2,015
Views
0
CrossRef citations to date
0
Altmetric
Review

Common markers of testicular Sertoli cells

, , , &
Pages 613-626 | Received 23 Feb 2021, Accepted 27 Apr 2021, Published online: 16 May 2021

References

  • Griswold MD. 50 years of spermatogenesis: sertoli cells and their interactions with germ cells. Biol Reprod. 2018;99(1):87–100.
  • Kato J, Hisha H, Wang X-L, et al. Contribution of neural cell adhesion molecule (NCAM) to hemopoietic system in monkeys. Ann Hematol. 2008;87(10):797–807.
  • Rm S. Regulation of spermatogenesis. In: Knobil E, Neill JD, editors. The physiology of reproduction. 2nd ed. New York Raven Press; 1994. p. 1363–1434.
  • Rogatsch H, Hittmair A, Mikuz G, et al. Expression of vimentin, cytokeratin, and desmin in Sertoli cells of human fetal, cryptorchid, and tumour-adjacent testicular tissue. Virchows Arch. 1996;427(5):497–502.
  • Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129:705–733.
  • Zhang B, Wang J, Liu W, et al. Cytokeratin 18 knockdown decreases cell migration and increases chemosensitivity in non-small cell lung cancer. J Cancer Res Clin. 2016;142(12):2479–2487.
  • Maymon BB-S, Paz G, Elliott DJ, et al. Maturation phenotype of Sertoli cells in testicular biopsies of azoospermic men. Hum Reprod. 2000;15(7):1537–1542.
  • Sharpe RM, McKinnell C, Kivlin C, et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125:769–784.
  • Zhang Z-H, Hu Z-Y, Song -X-X, et al. Disrupted expression of intermediate filaments in the testis of rhesus monkey after experimental cryptorchidism. Int J Androl. 2004;27(4):234–239.
  • Franke FE, Pauls K, Rey R, et al. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl). 2004;209(2):169–177.
  • Steger K, Rey R, Louis F, et al. Reversion of the differentiated phenotype and maturation block in Sertoli cells in pathological human testis. Hum Reprod. 1999;14(1):136–143.
  • Steger K, Rey R, Kliesch S, et al. Immunohistochemical detection of immature Sertoli cell markers in testicular tissue of infertile adult men: a preliminary study. Int J Androl. 1996;19(2):122–128.
  • Guo J, Tao S-X, Chen M, et al. Heat treatment induces liver receptor homolog-1 expression in monkey and rat sertoli cells. Endocrinology. 2007;148(3):1255–1265.
  • Kliesch S, Behre HM, Hertle L, et al. Alteration of Sertoli cell differentiation in the presence of carcinoma in situ in human testes. J Urol. 1998;160(5):1894–1898.
  • Blagosklonova O. Absence of anti-Mullerian hormone (AMH) and M2A immunoreactivities in Sertoli cell-only syndrome and maturation arrest with and without AZF microdeletions. Hum Reprod. 2002;17(8):2062–2065.
  • Marks A, Sutherland DR, Bailey D, et al. Characterization and distribution of an oncofetal antigen (M2A antigen) expressed on testicular germ cell tumours. Br J Cancer. 1999;80(3–4):569–578.
  • Baumal R, Bailey D, Giwercman A, et al. A novel maturation marker for human Sertoli cells. Int J Androl. 1989;12(5):354–359.
  • Jφrgensen N, Giwercman A, Muller J, et al. Immunohistochemical markers of carcinoma in situ of the testis also expressed in normal infantile germ cells. Histopathology. 1993;22(4):373–378.
  • Meroni SB, Galardo MN, Rindone G, et al. Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Front Endocrinol (Lausanne). 2019;10:224.
  • Lee MM, Donahoe PK. Mullerian inhibiting substance: a gonadal hormone with multiple functions. Endocr Rev. 1993;14(2):152–164.
  • Beau C, Vivian N, Munsterberg A, et al. In vivo analysis of the regulation of the anti-Müllerian hormone, as a marker of Sertoli cell differentiation during testicular development, reveals a multi-step process. Mol Reprod Dev. 2001;59(3):256–264.
  • Rey R, Sabourin JC, Venara M, et al. Anti-Müllerian hormone is a specific marker of Sertoli- and granulosa-cell origin in gonadal tumors. Hum Pathol. 2000;31(10):1202–1208
  • Josso N, Di Clemente N, Gouédard L. Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol. 2001;179(1–2):25–32.
  • Toulis KA, Iliadou PK, Venetis CA, et al. Inhibin B and anti-Mullerian hormone as markers of persistent spermatogenesis in men with non-obstructive azoospermia: a meta-analysis of diagnostic accuracy studies. Hum Reprod Update. 2010;16(6):713–724.
  • Pitteloud N, Hayes FJ, Boepple PA, et al. The role of prior pubertal development, biochemical markers of testicular maturation, and genetics in elucidating the phenotypic heterogeneity of idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2002;87(1):152–160.
  • Rey R, Mebarki F, Forest MG, et al. Anti-müllerian hormone in children with androgen insensitivity. J Clin Endocrinol Metab. 1994;79(4):960–964.
  • Tran D, Josso N, Meusy-dessolle N. Anti-Müllerian hormone is a functional marker of foetal Sertoli cells. Nature. 1977;269(5627):411–412.
  • Young J, Chanson P, Salenave S, et al. Testicular Anti-Müllerian hormone secretion is stimulated by recombinant human FSH in patients with congenital hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2005;90(2):724–728.
  • Barranco I, Fernandez-Fuertes B, Padilla L, et al. Seminal plasma anti-mullerian hormone: a potential AI-boar fertility biomarker? Biology (Basel). 2020;9:78.
  • Wang J, Zeng L, Wu SQ, et al. Clinical pathological study on Galectin7 and MMP9 expression in cervical adenocarcinoma. Progress in Modern Biomedicine. 2013;5:595–601..
  • Timmons PM, Colnot C, Cail I, et al. Expression of galectin-7 during epithelial development coincides with the onset of stratification. Int J Dev Biol. 1999;43(3):229–235.
  • Timmons PM, Rigby PWJ, Poirier F. The murine seminiferous epithelial cycle is pre-figured in the Sertoli cells of the embryonic testis. Development. 2002;129(3):635–647.
  • Conboy L, Bisaz R, Markram K, et al. Role of NCAM in emotion and learning. Adv Exp Med Biol. 2010;663:271–296.
  • Garin-Chesa P, Fellinger EJ, Huvos AG, et al. Immunohistochemical analysis of neural cell adhesion molecules. Differential expression in small round cell tumors of childhood and adolescence. Am J Pathol. 1991;139(2):275–286.
  • Li LH, Jester WF, Orth JM. Expression of 140-kDa neural cell adhesion molecule in developing testes in vivo and in long-term Sertoli cell-gonocyte cocultures. J Androl. 1998;19(3):365–373.
  • Laslett AL, Li L-H, Jester WF, et al. Thyroid hormone down-regulates neural cell adhesion molecule expression and affects attachment of gonocytes in Sertoli cell-gonocyte cocultures 1. Endocrinology. 2000;141(5):1633–1641.
  • Orth JM, Jester WF, Li LH, et al. Gonocyte-Sertoli cell interactions during development of the neonatal rodent testis. Curr Top Dev Biol. 2000;50:103–124.
  • Yang Y, Han C. GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell Biol. 2010;11(1):78.
  • Takahashi S, Onodera K, Motohashi H, et al. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem. 1997;272(19):12611–12615.
  • Vyas P, Ault K, Jackson CW, et al. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93(9):2867–2875.
  • Yu C, Cantor AB, Yang H, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002;195(11):1387–1395.
  • Migliaccio AR, Rana RA, Sanchez M, et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med. 2003;197(3):281–296.
  • Boidot R, Vegran F, Jacob D, et al. The transcription factor GATA-1 is overexpressed in breast carcinomas and contributes to survivin upregulation via a promoter polymorphism. Oncogene. 2010;29(17):2577–2584.
  • Liu Z, Zhu Y, Li F, et al. GATA1-regulated JAG1 promotes ovarian cancer progression by activating Notch signal pathway. Protoplasma. 2020;257(3): 901–910.
  • Xu E, Ji Z, Jiang H, et al. Hypoxia-inducible factor 1A upregulates HMGN5 by increasing the expression of GATA1 and plays a role in osteosarcoma metastasis. Biomed Res Int. 2019:1–8.
  • Garnett C, Cruz HD, Vyas P. GATA1 and cooperating mutations in myeloid leukaemia of Down syndrome. Iubmb Life. 2020;72(1):119–130.
  • Yomogida K, Ohtani H, Harigae H, et al. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development. 1994;120(7):1759–1766.
  • Chen C, Ouyang W, Grigura V, et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature. 2005;436(7053):1030–1034.
  • J Egou BSR. Paracrine mechanisms in testicular control. In: De Kretser ED, editor. Molecular biology of the male reproductive system. New York: Academic Press; 1993. p. 271–310.
  • Lindeboom F, Gillemans N, Karis A, et al. A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids Res. 2003;31(18):5405–5412.
  • Ito E, Toki T, Ishihara H, et al. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature. 1993;362(6419):466–468.
  • LaVoie HA. The role of GATA in mammalian reproduction. Exp Biol Med. 2003;228(11):1282–1290.
  • Beau C, Rauch M, Joulin V, et al. GATA-1 is a potential repressor of anti-M�llerian hormone expression during the establishment of puberty in the mouse. Mol Reprod Dev. 2000;56(2):124–138.
  • Feng ZM, Wu AZ, Zhang Z, et al. GATA-1 and GATA-4 transactivate inhibin/activin beta-B-subunit gene transcription in testicular cells. Mol Endocrinol. 2000;14(11):1820–1835.
  • Zhang Z, Wu AZ, Feng Z-M, et al. Gonadotropins, via cAMP, negatively regulate GATA-1 gene expression in testicular cells. Endocrinology. 2002;143(3):829–836.
  • Griswold MD, Roberts K, Bishop P. Purification and characterization of a sulfated glycoprotein secreted by Sertoli cells. Biochemistry. 1986;25(23):7265–7270.
  • Al-Attar L, Noël K, Dutertre M, et al. Hormonal and cellular regulation of Sertoli cell anti-Müllerian hormone production in the postnatal mouse. J Clin Invest. 1997;100(6):1335–1343.
  • Chemes HE, Rey RA, Nistal M, et al. Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells. J Clin Endocrinol Metab. 2008;93(11):4408–4412.
  • Williams KMCSP. Neonatal exposure to potent and environmental oestrogens and abnormalities of the male reproductive system in the rat: evidence for importance of the androgen-oestrogen balance and assessment of the relevance to man. Hum Reprod Update. 2001;3:224–236.
  • Bremner WJ, Millar MR, Sharpe RM, et al. Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology. 1994;135(3):1227–1234.
  • Suarez-Quian CA, Martinez-Garcia F, Nistal M, et al. Androgen receptor distribution in adult human testis. J Clin Endocrinol Metab. 1999;84(1):350–358.
  • Kelnar CJH, McKinnell C, Walker M, et al. Testicular changes during infantile ‘quiescence’ in the marmoset and their gonadotrophin dependence: a model for investigating susceptibility of the prepubertal human testis to cancer therapy? Hum Reprod. 2002;17(5):1367–1378.
  • Regadera J, Martinez-Garcia F, Gonzalez-Peramato P, et al. Androgen receptor expression in sertoli cells as a function of seminiferous tubule maturation in the human cryptorchid testis. J Clin Endocrinol Metab. 2001;86(1):413–421.
  • Nistal M, Gonzalez-Peramato P, De Miguel MP. Sertoli cell dedifferentiation in human cryptorchidism and gender reassignment shows similarities between fetal environmental and adult medical treatment estrogen and antiandrogen exposure. Reprod Toxicol. 2013;42:172–179.
  • Law GL, Griswold MD. Activity and form of sulfated glycoprotein 2 (clusterin) from cultured Sertoli cells, testis, and epididymis of the rat. Biol Reprod. 1994;50(3):669–679.
  • Yon J-M, Kwak DH, Cho YK, et al. Expression pattern of sulfated glycoprotein-2 (SGP-2) mRNA in rat testes exposed to endocrine disruptors. J Reprod Dev. 2007;53(5):1007–1013.
  • Collard MW, Griswold MD. Biosynthesis and molecular cloning of sulfated glycoprotein 2 secreted by rat Sertoli cells. Biochemistry. 1987;26(12):3297–3303.
  • Sylvester SR, Skinner MK, Griswold MD. A sulfated glycoprotein synthesized by Sertoli cells and by epididymal cells is a component of the sperm membrane 1. Biol Reprod. 1984;31(5):1087–1101.
  • Morales C, Hugly S, Griswold MD. Stage-dependent levels of specific mRNA transcripts in Sertoli cells. Biol Reprod. 1987;36(4):1035–1046.
  • Kondoh G, Yomogida K, Dohmae K, et al. Coexpression of multiple Sertoli cell and Leydig cell marker genes in the spontaneous testicular tumor of F344 rat: evidence for phenotypical bifurcation of the interstitial cell tumor. Jpn J Cancer Res. 1997;88(9):839–845.
  • Lin Y-M, Lu C-W, Ma H-Y. Up regulation of miR-630 by heat shock inhibits sertoli cell proliferation, migration and immature sertoli cell marker expression. Fertil Steril. 2014;102(3):e193.
  • Miner JH, Lewis RM, Sanes JR. Molecular cloning of a novel laminin chain, α5, and widespread expression in adult mouse tissues. J Biol Chem. 1995;270(48):28523–28526.
  • Pelliniemi LJ, Frojdman K. Structural and regulatory macromolecules in sex differentiation of gonads. J Exp Zool. 2001;290(5):523–528.
  • Frojdman K, Miner JH, Sanes JR, et al. Sex-specific localization of laminin α5 chain in the differentiating rat testis and ovary. Differentiation. 1999;64(3):151–159.
  • Frojdman K, Pelliniemi LJ, Rey R, et al. Presence of anti-Müllerian hormone correlates with absence of laminin α5 chain in differentiating rat testis and ovary. Histochem Cell Biol. 1999;111(5):367–373.
  • Beumer TL, Kiyokawa H, Roepers-Gajadien HL, et al. Regulatory role of p27kip1 in the mouse and human testis. Endocrinology. 1999;140(4):1834–1840.
  • Cipriano SC, Chen L, Burns KH, et al. Inhibin and p27 interact to regulate gonadal tumorigenesis. Mol Endocrinol. 2001;15(6):985–996.
  • Western PS, Harry JL, Graves JAM, et al. Temperature-dependent sex determination: upregulation ofSOX9 expression after commitment to male development. Dev Dyn. 1999;214(3):171–177.
  • Sekido R, Bar I, Narvaez V, et al. SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol. 2004;274(2):271–279.
  • Kato N, Fukase M, Motoyama T. Expression of a transcription factor, SOX9, in Sertoli-stromal cell tumors of the ovary. Int J Gynecol Pathol. 2004;23(2):180–181.
  • Da Silva SM, Hacker A, Harley V, et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet. 1996;14(1):62–68.
  • Hemendinger RA, Gores P, Blacksten L, et al. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplantation. 2002;11(6):499–505.
  • Oreal E, Pieau C, Mattei M-G, et al. Early expression ofAMH in chicken embryonic gonads precedes testicularSOX9 expression. Dev Dyn. 1998;212(4):522–532.
  • Frojdman K, Harley VR, Pelliniemi LJ. Sox9 protein in rat sertoli cells is age and stage dependent. Histochem Cell Biol. 2000;113(1):31–36.
  • Barrionuevo F, Bagheri-Fam S, Klattig J, et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod. 2006;74(1):195–201.
  • Nef S, Verma-Kurvari S, Merenmies J, et al. Testis determination requires insulin receptor family function in mice. Nature. 2003;426(6964):291–295.
  • Yenuganti VR, Vanselow J. Oleic acid induces down-regulation of the granulosa cell identity marker FOXL2, and up-regulation of the Sertoli cell marker SOX9 in bovine granulosa cells. Reprod Biol Endocrinol. 2017;15(1):57.
  • Zhao H, You X, Chen Q, et al. Icariin improves age-related testicular dysfunction by alleviating Sertoli cell injury via upregulation of the ERα/Nrf2-signaling pathway. Front Pharmacol. 2020;11:677.
  • Wu X, Liu J, Duan Y, et al. A short-term exposure to tributyltin blocks leydig cell regeneration in the adult rat testis. Front Pharmacol. 2017;8:704.
  • Hildorf S, Dong L, Thorup J, et al. Sertoli cell number correlates with serum inhibin B in infant cryptorchid boys. Sex Dev. 2019;13(2):74–82.
  • Herzer U, Crocoll A, Barton D, et al. The Wilms tumor suppressor gene wt1 is required for development of the spleen. Curr Biol. 1999;9(15):837–S1.
  • Dame C, Kirschner KM, Bartz KV, et al. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood. 2006;107(11):4282–4290.
  • Wagner K-D, Wagner N, Vidal VPI, et al. The Wilms‘ tumor gene Wt1 is required for normal development of the retina. Embo J. 2002;21(6):1398–1405.
  • Wagner N, Wagner K-D, Hammes A, et al. A splice variant of the Wilms‘ tumour suppressor Wt1 is required for normal development of the olfactory system. Development. 2005;132(6):1327–1336.
  • Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–691.
  • Hylander B, Repasky E, Shrikant P, et al. Expression of Wilms tumor gene (WT1) in epithelial ovarian cancer. Gynecol Oncol. 2006;101(1):12–17.
  • Wang XN, Li ZS, Ren Y, et al. The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans. PLoS Genetics. 2013;9(8):e1003645.
  • Pelletier J, Schalling M, Buckler AJ, et al. Expression of the Wilms‘ tumor gene WT1 in the murine urogenital system. Genes Dev. 1989;57(8):645–658.
  • Gao F, Maiti S, Alam N, et al. The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci U S A. 2006;103(32):11987–11992.
  • Weigel D, Jurgens G, Kuttner F, et al. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 1989;57(4):645–658.
  • Yu X, Yuan Y, Qiao L, et al. The Sertoli cell marker FOXD1 regulates testis development and function in the chicken. Reprod Fertil Dev. 2019;31(5):867–874.
  • Dahle MK, Gronning LM, Cederberg A, et al. Mechanisms of FOXC2- and FOXD1-mediated regulation of the RI alpha subunit of cAMP-dependent protein kinase include release of transcriptional repression and activation by protein kinase B alpha and cAMP. J Biol Chem. 2002;277(25):22902–22908.
  • Levinson RS, Batourina E, Choi C, et al. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development. 2005;132(3):529–539.
  • Gumbel JH, Patterson EM, Owusu SA, et al. The forkhead transcription factor, Foxd1, is necessary for pituitary luteinizing hormone expression in mice. Plos One. 2012;7(12):e52156.
  • Pierucci-Alves F, Clark AM, Russell LD. A developmental study of the Desert hedgehog-null mouse testis. Biol Reprod. 2001;65(5):1392–1402.
  • Zou SS, Li Z, Hu HL. Desert hedgehog regulates the proliferation and differentiation of Leydig cells: an update. National Journal of Andrology. 2012;18(2):172–175..
  • Clark AM, Garland KK, Russell LD. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod. 2000;63(6):1825–1838.
  • Sahin Z, Szczepny A, McLaughlin EA, et al. Dynamic Hedgehog signalling pathway activity in germline stem cells. Andrology. 2014;2(2):267–274.
  • Chen SR, Tang JX, Cheng JM, et al. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget. 2015;6(35):37012–37027.
  • Watt AJ, Zhao R, Li J, et al. Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Developmental Biology. 2007;7(1):37.
  • Molkentin JD, Lin Q, Duncan SA, et al. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11(8):1061–1072.
  • Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11(8):1048–1060.
  • Wang C-Y, Tang M-C, Chang W-C, et al. PiggyBac transposon-mediated mutagenesis in rats reveals a crucial role of Bbx in growth and male fertility. Biol Reprod. 2016;95(3):51.
  • McCoard SA, Lunstra DD, Wise TH, et al. Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in meishan and white composite boars during the neonatal period. Biol Reprod. 2001;64(2):689–695.
  • Viger RS, Mertineit C, Trasler JM, et al. Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Mullerian inhibiting substance promoter. Development. 1998;125(14):2665–2675.
  • Imai T, Kawai Y, Tadokoro Y, et al. In vivo and in vitro constant expression of GATA-4 in mouse postnatal Sertoli cells. Mol Cell Endocrinol. 2004;214(1–2):107–115.
  • Nachtigal MW, Hirokawa Y, Enyeart-vanhouten DL, et al. Wilms‘ tumor 1 and dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell. 1998;93(3):445–454.
  • De Santa BP, Bonneaud N, Boizet B, et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human Anti-Mullerian hormone gene. Mol Cell Biol. 1998;18(11):6653–6665.
  • Tremblay JJ, Viger RS. Transcription factor GATA-4 enhances Müllerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol. 1999;13(8):1388–1401.
  • Manzoor SM, Sattar A, Hashim R, et al. Serum inhibin B as a diagnostic marker of male infertility. J Ayub Med Coll Abbottabad. 2012;24(3–4):113–116.
  • Decanter C, Pigny P, Lefebvre C, et al. Serum inhibin B during controlled ovarian hyperstimulation: an additional criterion for deciding whether to proceed with egg retrieval. Fertil Steril. 2009;91(6):2419–2425.
  • Pierik FH, Vreeburg JTM, Stijnen T, et al. Serum inhibin B as a marker of spermatogenesis. J Clin Endocrinol Metab. 1998;83(9):3110–3114.
  • Andersson A-M, Skakkebaek NE. Serum inhibin B levels during male childhood and puberty. Mol Cell Endocrinol. 2001;180(1–2):103–107.
  • Jensen TK, Andersson AM, Hjollund NH, et al. Inhibin B as a serum marker of spermatogenesis: correlation to differences in sperm concentration and follicle-stimulating hormone levels. A study of 349 Danish men. J Clin Endocrinol Metab. 1997;82(12):4059–4063.
  • Andersson AM, Muller J, Skakkebaek NE. Different roles of prepubertal and postpubertal germ cells and Sertoli cells in the regulation of serum inhibin B levels. J Clin Endocrinol Metab. 1998;83(12):4451–4458.
  • Winters SJ, Plant TM. Partial characterization of circulating inhibin-B and Pro-αC during development in the male rhesus Monkey1. Endocrinology. 1999;140(12):5497–5504.
  • Ramaswamy S, Marshall GR, McNeilly AS, et al. Evidence that in a physiological setting Sertoli cell number is the major determinant of circulating concentrations of inhibin B in the adult male rhesus monkey (Macaca mulatta). J Androl. 1999;20(3):430–434.
  • MacConell LA, Leal AMO, Vale WW. The distribution of betaglycan protein and mRNA in rat brain, pituitary, and gonads: implications for a role for betaglycan in inhibin-mediated reproductive functions. Endocrinology. 2002;143(3):1066–1075.
  • Stewart J, Turner KJ, Dixit R. Inhibin B as a potential biomarker of testicular toxicity. Cancer Biomarkers. 2005;1(1):75–91.
  • Iliadou PK, Tsametis C, Kaprara A, et al. The Sertoli cell: novel clinical potentiality. Hormones (Athens). 2015;14(4):504–514.
  • Demyashkin GA. Inhibin B in seminiferous tubules of human testes in normal spermatogenesis and in idiopathic infertility. Systems Biology in Reproductive Medicine. 2019;65(1):20–28.
  • Yang PX, Medan MS, Arai KY, et al. Ontogeny of testicular inhibin and activin in ducks: an immunocytochemical analysis. Anim Sci J. 2010;5:427–434.
  • Anderson RA, Irvine DS, Balfour C, et al. Inhibin B in seminal plasma: testicular origin and relationship to spermatogenesis. Hum Reprod. 1998;13(4):920–926.
  • Anthony CT, Rosselli M, Skinner MK. Actions of the testicular paracrine factor (P-Mod-S) on Sertoli cell transferrin secretion throughout pubertal development. Endocrinology. 1991;129(1):353–360.
  • Griswold MD. Protein secretions of Sertoli cells. Int Rev Cytol. 1988;110:133–156.
  • Hagenas L, Ritzen EM, Plöen L, et al. Sertoli cell origin of testicular androgen-binding protein (ABP). Mol Cell Endocrinol. 1975;2(5):339–350.
  • Sharpe RM, Bartlett JM. Changes in the secretion of ABP into testicular interstitial fluid with age and in situations of impaired spermatogenesis. Int J Androl. 1987;10(5):701–710.
  • Hong H, Branham WS, Ng HW, et al. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein. Toxicol Sci. 2015;143(2):333–348.
  • An N, Zhu J, Ren L, et al. Trends of SHBG and ABP levels in male farmers: influences of environmental fluoride exposure and ESR alpha gene polymorphisms. Ecotoxicol Environ Saf. 2019;172:40–44.
  • Kierszenbaum AL, Feldman M, Lea O, et al. Localization of androgen-binding protein in proliferating Sertoli cells in culture. Proc Natl Acad Sci U S A. 1980;77(9):5322–5326.
  • Hansson V, Weddington SC, Naess O, et al. Testicular androgen binding protein (ABP) - a parameter of Sertoli cell secretory function. Current Topics in Molecular Endocrinology. 1975;2:323–336.
  • Foucher J-L, Le Gac F. Evidence for an androgen binding protein in the testis of a teleost fish (Salmo gairdneri R.): a potential marker of Sertoli cell function. J Steroid Biochem. 1989;32(4):545–552.
  • Garza MM, Schwarz LK, Bonner JM, et al. Sertoli cell function varies along the seminiferous tubule: the proportion and response of transferrin secretors differ between stage-associated tubule segments. Endocrinology. 1991;128(4):1869–1874.
  • Gelly J-L, Richoux J-P, Grignon G. Immunolocalization of albumin and transferrin in germ cells and Sertoli cells during rat gonadal morphogenesis and postnatal development of the testis. Cell Tissue Res. 1994;276(2):347–351.
  • Wright WW, Musto NA, Mather JP, et al. Sertoli cells secrete both testis-specific and serum proteins. Proc Natl Acad Sci U S A. 1981;78(12):7565–7569.
  • Perez-Infante V, Mather JP. The role of transferrin in the growth of testicular cell lines in serum-free medium. Exp Cell Res. 1982;142(2):325–332.
  • Skinner MK, Schlitz SM, Anthony CT. Regulation of Sertoli cell differentiated function: testicular transferrin and androgen-binding protein expression. Endocrinology. 1989;124(6):3015–3024.
  • Abdel-Maksoud FM, Ali F, Akingbemi BT. Prenatal exposures to bisphenol A and di (2-ethylhexyl) phthalate disrupted seminiferous tubular development in growing male rats. Reprod Toxicol. 2019;88:85–90.
  • Shimomura K, Sakurai K, Shimada M, et al. Occurrence of headless sperms in adolescent rat urine. Lab Anim. 2008;42(2):204–212.
  • Turner KJ, Macpherson S, Millar MR, et al. Development and validation of a new monoclonal antibody to mammalian aromatase. J Endocrinol. 2002;172(1):21–30.
  • Carreau S, Wolczynski S, Galeraud-Denis I. Aromatase, oestrogens and human male reproduction. Philos Trans R Soc Lond B Biol Sci. 2010;365(1546):1571–1579.
  • Ando S, Sirianni R, Forastieri P, et al. Aromatase expression in prepuberal Sertoli cells: effect of thyroid hormone. Mol Cell Endocrinol. 2001;178(1–2):11–21.
  • Palmero S, Prati M, Bolla F, et al. Tri-iodothyronine directly affects rat Sertoli cell proliferation and differentiation. J Endocrinol. 1995;145(2):355–362.
  • Lambard S, Galeraud-Denis I, Saunders PT, et al. Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. J Mol Endocrinol. 2004;32(1):279–289.
  • Panno ML, Salerno M, Lanzino M, et al. Follow-up study on the effects of thyroid hormone administration on androgen metabolism of peripubertal rat Sertoli cells. Eur J Endocrinol. 1995;132(2):236–241.
  • Carreau C, Genissel G, Bilinska B, et al. Sources of oestrogen in the testis and reproductive tract of the male. Int J Androl. 1999;22(4):211–223.
  • Roger C, Lambard S, Bouskine A, et al. Estrogen-induced growth inhibition of human seminoma cells expressing estrogen receptor β and aromatase. J Mol Endocrinol. 2005;35(1):191–199.
  • Ndrepepa G, Colleran R, Kastrati A. Gamma-glutamyl transferase and the risk of atherosclerosis and coronary heart disease. Clin Chim Acta. 2018;476:130–138.
  • Hanigan MH. Gamma-glutamyl transpeptidase: redox regulation and drug resistance. Adv Cancer Res. 2014;122:103–141.
  • Kumar TR, Wiseman AL, Kala G, et al. Reproductive defects in γ-Glutamyl transpeptidase-deficient mice 1. Endocrinology. 2000;141(11):4270–4277.
  • Hodgen GD, Sherins RJ. Enzymes as markers of testicular growth and development in the rat. Endocrinology. 1973;93(4):985–989.
  • Lu C, Steinberger A. Gamma-glutamyl transpeptidase activity in the developing rat testis. Enzyme localization in isolated cell types. Biol Reprod. 1977;17(1):84–88.
  • Carreau S, Drosdowsky MA, Foucault P. Enzymatic properties of adult human Sertoli cells in vitro. Andrologia. 2009;28(2):89–95.
  • Goncalves R, Zamoner A, Zanatta L, et al. 1,25(OH)2 vitamin D3 signalling on immature rat Sertoli cells: gamma-glutamyl transpeptidase and glucose metabolism. J Cell Commun Signal. 2017;11(3):233–243.
  • Caston LA, Sanborn BM. Regulation of testicular and Sertoli cell gamma-glutamyl transpeptidase by follicle-stimulating hormone. Biol Reprod. 1988;38(1):109–113.
  • Lipshultz LI, Murthy L, Tindall DJ. Characterization of human Sertoli cells in vitro. J Clin Endocrinol Metab. 1982;55(2):228–237.
  • Ishidoh K, Towatari T, Imajoh S, et al. Molecular cloning and sequencing of cDNA for rat cathepsin L. FEBS Letters. 1987;223(1):69–73.
  • Visone T, Charron M, Wright WW. Activation and repression domains within the promoter of the rat cathepsin L gene orchestrate sertoli cell-specific and stage-specific gene transcription in transgenic mice. Biol Reprod. 2009;81(3):571–579.
  • Dankbar B, Sohn M, Nieschlag E, et al. Quantification of androgen receptor and follicle-stimulating hormone receptor mRNA levels in human and monkey testes by a ribonuclease-protection assay. Int J Androl. 1995;18(2):88–96.
  • Van Pelt AMM, Roepers-Gajadien HL, Gademan IS, et al. Establishment of cell lines with rat spermatogonial stem cell characteristics. Endocrinology. 2002;143(5):1845–1850.
  • Chen J, Zhang L, Yang N, et al. Characterization of the immune roles of cathepsin L in turbot (Scophthalmus maximus L.) mucosal immunity. Fish Shellfish Immunol. 2020;97:322–335.
  • Shen X, Zhao Y-F, Xu S-Q, et al. Cathepsin L induced PC-12 cell apoptosis via activation of B-Myb and regulation of cell cycle proteins. Acta Pharmacol Sin. 2019;40(11):1394–1403.
  • Gunasekar P, Satish M, Dabestani P, et al. Modulation of cathepsin L expression in the coronary arteries of atherosclerotic swine. J Surg Res. 2019;243:460–468.
  • Wang Z, Xiang Z, Zhu T, et al. Cathepsin L interacts with CDK2-AP1 as a potential predictor of prognosis in patients with breast cancer. Oncol Lett. 2020;19(1):167–176.
  • Barrett AJ, Rawlings ND. Evolutionary lines of cysteine peptidases. Biol Chem. 2001;382(5):727.
  • Gye MC, Kim ST. Expression of cathepsin L in human testis under diverse infertility conditions. Arch Androl. 2004;50(3):187–191.
  • Kim GH, Wright WW. A comparison of the effects of testicular maturation and aging on the stage-specific expression of CP-2/cathepsin L messenger ribonucleic acid by Sertoli cells of the brown Norway rat. Biol Reprod. 1997;57(6):1467–1477.
  • Penttila T-L, Hakovirta H, Mali P, et al. Follicle-stimulating hormone regulates the expression of cyclic protein-2/cathepsin L messenger ribonucleic acid in rat Sertoli cells in a stage-specific manner. Mol Cell Endocrinol. 1995;113(2):175–181.
  • Karzai AW, Wright WW. Regulation of the synthesis and secretion of transferrin and cyclic protein-2/cathepsin L by mature rat Sertoli cells in culture. Biol Reprod. 1992;47(5):823–831.
  • Peloille S, Esnard A, Dacheux J-L, et al. Interactions between ovine cathepsin L, cystatin C and alpha2-Macroglobulin - potential role in the genital tract. Eur J Biochem. 1997;244(1):140–146.
  • Beau I, Groyer-Picard M-T, Le Bivic A, et al. The basolateral localization signal of the follicle-stimulating hormone receptor. J Biol Chem. 1998;273(29):18610–18616.
  • Sasaki M, Yamamoto M, Arishima K, et al. Effects of follicle-stimulating hormone on intermediate filaments and cell division of Sertoli cells of fetal rat testis in culture. J Vet Med Sci. 1998;60(1):35–39.
  • Migrenne S, Moreau E, Pakarinen P, et al. Mouse testis development and function are differently regulated by follicle-stimulating hormone receptors signaling during fetal and prepubertal life. Plos One. 2012;7(12):e53257.
  • Lampa J, Hoogerbrugge JW, Baarends WM, et al. Follicle-stimulating hormone and testosterone stimulation of immature and mature Sertoli cells in vitro: inhibin and N-cadherin levels and round spermatid binding. J Androl. 1999;20(3):399–406.
  • Rebourcet D, O’Shaughnessy PJ, Monteiro A, et al. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. Plos One. 2014;9(8):e105687.
  • De Miguel MP, Bethencourt FR, Arenas MI, et al. Intermediate filaments in the Sertoli cells of the ageing human testis. Virchows Arch. 1997;431(2):131–138.
  • Aumuller G, Steinbruck M, Krause W, et al. Distribution of vimentin-type intermediate filaments in Sertoli cells of the human testis, normal and pathologic. Anat Embryol (Berl). 1988;178(2):129–136.
  • Richburg JH, Murphy C, Myers JL. The Sertoli cell as a target for toxicants. Comprehensive Toxicology. 2018;4:64–81..
  • Kopecky M, Semecky V, Nachtigal P. Vimentin expression during altered spermatogenesis in rats. Acta Histochem. 2005;107(4):279–289.
  • Sun P, Zheng J, She G, et al. Expression pattern of asialoglycoprotein receptor in human testis. Cell Tissue Res. 2013;352(3):761–768.
  • Chui K, Trivedi A, Cheng CY, et al., Characterization and functionality of proliferative human Sertoli cells. Cell Transplantation. 2011;20(5): 619–635.
  • Giudice C, Banco B, Veronesi MC, et al. Immunohistochemical expression of markers of immaturity in sertoli and seminal cells in canine testicular atrophy. J Comp Pathol. 2014;150(2–3):208–215.
  • Grinspon RP, Loreti N, Braslavsky D, et al., Sertoli cell markers in the diagnosis of paediatric male hypogonadism. J Pediatr Endocrinol Metab. 2012;25(1–2): 3–11.
  • Grinspon RP, Rey RA. Anti-müllerian hormone and sertoli cell function in paediatric male hypogonadism. Horm Res Paediatr. 2010;73(2):81–92.
  • Martinez-Aguayo A, Rocha A, Rojas N, et al. Testicular adrenal rest tumors and Leydig and Sertoli cell function in boys with classical congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2007;92(12):4583–4589.
  • Nistal M, Pastrián LG, González-Peramato P, et al. Inhibin bodies: a new marker for immature Sertoli cells. Histopathology. 2011;58(7):1019–1027.
  • Anniballo R, Brehm R, Steger K. Recognising the Sertoli-cell-only (SCO) syndrome: a case study. Andrologia. 2011;43(1):78–83.
  • Brehm R, Rey R, Kliesch S, et al. Mitotic activity of Sertoli cells in adult human testis: an immunohistochemical study to characterize Sertoli cells in testicular cords from patients showing testicular dysgenesis syndrome. Anat Embryol (Berl). 2006;211(3):223–236.
  • Bar-Shira MB, Yavetz H, Yogev L, et al. Detection of calretinin expression in abnormal immature Sertoli cells in non-obstructive azoospermia. Acta Histochem. 2005;107(2):105–112.
  • Johnson C, Dance A, Kovalchuk I, et al. Enhanced early-life nutrition upregulates cholesterol biosynthetic gene expression and Sertoli cell maturation in testes of pre-pubertal Holstein bulls. Sci Rep. 2019;9(1):6448.
  • Sridharan S, Simon L, Meling DD, et al. Proliferation of adult sertoli cells following conditional knockout of the Gap junctional protein GJA1 (connexin 43) in mice. Biol Reprod. 2007;76(5):804–812.
  • Yang C, Yao C, Tian R, et al. miR-202-3p regulates sertoli cell proliferation, synthesis function, and apoptosis by targeting LRP6 and cyclin D1 of Wnt/β-Catenin signaling. Mol Ther Nucleic Acids. 2019;14:1–19.
  • Weber JE, Russell LD, Wong V. Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli-Sertoli and Sertoli-germ-cell relationships. Am J Anat. 1983;167(2):163–179.
  • Wong V, Russell LD. Three-dimensional reconstruction of a rat stage V Sertoli cell: i. Methods, basic configuration, and dimensions. Am J Anat. 1983;167(2):143–161.
  • Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects: opinion. Hum Reprod. 2001;16(5):972–978.
  • Maymon BB-S, Yogev L, Paz G, et al. Sertoli cell maturation in men with azoospermia of different etiologies. Fertil Steril. 2002;77(5):904–909.
  • Regadera J, Martínez-García F, Paniagua R, et al. Androgen insensitivity syndrome: an immunohistochemical, ultrastructural, and morphometric study. Arch Pathol Lab Med. 1999;123(3):225–234.
  • Rey R, Mebarki F, Forest MG, et al. Anti-müllerian hormone in children with androgen insensitivity. J Clin Endocrinol Metab. 1994;79(4):960–964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.