Wehner S, Harold G, et al. Development of a single-tube one-step RT-LAMP assay to detect the Chikungunya virus genome. PLoS Negl Trop Dis. 2018;12(5):e0006448.
  • Saechue B, Kamiyama N, Wang Y, et al. Development of a portable reverse transcription loop-mediated isothermal amplification system to detect the E1 region of Chikungunya virus in a cost-effective manner. Genes Cells. 2020. DOI:10.1111/gtc.12797.
  • Ganguli A, Ornob A, Yu H, et al. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care. Biomed Microdevices. 2017; 19(4). DOI: 10.1007/s10544-017-0209-9
  • Priye A, Bird SW, Light YK, et al. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep. 2017;7(1). DOI:10.1038/srep44778.
  • Kaarj K, Akarapipad P, Yoon JY. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci Rep. 2018;8(1):12438.
  • Liu W, Dong D, Yang Z, et al. Polymerase Spiral Reaction (PSR): a novel isothermal nucleic acid amplification method. Sci Rep. 2015;5:12723..
  • Sharma S, Pardasani D, Dash PK, et al. Development of magnetic bead based sample extraction coupled polymerase spiral reaction for rapid on-site detection of Chikungunya virus. Sci Rep. 2020;10:11651.
  • Kass-Hout TA, Alhinnawi H, T.A. K-H, H. A. Social media in public health. Br Med Bull Internet. 2013;108(1):5–24. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L370450994
  • Tsai YL, Wang HTT, Chang HFG, et al. Development of TaqMan Probe-Based Insulated Isothermal PCR (iiPCR) for Sensitive and Specific On-Site Pathogen Detection. PLoS One. 2012;7(9):e45278.
  • Go YY, Rajapakse RPVJ, Kularatne SAM, et al. A pan-dengue virus reverse transcription-insulated isothermal PCR assay intended for point-of-need diagnosis of dengue virus infection by use of the POCKIT nucleic acid analyzer. J Clin Microbiol. 2016;54(6):1528–1535.
  • Tsai JJ, Liu LT, Lin PC, et al. Validation of the pockit dengue virus reagent set for rapid detection of dengue virus in human serum on a field-deployable PCR System. J Clin Microbiol. 2018;56(5):e01865–17.
  • Wang WK, Gubler DJ, Tang Y-W. Potential point-of-care testing for dengue virus in the field. J Clin Microbiol. 2018;56(5). doi:10.1128/JCM.00203-18
  • Tsai JJ, Liu WL, Lin PC, et al., A fully automated sample-to-answer PCR system for easy and sensitive detection of dengue virus in human serum and mosquitos. PLoS One. 14(7): e0218139. 2019.
  • Carossino M, Li Y, Lee PYA, et al. Evaluation of a field-deployable reverse transcription-insulated isothermal PCR for rapid and sensitive on-site detection of Zika virus. BMC Infect Dis. 2017;17(1). DOI:10.1186/s12879-017-2852-4.
  • Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev. 2009;22(4):611–633.
  • Glushakova LG, Alto BW, Kim MS, et al. Multiplexed kit based on Luminex technology and achievements in synthetic biology discriminates Zika, chikungunya, and dengue viruses in mosquitoes. BMC Infect Dis. 2019;19(1). doi:10.1186/s12879-019-3998-z.
  • Kang XP, Li YQ, Sun QG, et al. Development of a consensus microarray method for identification of some highly pathogenic viruses. J Med Virol. 2009;81(11):1945–50.
  • Nordström H, Falk KI, Lindegren G, et al. DNA microarray technique for detection and identification of seven flaviviruses pathogenic for man. J Med Virol. 2005;77(4):528–540.
  • Berthet N, Paulous S, Coffey LL, et al. Resequencing microarray method for molecular diagnosis of human arboviral diseases. J Clin Virol. 2013;56(3):322–327.
  • Díaz-Badillo A, Muñoz M De L, Perez-Ramirez G. Perez-Ramirez G, et al. A DNA microarray-based assay to detect dual infection with two dengue virus serotypes. Sensors (Switzerland). 2014;14(5):7580–7601.
  • Dunbar SA. Applications of Luminex® xMAPTM technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta. 2006;363(1–2):71–82.
  • Cabral-Castro MJ, Peralta RHS, Cavalcanti MG, et al. A Luminex-based single DNA fragment amplification assay as a practical tool for detecting and serotyping dengue virus. J Virol Methods. 2016;236:18–24.
  • Yang Z, Hutter D, Sheng P, et al. Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res. 2006;34(21):6095–6101.
  • Hoshika S, Chen F, Leal NA, et al. Self-Avoiding Molecular Recognition Systems (SAMRS). Nucleic Acids Symp Ser (Oxf). 2008;52(1):129–130.
  • Glushakova LG, Bradley A, Bradley KM, et al. High-throughput multiplexed xMAP Luminex array panel for detection of twenty two medically important mosquito-borne arboviruses based on innovations in synthetic biology. J Virol Methods. 2015;214:60–74.
  • Ren P, Ortiz DA, Terzian ACB, et al. Evaluation of aptima zika virus assay. J Clin Microbiol. 2017;55(7):2198–2203.
  • Radford AD, Chapman D, Dixon L, et al., Application of next-generation sequencing technologies in virology. J Gen Virol. 93(9): 1853–1868. 2012.
  • Neverov A, Chumakov K. Massively parallel sequencing for monitoring genetic consistency and quality control of live viral vaccines. Proc Natl Acad Sci U S A. 2010;107(46):20063–20068.
  • Wollants E, Smolders D, Naesens R, et al. Use of next-generation sequencing for diagnosis of west nile virus infection in patient returning to Belgium from Hungary. Emerg Infect Dis. 2018;24(12):2380–2382.
  • Chaintoutis SC, Papadopoulou E, Melidou A, et al. A PCR-based NGS protocol for whole genome sequencing of West Nile virus lineage 2 directly from biological specimens. Mol Cell Probes. 2019;46:101412.
  • Kortenhoeven C, Joubert F, Bastos ADS, et al. Virus genome dynamics under different propagation pressures: reconstruction of whole genome haplotypes of west nile viruses from NGS data. BMC Genomics. 2015;16(1):118.
  • Wilson MR, Zimmermann LL, Crawford ED, et al. Acute west nile virus meningoencephalitis diagnosed via metagenomic deep sequencing of cerebrospinal fluid in a renal transplant patient. Am J Transplant. 2017;17(3):803–808.
  • Baronti C, Piorkowski G, Leparc-Goffart I, et al. Rapid next-generation sequencing of dengue, EV-A71 and RSV-A viruses. J Virol Methods. 2015;226:7–14.
  • Naccache SN, Thézé J, Sardi SI, et al. Distinct zika virus lineage in Salvador, Bahia, Brazil. Emerg Infect Dis. 2016;22(10):1788–1792.
  • Sardi SI, Somasekar S, Naccache SN, et al. Coinfections of zika and chikungunya viruses in bahia, Brazil, identified by metagenomic next-generation sequencing. J Clin Microbiol. 2016;54(9):2348–2353.
  • Chiu CY, Bres V, Yu G, et al. Genomic assays for identification of chikungunya virus in blood donors, Puerto Rico, 2014. Emerg Infect Dis. 2015;21(8):1409–1413.
  • Nunes MRT, Faria NR, De Vasconcelos JM, et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 2015;13(1). DOI:10.1186/s12916-015-0348-x.
  • Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 2018;122(1):e59.
  • Hayashida K, Orba Y, Sequeira PC, et al. Field diagnosis and genotyping of chikungunya virus using a dried reverse transcription loop-mediated isothermal amplification (LAMP) assay and MinION sequencing. PLoS Negl Trop Dis. 2019;13(6):e0007480.
  • Hayashida K, Kajino K, Hachaambwa L, et al. Direct blood dry LAMP: a rapid, stable, and easy diagnostic tool for human African trypanosomiasis. PLoS Negl Trop Dis. 2015;9(3):e0003578.
  • Yamagishi J, Runtuwene LR, Hayashida K, et al. Serotyping dengue virus with isothermal amplification and a portable sequencer. Sci Rep. 2017;7(1). DOI:10.1038/s41598-017-03734-5.
  • Quan PL, Briese T, Palacios G, et al. Rapid sequence-based diagnosis of viral infection. Antiviral Res. 2008;79(1):1–5.
  • Andersen KG, Shapiro BJ, Matranga CB, et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell. 2015;162(4):738–750.
  • Wang F, Sun Y, Ruan J, et al. Using small RNA Deep sequencing data to detect human viruses. Biomed Res Int. 2016;2016:2596782.
  • Kamaraj US, Tan JH, Mei OX, et al. Application of a targeted-enrichment methodology for full-genome sequencing of Dengue 1-4, Chikungunya and Zika viruses directly from patient samples. PLoS Negl Trop Dis. 2019;13(4):e0007184.
  • Quick J, Grubaugh ND, Pullan ST, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017;12(6):1261–1276.
  • Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76(2):159–216.
  • Dridi M, Rosseel T, Orton R, et al. Next-generation sequencing shows west nile virus quasispecies diversification after a single passage in a carrion crow (Corvus corone) in vivo infection model. J Gen Virol. 2015;96(10):2999–3009.
  • Jerzak G, Bernard KA, Kramer LD, et al. Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J Gen Virol. 2005;86(8):2175–2183.
  • Kurosu T. Quasispecies of dengue virus. Trop Med Health. 2011;39(4SUPPLEMENT):S29–S36.
  • Van Boheemen S, Tas A, Anvar SY, et al. Quasispecies composition and evolution of a typical Zika virus clinical isolate from Suriname. Sci Rep. 2017;7(1). DOI:10.1038/s41598-017-02652-w.
  • Vazeille M, Zouache K, Vega-Rúa A, et al. Importance of mosquito “quasispecies” in selecting an epidemic arthropod-borne virus. Sci Rep. 2016;6(1). DOI:10.1038/srep29564.
  • Riemersma KK, Steiner C, Singapuri A, et al. Chikungunya virus fidelity variants exhibit differential attenuation and population diversity in cell culture and adult mice. J Virol. 2018;93(3). DOI:10.1128/JVI.01606-18.
  • Lu IN, Muller CP, He FQ. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies. Virus Res. 2020;283:197963.
  • Mancuso N, Tork B, Skums P, et al. Reconstructing viral quasispecies from NGS amplicon reads. Silico Biol. 2012;11(5-6):237–249.
  • Seifert D, Beerenwinkel N. Estimating fitness of viral quasispecies from next-generation sequencing data. Curr Top Microbiol Immunol. 2016;392:181–200.
  • Maher-Sturgess SL, Forrester NL, Wayper PJ, et al. Universal primers that amplify RNA from all three flavivirus subgroups. Virol J. 2008;5(1):16.
  • Alvarez AC, Brunck MEG, Boyd V, et al. A broad spectrum, one-step reverse-transcription PCR amplification of the neuraminidase gene from multiple subtypes of influenza A virus. Virol J. 2008;5(1):77.
  • Song J, Pandian V, Mauk MG, et al. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease mapping. Anal Chem. 2018;90(7):4823–4831.
  • Zanotto Pm De A, Leite Lc De C. The challenges imposed by Dengue, Zika, and Chikungunya to Brazil. Front Immunol. 2018;9:1964.
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–159.
  • Faye O, Faye O, Dupressoir A, et al. One-step RT-PCR for detection of Zika virus. J Clin Virol. 2008;43(1):96–101.
  • Lanciotti RS, Kosoy OL, Laven JJ, et al. Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis. 2007;13(5):764–767.
  • Edwards CJ, Welch SR, Chamberlain J, et al. Molecular diagnosis and analysis of Chikungunya virus. J Clin Virol. 2007;39(4):271–275.
  • Boom R, Sol CJA, Salimans MMM, et al. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28(3):495–503.
  • Chan K, Weaver SC, Wong PY, et al. Rapid, affordable and portable medium-throughput molecular device for Zika virus. Sci Rep. 2016:38223.
  • Parida MM, Santhosh SR, Dash PK, et al. Rapid and real-time detection of Chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. J Clin Microbiol. 2007;45(2):351–357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.