462
Views
0
CrossRef citations to date
0
Altmetric
Review

Improving laboratory diagnostics in myasthenia gravis

, , , , , & show all
Pages 579-590 | Received 31 Jan 2021, Accepted 29 Apr 2021, Published online: 19 May 2021

References

  • Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002;2(10):797–804.
  • Vincent A. Antibodies and receptors: from neuromuscular junction to central nervous system. Neuroscience. 2020;439:48–61.
  • Hoch W, McConville J, Helms S, et al. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7(3):365–368.
  • Higuchi O, Hamuro J, Motomura M, et al. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69(2):418–422.
  • Leite MI, Jacob S, Viegas S, et al. IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain. 2008;131(7):1940–1952.
  • Jacob S, Viegas S, Leite MI, et al. Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis. Arch Neurol. 2012;69(8):994–10005.
  • Cruz PMR, Al-Hajjar M, Huda S, et al. Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol. 2015;72(6):642–649.
  • Gilhus NE. Myasthenia Gravis. N Engl J Med. 2016;375(26):2570–2581.
  • Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun. 2014;52:90–100.
  • Roxanis I, Micklem K, McConville J, et al. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol. 2002;125(1–2):185–197.
  • Marx A, Pfister F, Schalke B, et al. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–884.
  • Mittag T, Kornfeld P, Tormay A, et al. Detection of anti-acetylcholine receptor factors in serum and thymus from patients with myasthenia gravis. N Engl J Med. 1976;294(13):691–694.
  • Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol. 1990;145(7):2115–2122.
  • Scadding GK, Vincent A, Newsom-Davis J, et al. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology. 1981;31(8):935–943.
  • Willcox HNA, Newsom-Davis J, Calder LR. Cell types required for anti-acetylcholine receptor antibody synthesis by cultured thymocytes and blood lymphocytes in myasthenia gravis. Clin Exp Immunol. 1984;58(1):97–106.
  • Schönbeck S, Padberg F, Hohlfeld R, et al. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice a new model of myasthenia gravis. J Clin Invest. 1992;90(1):245–250.
  • Wolfe GI, Kaminski HJ, Aban IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375(6):511–522.
  • Filosso PL, Galassi C, Ruffini E, et al. Thymoma and the increased risk of developing extrathymic malignancies: a multicentre study. Eur J Cardio Thoracic Surg. 2013;44(2):219–224.
  • Cortés-Vicente E, Álvarez-Velasco R, Segovia S, et al. Clinical and therapeutic features of myasthenia gravis in adults based on age at onset. Neurology. 2020;94(11):e1171–e1180.
  • Aragonès JM, Bolíbar I, Bonfill X, et al. Myasthenia gravis: a higher than expected incidence in the elderly. Neurology. 2003;60(6):1024–1026.
  • Casetta I, Groppo E, De Gennaro R, et al. Myasthenia gravis: a changing pattern of incidence. J Neurol. 2010;257(12):2015–2019.
  • Toyka KV, Drachman DB, Pestronk A, et al. Myasthenia gravis: passive transfer from man to mouse. Science. 1975;190(4212):397–399.
  • Lindstrom JM, Engel AG, Seybold ME, et al. Pathological mechanisms in experimental autoimmune myasthenia gravis: II. passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies*. J Exp Med. 1976;144(3):739–753.
  • Oda K, Korenaga S, Ito Y. Myasthenia gravis: passive transfer to mice of antibody to human and mouse acetylcholine receptor. Neurology. 1981;31(3):282–287.
  • Sterz R, Hohlfeld R, Rajki K, et al. Effector mechanisms in myasthenia gravis: end‐plate function after passive transfer of IgG, Fab, and F(ab′)2 hybrid molecules. Muscle Nerve. 1986;9(4):306–312.
  • Keesey J, Lindstrom J, Cokely H. Anti-acetylcholine receptor antibody in neonatal myasthenia gravis. N Engl J Med. 1977;296(1):55.
  • Donaldson JO, Penn AS, Lisak RP, et al. Antiacetylcholine receptor antibody in neonatal myasthenia gravis. Am J Dis Child. 1981;135(3):222–226.
  • Vernet-Der Garabedian B, Lacokova M, Eymard B, et al. Association of neonatal myasthenia gravis with antibodies against the fetal acetylcholine receptor. J Clin Invest. 1994;94(2):555–559.
  • Tüzün E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev. 2013;12(9):904–911.
  • Ruff RL, Lennon VA. How myasthenia gravis alters the safety factor for neuromuscular transmission. J Neuroimmunol. 2008;201–202:13–20.
  • Loutrari H, Kokla A, Tzartos SJ. Passive transfer of experimental myasthenia gravis via antigenic modulation of acetylcholine receptor. Eur J Immunol. 1992;22(9):2449–2452.
  • Cetin H, Webster R, Liu WW, et al. Myasthenia gravis AChR antibodies inhibit function of rapsyn-clustered AChRs. J Neurol Neurosurg Psychiatry. 2020;91(5):526–532.
  • Cardona A, Pritsch O, Dumas G, et al. Evidence for an antigen-driven selection process in human autoantibodies against acetylcholine receptor. Mol Immunol. 1995;32(16):1215–1223.
  • Fujii Y, Hashimoto J, Monden Y, et al. Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis. J Immunol. 1986;136(3):887–891.
  • Gomez AM, Van Den Broeck J, Vrolix K, et al. Antibody effector mechanisms in myasthenia gravis - Pathogenesis at the neuromuscular junction. Autoimmunity. 2010;43(5–6):353–370.
  • Masuda T, Motomura M, Utsugisawa K, et al. Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis. J Neurol Neurosurg Psychiatry. 2012;83(9):935–940.
  • Oosterhuis HJGH, Limburg PC, Hummel-Tappel E, et al. Anti-acetylcholine receptor antibodies in myasthenia gravis. Part 2. Clinical and serological follow-up of individual patients. J Neurol Sci. 1983;58(3):371–385.
  • Heldal AT, Eide GE, Romi F, et al. Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development. PLoS One. 2014;9(12):e114060.
  • De Rosa A, Fornili M, Maestri Tassoni M, et al. Thymoma-associated myasthenia gravis: clinical features and predictive value of antiacetylcholine receptor antibodies in the risk of recurrence of thymoma. Thorac Cancer. 2021;12(1):106–113.
  • Peeler CE, De Lott LB, Nagia L, et al. Clinical utility of acetylcholine receptor antibody testing in ocular myasthenia gravis. JAMA Neurol. 2015;72(10):1170–1174.
  • Cao M, Koneczny I, Vincent A. Myasthenia gravis with antibodies against muscle specific kinase: an update on clinical features, pathophysiology and treatment. Front Mol Neurosci. 2020;13. DOI:10.3389/fnmol.2020.00159.
  • Leite MI, Scröbel P, Jones M, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57(3):444–448.
  • Niks EH, Kuks JBM, Roep BO, et al. Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14-DQ5. Neurology. 2006;66(11):1772–1774.
  • Bartoccioni E, Scuderi F, Augugliaro A, et al. HLA class II allele analysis in MuSK-positive myasthenia gravis suggests a role for DQ5. Neurology. 2009;72(2):195–197.
  • Tomschik M, Hilger E, Rath J, et al. Subgroup stratification and outcome in recently diagnosed generalized myasthenia gravis. Neurology. 2020;95(10):e1426–e1436.
  • Zong Y, Zhang B, Gu S, et al. Structural basis of agrin-LRP4-MuSK signaling. Genes Dev. 2012;26(3):247–258.
  • Scuderi F, Marino M, Colonna L, et al. Anti-P110 autoantibodies identify a subtype of ‘seronegative’ myasthenia gravis with prominent oculobulbar involvement. Lab Investig. 2002;82(9):1139–1146.
  • Huijbers MG, Zhang W, Klooster R, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci U S A. 2013;110(51):20783–20788.
  • Shigemoto K, Kubo S, Maruyama N, et al. Induction of myasthenia by immunization against muscle-specific kinase. J Clin Invest. 2006;116(4):1016–1024.
  • Cole RN, Ghazanfari N, Ngo ST, et al. Patient autoantibodies deplete postsynaptic muscle-specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice. J Physiol. 2010;588(17):3217–3229.
  • Viegas S, Jacobson L, Waters P, et al. Passive and active immunization models of MuSK-Ab positive myasthenia: electrophysiological evidence for pre and postsynaptic defects. Exp Neurol. 2012;234(2):506–512.
  • Bartoccioni E, Scuderi F, Minicuci GM, et al. Anti-MuSK antibodies: correlation with myasthenia gravis severity. Neurology. 2006;67(3):505–507.
  • Niks EH, Van Leeuwen Y, Leite MI, et al. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. J Neuroimmunol. 2008;195(1–2):151–156.
  • McConville J, Farrugia ME, Beeson D, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol. 2004;55(4):580–584.
  • Koneczny I. Update on IgG4-mediated autoimmune diseases: new insights and new family members. Autoimmun Rev. 2020;19(10). DOI:10.1016/j.autrev.2020.102646
  • Koneczny I, Stevens JAA, De Rosa A, et al. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun. 2017;77:104–115.
  • Koneczny I, Cossins J, Waters P, et al. MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS One. 2013;8(11):e80695.
  • Küçükerden M, Huda R, Tüzün E, et al. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK. J Neuroimmunol. 2016;295–296:84–92.
  • Stathopoulos P, Kumar A, Nowak RJ, et al. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight. 2017;2(17). DOI:10.1172/jci.insight.94263
  • Takata K, Stathopoulos P, Cao M, et al. Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients. JCI Insight. 2019;4(12). DOI:10.1172/jci.insight.127167
  • Fichtner ML, Vieni C, Redler RL, et al. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med. 2020;217(12). DOI:10.1084/JEM.20200513.
  • Kim N, Stiegler AL, Cameron TO, et al. Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell. 2008;135(2):334–342.
  • Zhang B, Shen C, Bealmear B, et al. Autoantibodies to agrin in myasthenia gravis patients. PLoS One. 2014;9(3). DOI:10.1371/journal.pone.0091816
  • Pevzner A, Schoser B, Peters K, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012;259(3):427–435.
  • Park KH, Waters P, Woodhall M, et al. Myasthenia gravis seronegative for acetylcholine receptor antibodies in South Korea: autoantibody profiles and clinical features. PLoS One. 2018;13(3). DOI:10.1371/journal.pone.0193723
  • Li M, Han J, Zhang Y, et al. Clinical analysis of Chinese anti-low-density-lipoprotein-receptor-associated protein 4 antibodies in patients with myasthenia gravis. Eur J Neurol. 2019;26(10):1296–e84.
  • Zisimopoulou P, Evangelakou P, Tzartos J, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–145.
  • Rivner MH, Quarles BM, Pan JX, et al. Clinical features of LRP4/agrin-antibody–positive myasthenia gravis: a multicenter study. Muscle Nerve. 2020;62(3):333–343.
  • Tzartos JS, Zisimopoulou P, Rentzos M, et al. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol. 2014;1(2):80–87.
  • Aarli JA, Skeie GO, Mygland Å, et al. Muscle striation antibodies in myasthenia gravis - diagnostic and functional significance. Ann N Y Acad Sci. 1998;841:505–515.
  • Yamamoto AM, Gajdos P, Eymard B, et al. Anti-titin antibodies in myasthenia gravis: tight association with thymoma and heterogeneity of nonthymoma patients. Arch Neurol. 2001;58(6):885–890.
  • Mygland Å, Tysnes O‐B, Aarli JA, et al. Ryanodine receptor autoantibodies in myasthenia gravis patients with a thymoma. Ann Neurol. 1992;32(4):589–591.
  • Williams CL, Lennon VA. Thymic B lymphocyte clones from patients with myasthenia gravis secrete monoclonal striational autoantibodies reacting with myosin, alpha actinin, or actin. J Exp Med. 1986;164(4):1043–1059.
  • Gautel M, Lakey A, Barlow DP, et al. Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin. Neurology. 1993;43(8):1581–1585.
  • Romi F, Skeie GO, Aarli JA, et al. Muscle autoantibodies in subgroups of myasthenia gravis patients. J Neurol. 2000;247(5):369–375.
  • Cordts I, Bodart N, Hartmann K, et al. Screening for lipoprotein receptor-related protein 4-, agrin-, and titin-antibodies and exploring the autoimmune spectrum in myasthenia gravis. J Neurol. 2017;264(6):1193–1203.
  • Gasperi C, Melms A, Schoser B, et al. Anti-agrin autoantibodies in myasthenia gravis. Neurology. 2014;82(22):1976–1983.
  • Yan M, Liu Z, Fei E, et al. Induction of anti-agrin antibodies causes myasthenia gravis in mice. Neuroscience. 2018;373:113–121.
  • Romi F, Suzuki S, Suzuki N, et al. Anti-voltage-gated potassium channel Kv1.4 antibodies in myasthenia gravis. J Neurol. 2012;259(7):1312–1316.
  • Gallardo E, Martínez-Hernández E, Titulaer MJ, et al. Cortactin autoantibodies in myasthenia gravis. Autoimmun Rev. 2014;13(10):1003–1007.
  • Agius MA, Zhu S, Kirvan CA, et al. Rapsyn antibodies in myasthenia gravis. Ann N Y Acad Sci. 1998;841:516–521.
  • Geen J, Howells RC, Ludgate M, et al. The prevalence of anti-acetylcholinesterase antibodies in autoimmune disease. Autoimmunity. 2004;37(8):579–585.
  • Zoltowska Katarzyna M, Belaya K, Leite M, et al. Collagen Q - A potential target for autoantibodies in myasthenia gravis. J Neurol Sci. 2015;348(1–2):241–244.
  • Tu H, Pirskanen-Matell R, Heikkinen A, et al. Autoimmune antibodies to collagen XIII in myasthenia gravis patients. Muscle Nerve. 2018;57(3):506–510.
  • Torres-Vega E, Mancheño N, Cebrián-Silla A, et al. Netrin-1 receptor antibodies in thymoma-associated neuromyotonia with myasthenia gravis. Neurology. 2017;88(13):1235–1242.
  • Gastaldi M, De Rosa A, Maestri M, et al. Acquired neuromyotonia in thymoma-associated myasthenia gravis: a clinical and serological study. Eur J Neurol. 2019;26(7):992–999.
  • Lindstrom JM, Seybold ME, Lennon VA, et al. Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26(11):1054–1059.
  • Beeson D, Jacobson L, Newsom-Davis J, et al. A transfected human muscle cell line expressing the adult subtype of the human muscle acetylcholine receptor for diagnostic assays in myasthenia gravis. Neurology. 1996;47(6):1552–1555.
  • Luo J, Lindstrom J. Antigenic structure of the human muscle nicotinic acetylcholine receptor main immunogenic region. J Mol Neurosci. 2021;40(1–2):217–220.
  • Shi QG, Wang ZH, Ma XW, et al. Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis. Neurosci Bull. 2012;28(5):469–474.
  • Oger J, Frykman H. An update on laboratory diagnosis in myasthenia gravis. Clin Chim Acta. 2015;449:43–48.
  • Wong SH, Huda S, Vincent A, et al. Ocular myasthenia gravis: controversies and updates. Curr Neurol Neurosci Rep. 2014;14(1). DOI:10.1007/s11910-013-0421-9
  • Finnis MF, Jayawant S. Juvenile myasthenia gravis: a paediatric perspective. Autoimmune Dis. 2011;1(1). DOI:10.4061/2011/404101
  • Andreetta F, Rinaldi E, Bartoccioni E, et al. Diagnostics of myasthenic syndromes: detection of anti-AChR and anti-MuSK antibodies. Neurol Sci. 2017;38(Suppl 2):253–257.
  • Hewer R, Matthews I, Chen S, et al. A sensitive non-isotopic assay for acetylcholine receptor autoantibodies. Clin Chim Acta. 2006;364(1–2):159–166.
  • Nguyen VK, Leclerc N, Wolff CM, et al. Protection of immunoreactivity of dry immobilized proteins on microtitration plates in ELISA: application for detection of autoantibodies in myasthenia gravis. J Biotechnol. 1999;72(1–2):115–125.
  • Franciotta D, Martino G, Brambilla E, et al. TE671 cell-based ELISA for anti-acetylcholine receptor antibody determination in myasthenia gravis. Clin Chem. 1999;45(3):400–405.
  • Gastaldi M, Zardini E, Scaranzin S, et al. Autoantibody diagnostics in neuroimmunology: experience from the 2018 Italian neuroimmunology association external quality assessment program. Front Neurol. 2020;10. DOI:10.3389/fneur.2019.01385.
  • Molina RD, Conzatti LP, Da Silva APB, et al. Detection of autoantibodies in central nervous system inflammatory disorders: clinical application of cell-based assays. Mult Scler Relat Disord. 2020;38:101858.
  • Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017;97(2):839–887.
  • Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol. 2019;15(2):89–102.
  • Hinson SR, Lennon VA, Pittock SJ Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders. Handb Clin Neurol. 2016;133:377–403.
  • Leite MI, Waters P, Vincent A. Diagnostic use of autoantibodies in myasthenia gravis. Autoimmunity. 2010;43(5–6):371–379.
  • Devic P, Petiot P, Simonet T, et al. Antibodies to clustered acetylcholine receptor: expanding the phenotype. Eur J Neurol. 2014;21(1):130–134.
  • Nagaishi A, Narita T, Woodhall M, et al. Autoantibodies in Japanese patients with ocular myasthenia gravis. Muscle Nerve. 2021;63(2):262–267.
  • Hong Y, Zisimopoulou P, Trakas N, et al. Multiple antibody detection in ‘seronegative’ myasthenia gravis patients. Eur J Neurol. 2017;24(6):844–850.
  • Furukawa S, Akazawa S, Furukawa Y, et al. A practical enzyme immunoassay for anti-acetylcholine receptor antibodies in myasthenia gravis. J Neuroimmunol. 1984;6(6):397–409.
  • Yang L, Maxwell S, Leite MI, et al. Non-radioactive serological diagnosis of myasthenia gravis and clinical features of patients from Tianjin, China. J Neurol Sci. 2011;301(1–2):71–76.
  • Matthews I, Chen S, Hewer R, et al. Muscle-specific receptor tyrosine kinase autoantibodies - A new immunoprecipitation assay. Clin Chim Acta. 2004;348(1–2):95–99.
  • Ohta K, Shigemoto K, Kubo S, et al. MuSK antibodies in AChR Ab-seropositive MG vs AChR Ab-seronegative MG. Neurology. 2004;62(11):2132–2133.
  • Saulat B, Maertens P, Hamilton WJ, et al. Anti-musk antibody after thymectomy in a previously seropositive myasthenic child. Neurology. 2007;69(8):803–804.
  • Tsonis AI, Zisimopoulou P, Lazaridis K, et al. MuSK autoantibodies in myasthenia gravis detected by cell based assay - A multinational study. J Neuroimmunol. 2015;284:10–17.
  • Huda S, Waters P, Woodhall M, et al. IgG-specific cell-based assay detects potentially pathogenic MuSK-Abs in seronegative MG. Neurol Neuroimmunol Neuroinflamm. 2017;4(4):e357.
  • Zhang B, Tzartos JS, Belimezi M, et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69(4):445–451.
  • Marino M, Scuderi F, Samengo D, et al. Flow cytofluorimetric analysis of anti-LRP4 (LDL receptor-related protein 4) autoantibodies in Italian patients with myasthenia gravis. PLoS One. 2015;10(8):e0135378.
  • Huda S, Wong SH, Pettingill P, et al. An 11-year retrospective experience of antibodies against the voltage-gated potassium channel (VGKC) complex from a tertiary neurological centre. J Neurol. 2015;262(2):418–424.
  • Huda S, Woodhall MR, Vincent A, et al. Characteristics of acetylcholine-receptor-antibody–negative myasthenia gravis in a South African cohort. Muscle Nerve. 2016;54(6):1023–1029.
  • Kufukihara K, Watanabe Y, Inagaki T, et al. Cytometric cell-based assays for anti-striational antibodies in myasthenia gravis with myositis and/or myocarditis. Sci Rep. 2019;9(1). DOI:10.1038/s41598-019-41730-z
  • Stergiou C, Lazaridis K, Zouvelou V, et al. Titin antibodies in ‘seronegative’ myasthenia gravis - A new role for an old antigen. J Neuroimmunol. 2016;292:108–115.
  • Reindl M, Schanda K, Woodhall M, et al. International multicenter examination of MOG antibody assays. Neurol Neuroimmunol Neuroinflammation. 2020;7(2):e674.
  • Gastaldi M, Scaranzin S, Jarius S, et al. Cell-based assays for the detection of MOG antibodies: a comparative study. J Neurol. 2020;267(12):3555–3564.
  • Lazaridis K, Tzartos SJ. Myasthenia gravis: autoantibody specificities and their role in MG management. Front Neurol. 2020;11. DOI:10.3389/fneur.2020.596981.
  • Evoli A, Iorio R. Controversies in ocular myasthenia gravis. Front Neurol. 2020;11. DOI:10.3389/fneur.2020.605902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.